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Background: Pathological response to neoadjuvant treatment for patients with high-
grade serous ovarian carcinoma (HGSOC) is assessed using the chemotherapy response
score (CRS) for omental tumor deposits. The main limitation of CRS is that it requires
surgical sampling after initial neoadjuvant chemotherapy (NACT) treatment. Earlier and
non-invasive response predictors could improve patient stratification. We developed
computed tomography (CT) radiomic measures to predict neoadjuvant response before
NACT using CRS as a gold standard.

Methods: Omental CT-based radiomics models, yielding a simplified fully interpretable
radiomic signature, were developed using Elastic Net logistic regression and compared to
predictions based on omental tumor volume alone. Models were developed on a single
institution cohort of neoadjuvant-treated HGSOC (n = 61; 41% complete response to
NCT) and tested on an external test cohort (n = 48; 21% complete response).

Results: The performance of the comprehensive radiomics models and the fully
interpretable radiomics model was significantly higher than volume-based predictions of
response in both the discovery and external test sets when assessed using G-mean
(geometric mean of sensitivity and specificity) and NPV, indicating high generalizability and
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reliability in identifying non-responders when using radiomics. The performance of a fully
interpretable model was similar to that of comprehensive radiomics models.

Conclusions: CT-based radiomics allows for predicting response to NACT in a timely
manner and without the need for abdominal surgery. Adding pre-NACT radiomics to
volumetry improved model performance for predictions of response to NACT in HGSOC
and was robust to external testing. A radiomic signature based on five robust predictive
features provides improved clinical interpretability and may thus facilitate clinical
acceptance and application.
Keywords: ovarian cancer, radiomics, computed tomography, chemotherapy response score, neoadjuvant
chemotherapy
1 INTRODUCTION

Over the past 15 years, there has been a dramatic rise in the use
of neoadjuvant chemotherapy (NACT) for advanced high-
grade serous ovarian cancer (HGSOC) where patients receive
3–4 cycles of carboplatin and paclitaxel before delayed primary
surgery (DPS) when immediate primary surgery (IPS) is not
feasible (1–3). NACT is used as frontline therapy for >60% of
the HGSOC patients in the UK and for >45% in the US (4, 5).
Early assessment of treatment response following NACT
provides predictive information for the effectiveness of DPS
and survival (5). Pathological complete response after NACT is
the strongest predictor of outcome in many epithelial cancers
and can be a robust surrogate biomarker for clinical trials (6–8).
However, assessing pathological response in HGSOC is
complex because of multisite disease with heterogeneous
tumor microenvironments (9, 10), and diverse clonal
populations (11, 12). The three-tier chemotherapy response
score (CRS) assesses histopathological response in omental
tumor deposits to stratify patients into three response groups:
none or minimal (CRS1), partial (CRS2), or complete response
(CRS3). A meta-analysis of 877 patients showed that complete
response (CRS3) is associated with prolonged progression-free
survival (PFS) and overall survival (OS) (13). CRS is therefore
the best-validated candidate for use as an early surrogate
biomarker of response in HGSOC (13).

The main limitation of CRS is the requirement for omental
surgery. Consequently, CRS may be difficult to apply for all
patients receiving NACT whereas computed tomography (CT) is
routinely used to assess response and can predict PFS (14). While
the CRS assesses response on a microscopic level, CT detects
changes on a meso- to macroscopic level and could provide
complementary information. There are still significant
challenges to develop sensitive imaging biomarkers of response
as previous studies have not shown positive associations between
RECIST 1.1 response and CRS (15). Radiomics provides
advanced quantitative analyses of radiological images (16–18)
and is predictive of treatment response in HGSOC and other
cancers (19, 20). We therefore developed methods to predict
clinical response to NACT by combining radiomics with omental
tumor volumetry and using CRS as the gold standard.
2

2 MATERIALS AND METHODS

This is a retrospective analysis of prospectively collected data
from the Cambridge University Hospitals NHS Foundation
Trust (Cambridge, UK) and the Barts Health NHS Trust
(London, UK). This study was approved by our institutional
review boards (REC reference numbers 08/H0306/61 and IRAS
reference number 243824). Written informed consent was
obtained from all participants. Clinical and outcome data from
patients at the Barts Health NHS Trust were reported in a
previous publication, in which no imaging data were included
(21). Figure 1 shows the overall design of the study.

