
polymers

Article

Fabrication of Electrospun Ni0.5Zn0.5Fe2O4 Nanofibers Using
Polyvinyl Pyrrolidone Precursors and Electromagnetic Wave
Absorption Performance Improvement

Kyeong-Han Na 1 , Kyong-Pil Jang 2 , Sung-Wook Kim 2 and Won-Youl Choi 1,3,*

����������
�������

Citation: Na, K.-H.; Jang, K.-P.; Kim,

S.-W.; Choi, W.-Y. Fabrication of

Electrospun Ni0.5Zn0.5Fe2O4

Nanofibers Using Polyvinyl

Pyrrolidone Precursors and

Electromagnetic Wave Absorption

Performance Improvement. Polymers

2021, 13, 4247. https://doi.org/

10.3390/polym13234247

Academic Editor: Huaizhong Xu

Received: 8 November 2021

Accepted: 1 December 2021

Published: 3 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Advanced Materials Engineering, Gangneung-Wonju National University,
Gangneung 25457, Korea; nag0717@naver.com

2 Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Korea;
kyongpiljang@kict.re.kr (K.-P.J.); swkim@kict.re.kr (S.-W.K.)

3 Research Institute for Dental Engineering, Gangneung-Wonju National University, Gangneung 25457, Korea
* Correspondence: cwy@gwnu.ac.kr; Tel.: +82-33-640-2483

Abstract: Ni0.5Zn0.5Fe2O4 nanofibers with an average diameter of 133.56 ± 12.73 nm were fabricated
by electrospinning and calcination. According to our thermogravimetric—differential thermal analy-
sis and X-ray diffraction results, the calcination temperature was 650 ◦C. The microstructure, crystal
structure, and chemical composition of the nanofibers were observed using field-emission scanning
electron, X-ray diffraction, and energy-dispersive X-ray spectroscopy. Commercial particle samples
and samples containing 10 wt% and 20 wt% nanofibers were fabricated, and the electromagnetic
properties were analyzed with a vector network analyzer and a 7.00 mm coaxial waveguide. Re-
gardless of the nanofiber content, Ni0.5Zn0.5Fe2O4 was dominantly affected by the magnetic loss
mechanism. Calculation of the return loss based on the transmission line theory confirmed that
the electromagnetic wave return loss was improved up to −59.66 dB at 2.75 GHz as the nanofiber
content increased. The absorber of mixed compositions with Ni0.5Zn0.5Fe2O4 nanofibers showed
better microwave absorption performance. It will be able to enhance the performance of commercial
electromagnetic wave absorbers of various types such as paints and panels.

Keywords: microwave absorber; electrospinning; nanofibers; NiZn ferrite; return loss

1. Introduction

With the development of wireless communication technology, the use of portable
electronic devices has rapidly increased. At the same time, there are many concerns
about the harmful effects of electromagnetic (EM) waves on the human body [1–3], and
EM waves other than the used frequency decrease the performance of a device, so the
demand for EM wave shielding is also increasing. Using metal as a conductive shielding
material suppresses interference via reflecting incident EM waves to protect internal circuits
and the human body. However, a metal EM shield is heavy and expensive to maintain,
and noise generated inside might create reflecting incident EM waves in the circuit. An
electromagnetic wave absorber has been proposed as an alternative solution. The absorbing
materials convert incident EM waves into thermal energy and dissipate them through
something like dielectric and magnetic mechanisms. The absorber can be applied in the
form of tiles, films, paints, etc. The dielectric and magnetic properties of filler determine
the absorbing performance. Therefore, it is important to select an absorber that has suitable
EM properties for the required absorbing performance and used frequency. Materials such
as carbon materials [4–6], carbonyl iron [7–9], and various ferrite materials [10–12] are
mainly studied as absorbers because they are light, thin, and small but have a superior
EM wave absorption performance. As for a magnetic absorber, soft magnetic spinel ferrite
has mainly been studied and shown to modify the EM wave performance by substituting
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one or more divalent metal ions like Mn [13–15], Co [16–18], Ni [19–21], Cu [22–24], and
Mg [25,26] at the site of Fe atoms.