2.1 Materials
2.1.1 Study Participants
Research participants were consecutively and prospectively
recruited from the Cambridge University Hospital between
2009 and 2017 (discovery cohort), and from the Barts Health
NHS Trust, between October 2009 and October 2014 (external
test cohort). The inclusion criteria were patients aged 18 years or
older, histological diagnosis of HGSOC, NACT before DPS, pre-
and post-NACT contrast-enhanced CT of the abdomen and
pelvis, pre-NACT omental tumor deposits >3 cm³, and CRS
assessment based on surgical specimens obtained from DPS. In
both centers, the recommendation for NACT and DPS instead of
IPS was based on the selection criteria published by the ESMO–
ESGO Ovarian Cancer Consensus Conference Working Group
(22, 23). After careful evaluation of patients before surgery, a
management plan was defined in a multidisciplinary setting. If
resection of all macroscopic disease was not deemed obtainable
based on pre-operative staging with acceptable operative
morbidity, NACT and DPS were recommended. Both disease-
and patient-specific factors (such as coexisting illnesses, age, and
performance status) were considered in the decision-
making process.

2.1.2 Clinical Data
Patients’ medical records at the Cambridge University Hospitals
were reviewed by a medical oncology resident with 2 years of
specialty training (MR) under the supervision of a board-
certified medical oncologist (JB) with >20 years of experience.
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https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Rundo et al. Radiomics Predicts Ovarian Cancer Response
Patients’ medical records at the Barts Health NHS Trust were
reviewed by members of the clinical care team at the local center.
Demographic data are shown in Supplementary Table S1.

2.1.3 Histopathologic Analysis
The three-tier CRS was assigned by board-certified pathologists
with subspecialty training in gynecological oncology at both
centers using previously published criteria (9, 21). Briefly, the
section of the omentum showing the most residual viable tumor
was assigned a score based on the response of the omental
tumor to chemotherapy: score 1 = abundant tumor with no or
minimal perceptible response to chemotherapy; score 2 =
significant amount of viable tumor present, showing readily
appreciable fibro-inflammatory response secondary to
treatment; score 3 = complete or near-complete response
with no tumor or minimal irregularly scattered tumor nests
(none > 2 mm).

The three-tier CRS outcomes were dichotomized into non-
complete response (CRS1-2) and complete response (CRS3) and
used for all model fitting analyses.

2.1.4 CT Acquisition
CT acquisition parameters are given in Supplementary Table
S4. Spatial voxel resolution, kilovoltage peak (kVp), and
reconstruction kernel values were variable, as CT scanners
from different institutions with different vendors and models
were used. The axial contrast-enhanced images reconstructed
with a soft tissue kernel were analyzed.
Frontiers in Oncology | www.frontiersin.org 3
2.1.5 CT-Based Tumor Segmentation
Omental tumor deposits from patients included at the
Cambridge University Hospitals were manually 3D segmented
by a board-certified radiologist (RW) with 10 years of experience
in radiology. Omental tumor deposits from patients included at
Barts Health NHS Trust were initially manually segmented by a
radiology resident (VB, CM, LB, RP, and MZ) with 1 to 6 years of
experience in radiology and reviewed by one of the two board-
certified radiologists (RW and ES). The segmentation on both
datasets was performed using the Microsoft Radiomics App
v1.0.28434.1 (project InnerEye; Microsoft, Redmond, WA,
USA; https://www.microsoft.com/en-us/research/project/
medical-image-analysis).

We applied an automated tissue-specific sub-segmentation
method previously developed (24) to the manual whole tumor
segmentation. This sub-segmentation allowed us to reliably
exclude hypodense (i.e., fatty or cystic/necrotic) and
hyperdense (i.e., calcified) components from the intermediately
dense (i.e., soft tissue) portions of the omental tumor.

Figure 1 shows two examples of omental lesions delineated
on the CT images for both datasets and time points (the zoomed
version of the CT images is provided in Supplementary
Figure S1).
2.1.6 RECIST 1.1 Assessment
CT scans for all patients were assessed according to the RECIST
1.1 response criteria (25) by a board-certified radiologist.
FIGURE 1 | Overall design of the study for identifying radiomic predictors of CRS-confirmed response. Pre- and post-NACT CT images were analyzed. CRS
classification is tabulated.
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2.2 Methods
2.2.1 Volumetric Analyses
First, the volumetric measurements of the omental lesions pre-
and post-NACT, as well as the percentage change between the
two time points were calculated.

A Wilcoxon rank-sum test (Mann–Whitney U test) was used
to assess the statistical differences between responders and non-
responders. For predictive modeling, we employed a univariate
logistic regression between the volumetric measurements (for
both whole tumors and soft tissue components) and the
dichotomized CRS as the response variable.

2.2.2 Radiomics Analyses
The processing and analysis steps are outlined in Figure 2C and
described in the following sections.

2.2.2.1 Radiomic Feature Extraction, Calibration,
and Pre-Processing
The analyzed features were extracted using PyRadiomics version
2.0 (26) in Python 3.7.5 Along with 3D shape-based features, six
feature classes were extracted: (1) first-order intensity histogram
statistics, (2) Gray-Level Co-occurrence Matrix (GLCM) features
(27, 28), (3) Gray-Level Run Length Matrix (GLRLM) (29), (4)
Frontiers in Oncology | www.frontiersin.org 4
Gray-Level Size Zone Matrix (GLSZM) (30), (5) Gray-Level
Dependence Matrix (GLDM) (31), and (6) Neighboring Gray
Tone Difference Matrix (NGTDM) (32). All the radiomic
features are listed in Table S5.

3D feature computation used a resegmentation (i.e., the
voxels outside a specified range are removed from the mask
prior to texture feature calculation) in [−100,…, 400] Hounsfield
units (HU) and the original voxel sizes. The quantization settings
(33) were derived using the Freedman-Diaconis rule, an
extension of Scott’s rule to non-Gaussian distributions (34, 35).

The details on feature calibration and pre-processing are
provided in Supplementary Materials.

2.2.2.2 Predictive Modeling
Prior to the predictive modeling phase, we evaluated the
redundancy among all features and removed highly correlated
features (36). We used the Spearman’s correlation coefficient r for
pairwise feature comparison. In the case of r ≥ 0.90, the feature
with the highest predictive power was selected. This selection
relied upon a univariate logistic regression for predicting the
dichotomized CRS and removing the feature that achieved the
lowest area under the receiver operating characteristic (AUC).
Since this redundant feature analysis needs the CRS response
A

B

C

FIGURE 2 | (A) Scheme of the nested k-fold cross-validation (for kouter = 5 and kinner = 5). The nested fitting procedure was repeated 100 times with different
random permutations of the discovery dataset. (B) Majority voting for the ensemble of classifiers used for testing on the external test cohort (the dashed red lines
denote the decision thresholds optimized according to the inner CV loop). (C) Workflow of the radiomics pipeline for CRS prediction.
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variable to select the most predictive feature, to keep each outer
test fold completely unseen, the procedure was embedded in the
inner loop of the nested k-fold CV.

The predictive modeling made use of the Elastic Net
regularization for logistic regression with the dichotomized
CRS as the response variable (37). The predictive models were
trained and tested on the development cohort via a nested k-fold
CV procedure. In particular, in the inner loop, the k-fold CV
aimed at minimizing the l-penalized deviance, thus optimizing
the value of? the shrinkage parameter. The analyzed features
were standardized using a z-score transformation.