At the same time, the morphological character of the absorbent particles has a great
influence on the EM wave absorbing performance and the selection of frequency. Even if
absorbers have the same chemical composition, they need to be controlled the microstruc-
ture. Many studies have been carried out to modify or optimize the absorber by apply-
ing various microstructures: mesoporous structures [27,28], core–shell structures [29,30],
nanoflakes [31,32], nanofibers [33,34], etc. The nanostructured particles have superior prop-
erties such as a large specific surface area and many dangling bonds of surface atoms, and
they exhibit excellent microwave absorption characteristics due to interfacial polarization
and multiple scattering. Much research has been conducted to improve performance by
manipulating the shape of the particles; the structures studied mainly included sphere,
rhombus, arborization, flake, acicular, and fibrous structures. The shape of the absorbent
has an immediate influence on the EM parameters and scattering effect, and it is con-
sidered that the performance is improved when the absorbents contain the anisotropy
structure. There are many methods to synthesize various nanostructures: hydrother-
mal [35], precipitation-thermal decomposition [28], electrospinning [33], metal–organic
chemical vapor deposition [36], template [37], and sol-gel method [38].

Among them, electrospinning is a method to fabricate nanofibers by applying a high
voltage to two spaced electrodes and jet spraying and stretching a precursor solution using
the generated electrostatic force. Due to stretching, the solvent is volatilized with a rapid
increase of surface area and the solute remains in the form of very thin fibers. As a result,
a one-dimensional structure with a high aspect ratio and a nanoscale diameter can be
obtained, and it can be transformed to ceramic nanofibers via calcination. Since it is a
continuous process that can obtain very long and uniform nanofibers, it is being applied in
various fields such as biomedical [39], photovoltaic [40], and optics [41].

In this study, we fabricated Ni0.5Zn0.5Fe2O4 (NZF), which is often discussed as an
EM wave absorber [42] as a nanofiber structure via the electrospinning process. To im-
prove enhanced absorption performance through chemical composition and microstructure
control, the NZF composition that is very attractive in EM absorber was selected and fabri-
cated to nanofiber structure having higher shape magnetic anisotropy. Compared to the
conventional absorber with isotropic ferrite powder, the absorber of mixed compositions
with anisotropic NZF nanofibers can expect better electromagnetic wave absorption perfor-
mance. The NZF nanofibers were fabricated by electrospinning and calcination. Precursor
solutions that can be used for electrospinning were prepared, and calcination conditions for
as-spun nanofibers were determined using thermogravimetric analysis and X-ray diffrac-
tion. The microstructure and diameter of the calcined nanofibers were confirmed using
FE-SEM. We prepared samples for measuring the EM properties by mixing the electrospun
nanofibers with commercially available nanopowders and calculated the reflection loss for
each thickness using transmission line theory. We measured the EM properties by a vector
network analyzer (VNA).

2. Materials and Methods
2.1. Chemicals

The reagents used to prepare the precursor solutions were as follows: Ni(NO3)2·6H2O
(EP, Samchun Chemicals Co., Ltd., Seoul, Korea), Zn(NO3)2·6H2O (EP, Daejung Chemi-
cals Co., Ltd., Gyeonggi, Korea), Fe(NO3)2·9H2O (GR, Kanto Chemical Co. Inc., Tokyo,
Japan), Polyvinyl pyrrolidone (PVP, M.W. 1,300,000, Alfa Aesar Korea Co., Ltd., Incheon,
Korea), and N,N-dimethylmethanamide (DMF, EP, Daejung Chemicals Co., Ltd., Gyeonggi,
Korea), commercial NZF nanoparticles (≥99.5%, SAT nano technology material Co., Ltd.,
Dongguan, China), epoxy binder (YD-014, Kukdo Chemical, Seoul, Korea).
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2.2. Electrospinning Process