2.2.2.3 Post-Processing and Relevant Feature Analysis
Relying upon the achieved predictive model results, the most
relevant features were analyzed in terms of the occurrences (i.e.,
when a feature coefficient is non-zero). Therefore, Elastic Net
was fitted on this reduced subset of features using the same
nested k-fold CV scheme and settings (also in terms of
data partitioning).

2.2.3 Statistical and Computational Analysis
Statistical and computational analyses were performed using
MatLab® R2019b (64-bit version) environment (The MathWorks,
Natick, MA, USA) and SPSS (version 26; IBM, USA).

Continuous variables were reported as mean and standard
deviation (SD) given normally distributed data or median and
IQR when skewed, while categorical variables were reported as
number and percentage of patients with the specific characteristics.

One-way analysis of variance was used for group comparisons of
continuous variables, when applicable. Otherwise, a Kruskal–Wallis
test was applied. Group comparisons of categorical variables were
performed using the c2 or Fisher exact test, as appropriate. A p-
value ≤ 0.05 was considered as statistically significant.

For distribution comparisons, the non-parametric Wilcoxon
rank-sum test (Mann–Whitney U test) was used, using a
significance level of 0.05. In the case of multiple comparisons,
the p-values were adjusted using the Bonferroni–Holm method.

For correlations between summed longest diameters (SLDs)
according to RECIST 1.1 with dichotomized CRS, Spearman’s
correlation coefficients were computed.

The used evaluation metrics were the AUC and classification
accuracy, along with Positive Predictive Value (PPV) and
Negative Predictive Value (NPV) to better investigate true
positive and true negative results, respectively (38). We also
considered the sensitivity and specificity, as well as the geometric
mean (G-mean) defined as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sensitivity � Specificity

p
. For

comparing matched samples, the non-parametric Wilcoxon
signed-rank test on paired samples was used, using a
significance level of 0.05.

2.2.4 Training and Testing Methodology
For both volumetric and radiomics analyses, the predictive
models were fitted on the discovery cohort in nested 5-fold
cross-validation (CV) as shown in Figure 2A and the
Supplementary Materials.

For the test on the external cohort, an ensemble of the 5 cross-
validated Elastic Net models fitted on the discovery cohort was
Frontiers in Oncology | www.frontiersin.org 5
used (Figure 2B). We used majority voting methods based on the
single predictions that employ the optimized decision thresholds.
3 RESULTS

3.1 Characteristics of Patient Cohorts
Figure 1 summarizes the study design. The study cohort
included a training set of 61 patients and an independent,
external test set of 48 patients receiving NACT for HGSOC.
Figure S2 provides a REMARK diagram for case identification
and Table S1 summarizes clinical details for the cohorts. Patients
were followed for a median of 37 (IQR 26–48) and 35 (IQR 24–
44) months in the training and external test cohorts, respectively.
The training and test cohorts had different proportions for
pathological complete response (CRS3). Complete response
(CRS3) was observed in 25/61 (41%) of patients in the training
set and 10/48 (21%) patients in the external test set. Non-
complete response (CRS1–2) was by trend a risk factor for
disease progression and death in both groups (Tables S2, S3).
Measurements of the summed longest diameter of target lesions
according to RECIST 1.1 were not significantly correlated with
the dichotomized CRS in both cohorts [discovery cohort: pre-
NACT ⍴ = –0.026 (p = 0.845), post-NACT ⍴ = –0.156 (p=0.232);
external test cohort: pre-NACT ⍴ = 0.124 (p = 0.401), post-
NACT ⍴ = –0.013 (p = 0.930).

3.2 Smaller Omental Tumor Volume Is
Associated With Complete Response
We first assessed whether patients with complete response (CRS3)
had significantly different omental tumor volumes (on pre- and
post-NACT CT scans) when compared to patients with non-
complete response (CRS1–2). In the discovery cohort, patients
with complete response had significantly smaller omental tumor
volumes, both pre-NACT (median 36.9 cm³ vs. 84.6 cm³; p = 0.01)
and post-NACT (median 0.00 cm³ vs. 14.6 cm³; p ≪ 0.001), and
also showed a larger negative percentage change (median: −100.0%
vs. −81.5%; p ≪ 0.001) (Figures 3A, C). In the external test set,
patients with complete response also had significantly smaller pre-
and post-NACT omental tumor volumes (median 51.9 cm³ vs.
166.7 cm³; p = 0.03; 2.5 cm³ vs. 22.7 cm³; p = 0.002, respectively),
but the percentage change was not significantly different (median –
98.5% vs. −84.7%; p = 0.07) compared to patients with non-
complete response (Figures 3B, D).

Ovarian carcinomametastases aremesoscopically heterogeneous.
CT appearances include solid/soft tissue (intermediately dense)
tumor as well as cystic/necrotic (hypodense) and calcified
(hyperdense) components. Different components in the same
metastasis may show differential response to chemotherapy. We
identified solid/soft tissue and cystic/necrotic tumor components
usinganautomatedsub-segmentationmethod(22)andevaluated the
volume of solid tumor components at the two time points pre- and
post-NACT. Results for the volume of solid tumor components are
similar to those of whole tumor volume for patients with complete
and non-complete response (Figure 3). Therefore, further analyses
focused on solid tumor volume alone.
June 2022 | Volume 12 | Article 868265
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3.3 Omental Tumor Volume Predicts
Complete Response and the Prediction
Improves With the Addition of Radiomics
We next investigated whether complete response could be
predicted from pre- and post-NACT omental tumor volume
and the percentage change in omental tumor volumes. Using
univariable logistic regression, smaller values for the omental
tumor volume measured pre- and post-NACT, as well as a larger
percentage change in response to NACT, were correlated with
complete response in both the discovery and the external test
sets. We used nested 5-fold CV of the discovery set (Figure 2A)
to estimate the AUC for sensitivity and specificity of complete
response prediction. Model performance metrics are shown in
Figure 4. The AUC ranged between 0.68 and 0.87 using either
the pre- or post-NACT omental tumor volumes from both the
discovery and the external test sets (Figure 4). The post-NACT
volumetric data significantly improved model AUC compared to
pre-NACT volumetry in both cohorts (Figures 4A, B) (p ≪
0.0001 in both cases). Excluding cystic/necrotic and calcified
areas from the volumetric analysis and only taking into account
solid tumor components did not improve the performance of the
volume-based models (Supplementary Figure S3).
Frontiers in Oncology | www.frontiersin.org 6
To evaluate if prediction of complete response could be
improved by including radiomic analysis of pre-NACT
omental tumors, we first pre-processed 107 potential radiomic
features to identify a smaller robust and non-redundant set of 42
radiomic features, which included two measurements for volume
(mesh volume and voxel volume).

In the discovery set, the pre-NACT radiomic models
significantly improved the AUC compared to volumetric
models (p ≪ 0.0001). Although this effect was not observed in
the external test dataset where the volumetric model had the
highest AUC (p ≪ 0.0001) (Figures 4A, B), the inclusion of
radiomic data into the model significantly improved the NPV of
our predictions compared to the volume-based model (p ≪
0.0001), indicating increased reliability for the identification of
non-responders at this early time point in the external test
dataset (Figures 4E, F). Furthermore, the radiomics-based
model strongly decreased the wide variability of PPV from
using only volumetric data (SD reduced from 0.345 to 0.049)
(Figures 4E, F). Similarly, a higher G-mean—which is a
summary measure of the sensitivity and specificity of the test—
was observed for the radiomics-based models compared to the
volume-based model demonstrating more stable detection
A B