To fabricate NZF nanofibers via electrospinning, we prepared a precursor solution.
First, 10.0 g of PVP was mixed with 60.0 g of DMF for 6 h using a magnetic stirrer. In
another beaker, 40 mmol of Fe(NO3)2·9H2O, 10 mmol of Ni(NO3)2·6H2O, and 10 mmol
of Zn(NO3)2·6H2O were added to 30.0 g of DMF and mixed for 2 h. Then, the second
solution was added to the first solution and stirred for 6 h. The prepared precursor solution
was loaded into a 12 mL polypropylene syringe with an inner diameter of 15.56 mm. The
syringe was connected with a stainless-steel nozzle adapter and a 23 gage capillary using
polypropylene tubing. The distance between the tip of the capillary and the grounded
collector was set up to 20 cm. Then the adapter and collector were connected to the power
supply and a high voltage of 23 kV was applied to start the electrospinning process. A flow
rate of 0.2 mL per hour was constantly applied to the syringe using a syringe pump. Room
conditions were temperature of 24 ◦C and humidity less than 40%. As spun nanofibers
were physically separated from the collector using a Teflon tweezer and then dried at 70 ◦C
for 6 h in a dry oven. After that, dried nanofibers were calcined using a box furnace. The
calcination conditions were as follows: stabilized at 30 ◦C, ramping to 200 ◦C, hold 2 h at
200 ◦C, ramping to 650 ◦C and hold 2 h. The temperature ramping speed was 5 ◦C per
minute. The schematic diagram of the fabrication process is shown in Figure 1.
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Figure 1. Schematic diagram of the fabrication process with electrospinning and calcination.

2.3. Fabrication of RL Measuring Sample

Since calcined nanofibers are obtained as scaffolds, a dispersing process was needed.
Nanofibers were added to 75% ethanol in a 50 mL vial and sonicated for 2 h and dried at
70 ◦C in a dry oven. The calcined nanofibers/commercial particle NZF mixture was mixed
for each other content; 0 wt%, 10 wt%, and 20 wt% of nanofibers/nanoparticles powder of
0.45 g and epoxy binder of 0.05 g were mixed using a mortar. The prepared powders were
uniaxially pressed to fabricate toroidal samples (Dout = 7.00 mm, Din = 3.03 mm) under the
pressure of 250 MPa and then were cured at 200 ◦C for 30 min.

2.4. Characterization

To determine the calcination temperature, thermogravimetric—differential thermal
analysis (TGA-DTA) of the as-spun nanofibers was carried out using a Thermogravimet-
ric Analyzer (TGA, STA 409, NETZSCH, Hanau, Germany). The crystal structure of the
calcined nanofibers calcined at each different temperature was analyzed by an X-ray diffrac-
tometer (XRD, AXS-D8, Bruker, Billerica, MA, USA). The morphology and microstructure
of the NZF nanofibers and commercial particles were analyzed by a field emission scanning
electron microscope (FE-SEM, Inspect F, FEI Korea Co., Ltd., Gyeonggi, Korea) and energy-
dispersive X-ray spectroscopy (EDS). To obtain the complex permeability and permittivity,
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an electromagnetic property test of the prepared toroidal samples was carried out using a
vector network analyzer (VNA, N5222B, Keysight, Santa Rosa, CA, USA).

3. Results and Discussion

The TGA-DTA was carried out to determine the calcination temperature of the as-spun
nanofibers and the result is presented in Figure 2.
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Figure 2. TGA curve of as-spun NZF nanofibers.

An initial mass decrease of about 6% occurred in the temperature range of 60 ◦C to
140 ◦C, and it was likely due to the volatilization of adsorbed moisture and residual solvent.
The DTA peaks are 100 ◦C and 135 ◦C, respectively, and these reactions are endothermic
near the boiling points of water and DMF. Endothermic DTA peaks are observed at 100 ◦C,
135 ◦C and it is near the boiling point of water and DMF. The mass loss of 16%, starting
at around 180 ◦C, lasts up to 200 ◦C. The mass-loss rate decreased from 200 ◦C to 250 ◦C
and then increased. This result explained how the endothermic reaction of glass transition
suppressed the exothermic of PVP decomposition. After that, a strong exothermic reaction
and mass loss were observed near 260 ◦C, which was likely rapid PVP decomposition by
ignition and combustion. Then there was a continuous exothermic reaction and mass loss
by the decomposition of residual carbon black and crystallization of metal ion.