DC

FIGURE 3 | Boxplots of the whole tumor and solid tumor volume in patients with non-complete (CRS1-2) and complete response (CRS3) from the (A) discovery (n = 61,
non-complete response = 36, complete response = 25) and (B) external test cohorts (n = 48, non-complete response = 38, complete response = 10). Percentage change of
whole tumor and solid tumor volume is shown in (C) for the discovery cohort and in (D) for the external test cohort. For pre- and post-NACT volumes, a logarithmic scale was
used on the y-axis.
June 2022 | Volume 12 | Article 868265
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performance (p < 0.05 and p ≪ 0.0001 on the discovery and
external test sets, respectively) (Figures 4A, B).
3.4 A Simplified and Interpretable
Radiomics Model Maintains High
Prediction Accuracy
Radiomics-based prediction models are frequently criticized
for their lack of interpretability and explainability, particularly
as models with a large number of radiomic features are not
Frontiers in Oncology | www.frontiersin.org 7
clinically meaningful. Identifying simplified models that have
good prediction accuracy is essential to increase the acceptance
of prediction models by clinicians and their incorporation into
clinical care. Therefore, we aimed to create an additional
simplified prediction model based on a subset of radiomics
features (i.e., relevant features), which we identified from the
42 features that were most frequently selected for the 500
trained models fitted after the pre-processing steps (see Figure
S5). The five features shown in Table 1 were selected
more than 300 times, and they were selected more often
A B

D

E F

C

FIGURE 4 | CRS classification results in terms of AUC and G-mean (first row), along with sensitivity and specificity (second row) and PPV and NPV (third row):
(A, C, E) discovery cohort; (B, D, F) external test set. We considered the pre-NACT volumetric model and radiomic models fitted on either all the preprocessed
features (robust and non-redundant) or only on the most frequently selected (i.e., relevant) features along with omental tumor volume. The variability across 100
repetitions was considered. The dots and error bars denote the average value and the standard deviation, respectively. Brackets denote statistical significance of
particular interest using a Wilcoxon rank-sum test. Notation: *p < 0.05, **p < 0.01, ***p < 0.001, ****p ≪ 0.0001.
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than the tumor volume that had moderate predictive power
(Figure S6).

In addition to these five features, we included the whole
omental tumor volume in our final simplified model because it
has high clinical recognition. In the discovery cohort, this model
achieved a significantly higher mean AUC than the models fitted
on all 42 features (0.75 ± 0.04 and 0.73 ± 0.04, respectively; p ≪
0.0001), and in the external test set, its AUC was significantly
lower than that of the models based on 42 radiomics features
(0.68 ± 0.03 and 0.69 ± 0.02, respectively; p = 0.0006)
(Figures 4A, B). Accuracy was not significantly affected
(p = 0.626).

Therefore, as expected, the simplified models that used only
the most frequently selected features showed slightly lower
generalization abilities on the external test dataset.

Figure 4 summarizes the overall results for volumetric,
radiomics-based, and simplified radiomics-based models, on
both the discovery and external test sets, and demonstrates the
relationship between model sensitivity, specificity, and AUC. In
the discovery set, radiomics-based models showed higher AUC
than the volume-based model (Figure 4A) while the opposite
was observed in the external test set: the AUC of radiomics-based
models was inferior to volume-based predictions (Figure 4B).
Although these results may seem discouraging for the use of
radiomics, further exploration of the datasets and sensitivity and
specificity of the models indicates that this may be a result of a
high class imbalance in the external test set. To explore this
further, we calculated the geometric mean of the sensitivity and
specificity as this can better define a centrality measure for the
model evaluation in the case of imbalanced classification
performance. Owing to the class imbalance, the sensitivity and
specificity of the volume-based predictions reached extreme
values on the external test set (Figure 4D) when compared to
the discovery dataset (Figure 4C). This drastic change in
sensitivity and specificity when moving to the external test set
is a sign of poor generalizability of the volume-based model.
Although these extreme values lead to a higher overall AUC for
volume-based predictions compared to radiomics based models,
it is high generalizability that is the aim of model development
and, therefore, models achieving sensitivity and specificity in an
Frontiers in Oncology | www.frontiersin.org 8
external test set that are comparable to those achieved on the
discovery set are preferable. Radiomics-based models (both
models including all 42 radiomics and the simplified model)
thus demonstrate the advantage of higher generalizability when
compared to purely volume-based predictions. In addition, the
simplified radiomics model has a significant clinical advantage in
being fully interpretable and achieves sensitivity, specificity, and
AUC values comparable to the full radiomics model.
3.5 Interpretation of the
Radiomic Signature
The mean values of the coefficients of the Elastic Net logistic
regression (averaged over 500 instances) for the radiomic model
fitted on the selected features are shown in Table 1. The
coefficient values showed that response was associated with
omental lesions characterized by a more elongated shape with
lower least axis length and maximum 2D diameter in the coronal
plane, compared to non-responders. Also, response was
associated with low homogeneity (low IDMN) and with low
difference entropy [both are GLCM features capturing tumor
heterogeneity (40)]; low homogeneity indicates high contrast
within the tumor deposit of responders. Low entropy is a typical
feature of a lesion exhibiting a low number of different gray
levels. However, difference entropy is computed on the intensity
difference between neighboring voxels, indicating that these
differences were smaller (or, in other words, neighboring gray
levels were more similar) in responders compared to non-
responders. These results are confirmed by the boxplots
depicted in Supplementary Figures S7, S8. To investigate the
influence of non-solid/soft tissue components on the radiomic
signature defined, Table 1 also reports the Spearman’s
correlation coefficient for each radiomic feature computed on
whole and solid/soft tissue tumor component VOIs for both the
discovery and external test sets. All the values of the Spearman’s
correlation coefficient confirm a high correlation, especially for
the shape-based features, thus showing that these radiomic
features are not considerably affected by the non-solid/soft
tissue components (e.g., hypodense or hyperdense regions
potentially present within the tumor).
TABLE 1 | List of the features selected and included in the radiomic signature. Mean values of the coefficients of the Elastic Net logistic regression (averaged over 500
model instances)

Feature
group

Feature name Description Coefficient

Shape Maximum 2D diameter
(column)

The largest pairwise Euclidean distance between tumor surface mesh vertices in the coronal plane –0.1815

Least Axis Length The smallest axis length of the ROI-enclosing ellipsoid –0.241
Elongation Describes the relationship between the two largest principal components in the ROI shape 0.379

GLCM
(gray-level
co-
occurrence
matrix)

Inverse Difference
Moment Normalized
(IDMN), also denoted as
homogeneity

Is a measure of the local homogeneity of an image (IDMN weights are the inverse of the contrast weights
(decreasing exponentially from the diagonal i=j in the GLCM). It measures the smoothness (homogeneity) of the
gray-level distribution of the image; it is (approximately) inversely correlated with contrast—if contrast is small,
usually homogeneity or IDMN is large (39)

–0.7857

Difference Entropy A measure of the randomness/variability in neighborhood intensity value differences; measures the degree of
disorder related to the gray-level difference distribution of the image. Entropy is (approximately) inversely
correlated with uniformity; images with a larger number of gray levels have larger entropy (39)

–0.4252

Volume –0.0458
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4 DISCUSSION

NACT followed by DPS is an accepted alternative treatment for
patients with advanced HGSOC where complete resection
during IPS may not be achievable based on clinical and
imaging findings at presentation. However, for patients with
poor performance status and fitness for cytotoxic therapy, the
decision whether to proceed with NACT (often with
adjustments, such as dose reduction and/or single-agent
therapy) in the hope of symptomatic improvement, or to opt
for best supportive care (i.e., no oncological treatment) can be
extremely challenging. In this scenario, an objective prediction of
lack of response (which would imply toxicity without
symptomatic improvement with NACT) could play an
important role in informing discussions with patients and
clinical decision-making. Although the majority of HGSOC
patients respond to standard first-line therapy, it has been
shown recently (5) that complete or partial response rates to
first-line NACT are lower than previously thought. Future
development of clinical trials of alternative neoadjuvant
approaches for first-line non-responders is thus a key priority.
Prediction tools like the ones shown here are therefore required
to allow for confident prediction of lack of response at
presentation in order to facilitate recruitment to such clinical
trials. CRS criteria are validated to evaluate changes in omental
tumor deposits on surgical specimens, which represents a
shortcoming in incorporating CRS as a stratification tool for
prospective clinical trials of novel neoadjuvant antineoplastic
agents but could be overcome by imaging-based prediction tools
of response to standard-of-care NACT.