Figure 3 shows the XRD patterns of commercial NZF nanoparticles and NZF nanofibers
calcined at various temperatures. According to the TGA result, all volatile components
were removed, and only inorganic components remained at a temperature above 450 ◦C;
the XRD pattern was also confirmed as a crystallized phase. The Ni0.5Zn0.5Fe2O4 spinel
structure was confirmed by comparing it with the Crystallography Open Database ID
96-900-9921 [43], and the Miller index of each significant peak was labeled. From 450 ◦C
to 750 ◦C, the crystal structure did not change and the peak gradually sharpened, which
means the crystallinity of nanofibers was increasing. To confirm more accurately, the crys-
tallite size of each sample was calculated via the Scherrer equation (Dp = 0.94λ/β cos θ),
and the results are shown in Table 1, where Dp is the represent average crystallite size,
β = the full width at half maximum (FWHM) of the peak, θ = the Bragg angle, and λ is the
wavelength of the X-ray used for diffraction (Kα1 = 1.78897 Å).
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Figure 3. X-ray diffraction patterns of the commercial NZF nanoparticles and electrospun NZF
nanofibers calcined at 450 ◦C, 550 ◦C, 650 ◦C, and 750 ◦C.

Table 1. The calculated average crystallite size of calcined Ni0.5Zn0.5Fe2O4 nanofibers.

Sample Plane 2θ
(◦)

FWHM
(◦)

Calculated Average Grain Size
(Diameter, nm)

Commercial
(022) 41.5 1.11

9.22(131) 35.22 1.12
(004) 67.4 1.24

450 ◦C
(022) 41.46 1.22

8.44(131) 35.14 1.27
(004) 67.3 1.3

550 ◦C
(022) 41.48 1.15

8.79(131) 35.18 1.23
(004) 67.38 1.26

650 ◦C
(022) 41.48 1.01

10.17(131) 35.2 0.97
(004) 67.36 1.17

750 ◦C
(022) 41.46 0.66

14.51(131) 35.14 0.93
(004) 67.34 0.68

As expected from the pattern, the average crystallite size gradually increased accord-
ing to calcination temperature, and rapid growth was observed at 750 ◦C. Since this study
focused on the geometrical advantages of electrospun nanofibers as an EM wave absorber,
the calcination temperature was determined as 650 ◦C, which has the most similar crys-
tallite size to commercial nanoparticles. Considering that the shape factor compared to
nanoparticles is reduced due to the shape anisotropy of the 1-D nanostructure, 650 ◦C was
selected not 550 ◦C.

Figure 4 shows the FE-SEM image of electrospun NZF nanofibers and commercial
nanoparticles. These images demonstrate that the proposed process conditions of elec-
trospinning and calcination are appropriate for the fabrication of a 1-D nanostructure.
Nanofibers with a smooth surface were fabricated, and untargeted structures due to unopti-
mized process conditions such as bead structure, particle continuum due to over crystalliza-
tion were not confirmed. The average diameter of the nanofibers was 133.56 ± 12.73 nm.
The chemical composition of the nanofibers was analyzed using EDS and the results of
the quantitative analysis are shown in Table 2. The atomic ratio of each element was close
to being consistent with the target composition, Ni: Zn: Fe: O = 1:1:4:8. Commercial
nanoparticles were observed as simple particles with no specific structure.
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Table 2. EDX spectrum analysis results for calcined NZF nanofibers.