Although omental tumor volumes pre- and post-NACT alone
can predict CRS, we showed that predictions can be significantly
improved with radiomics-based models. Only these models were
robust enough to reduce standard deviation of performance
metrics on highly unbalanced data as observed in our external
test set and significantly improved the NPV of predictions
allowing to reliably identify non-responders.

We developed a fully interpretable prediction model based on
only six highly robust features marking a transition point from a
black-box approach—using large numbers of uninterpretable
radiomics features—to a more intuitive model that is limited to
a smaller number of features but preserves generalizability and
accuracy in its predictions. We found that features quantifying
lesion size and shape were among the most relevant ones. These
findings highlight that unidimensional tumor measurements in
the axial plane (as performed in routine clinical practice and for
RECIST 1.1) and even tumor volume measurements alone are
insufficient to capture the most relevant size- and shape-related
properties for predicting response. They disregard the two
properties selected as highly robust and relevant: tumor extent
in the supero-inferior direction and tumor elongation. Even
manual assessment of these features on coronally reconstructed
CT images could easily be performed by the reporting
radiologist, which highlights that the results obtained from our
study could possibly be immediately implemented in routine
clinical image interpretation and reporting.
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We investigated the use of tissue-specific sub-segmentation
proposed in (22). To date, the majority of quantitative imaging
studies disregard macroscopic tumor heterogeneity, even though
solid tumor regions typically have high cellular density and could
contribute more to adverse prognostic or predictive information
than necrotic, cystic, or calcified regions (41). However, our
results showed no significant changes between the AUC of
logistic regression models for predicting CRS when compared
to whole tumor volume. For this reason, and to ensure that the
clinically interpretable criteria suggested by this paper could be
used by any center with no further requirements, our results were
obtained using the whole omental disease.

A CT-based radiomic prognostic vector associated with
molecular features of ovarian cancer has been proposed for
prognostication and patient stratification previously (42, 43).
Radiomic–clinical nomograms have also shown prognostic and
predictive power recently (44–47): Hong et al. used a
combination of CT images and clinical features (47), whereas
the work published by Wang et al. incorporated radiomics from
hybrid 18F-FDG PET/CT together with clinical features (46) for
prognostication. Li et al., on the other hand, used MRI-based
radiomics to predict surgical outcome (45). To our knowledge,
this is the first study predicting response to NACT in ovarian
cancer as assessed by the gold standard CRS, and it is not taking
into account ovarian lesions but analyzes the radiomics of
omental disease. The omentum harbors a unique immune
environment (48, 49), is the most common site of spread in
ovarian cancer, and is the anatomic site where response to NACT
is histopathologically assessed using the CRS as the gold standard
making it an ideal anatomic site for radiomics analysis. This
study has several limitations. First, the study was not powered to
associate the CRS, omental tumor volumes, and the radiomic
signatures with clinical endpoints, such as PFS or OS, which will
be the aim for future multicentric studies. Second, the selection
criteria for considering IPS versus NACT followed by DPS are
not yet fully standardized across different centers. However, this
reflects clinical practice and we have shown that, even between
these heterogeneous study cohorts, the radiomic signature
defined is generalizable and applicable. Third, although the
CRS has previously been shown to have high inter-reader
agreement (50), histopathological assessment bias cannot be
ruled out in this setting where CRS assessments were made by
different pathologists in different institutions. For future studies,
consensus assessment by multiple assessors or centralized
pathology review may be considered. We conclude that CT-
based volumetric analysis of omental tumor deposits can predict
CRS, and its predictive ability can be improved further by adding
pre-NACT radiomics.

In conclusion, we show that pre- and post-NACT volumetry
of omental deposits in HGSOC predicts CRS. These predictions
were further improved by adding radiomics resulting in a fully
interpretable radiomics model that also increased model
generalizability, along with robustness, and could aid in
identifying patients with predicted lack of response to first-line
chemotherapy as possible candidates for trials of alternative
neoadjuvant approaches.
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