Element Weight Percent
(%)

Atomic Percent
(%) Net Int. Error

(%)

Fe 46.58 29.71 1082.70 2.56
Ni 13.23 8.03 221.19 5.08
Zn 16.19 8.82 176.36 5.41
O 24.00 53.44 916.52 7.08

The electromagnetic properties could be explained using permittivity and permeability.
These material constants were expressed as a complex form, namely, εr = ε′ − jε′′ and
µr = µ′ − jµ′′. The real parts are related to the storage of electromagnetic energy and
the imaginary parts show the dissipation of energy. Each real and imaginary part of the
complex permittivity and permeability of the NZF nanofibers is shown in Figure 5a,b.

These constants were obtained using VNA and a 7.00 mm coaxial waveguide. Samples
A, B, and C contained 0 wt%, 10 wt%, and 20 wt% of NZF nanofibers, respectively. The
composition of each sample is shown in Table 3.
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Table 3. The Composition of Sample A, B, and C.

Sample
NZF

Nanoparticles
(g)

NZF
Nanofibers

(g)

Epoxy
Binder

(g)

A 0.450 - 0.050
B 0.405 0.045 0.050
C 0.360 0.09 0.050

There was a tendency for the coefficient to according to the content of nanofibers.
The permittivity of the samples was almost independent of frequency. The real parts
of the permittivity were measured from 4.01 to 4.91 and imaginary parts were almost
near 0, which means that the permittivity of the NZF absorbent has almost no influence
on a change in the EM wave absorbing performance. At the same time, real parts of
permeability showed a decreasing tendency from 2.72 to 0.85 at the ~3.56 GHz frequency.
The peaks of imaginary parts were observed to be near 1 at 0.79 GHz. All the permeability
coefficients decreased with an increasing frequency, which was likely due to magnetization
relaxation. The ratio of the imaginary part related to energy dissipation and the real part
showed energy storage called electric and magnetic loss tangent, which are written as
tan δε = ε′′/ε′, tan δµ = µ′′/µ′, respectively. In general, it is expected that the larger the loss
tangent and imaginary part of the absorber, the better the EM wave absorbing performance.
The dielectric and magnetic loss tangents are shown in (c) and (d) of Figure 5. While the
electrical loss tangent was close to 0 at all frequency ranges, the maximum value of the
magnetic loss tangent was 0.69, which confirmed that the EM wave performance of NZF
largely depends on the magnetic loss. Magnetic losses are usually due to resonance, eddy
currents, and hysteresis loss. Figure 5d shows that samples B, and C had larger µ′ and
µ′′ than sample A due to the high shape magnetic anisotropy of the nanofiber structure.
Multiple magnetic resonance loss was not observed, and the magnetic wall resonance
in the low-frequency range is dominant. High shape magnetic anisotropy of nanofibers
makes it difficult to change the magnetic domain direction and increase the demagnetizing
energy, so hysteresis loss which is mainly contributed by changing the domain direction
is increased. Since the microstructures containing nanofibers have higher porosity than
those without, samples B and C are expected to have a larger surface area than sample A.
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Therefore, it can be expected that increasing magnetic loss via eddy current. Since eddy
current loss is defined by permeability, thickness, and electrical conductivity, the better
magnetic loss can be expected from Sample C, which has the largest imaginary part of
complex permeability. The eddy current loss factor can be evaluated according to the
following Equation (1) [44,45].

C0 = µ′′
(
µ′
)−2 f−1 = 2πµ0d2σ (1)

In this formula, C0 is eddy current loss coefficient, f is the frequency, d is thickness,
and σ is the electrical conductivity. We measured the complex permittivity and complex
permeability for each frequency, so the return loss (RL) value with the thickness of the
absorber could be calculated by the following Equations (2)–(4) based on the transmission
lint theory:

Zin = Z0

√(
µr

εr

)
tanh

[(
j
2π f d

c

))
√

µr·εr] (2)

Z0 =

√(
µ0

ε0

)
(3)

RL(dB) = 20 log
∣∣∣∣Zin + Z0

Zin − Z0

∣∣∣∣ (4)

where Z0 = 377Ω is the characteristic impedance of free space, µr and εr represent the
complex permittivity and permeability of the materials, d is thickness of the absorber layer,
and c is the velocity of the EM wave in free space. By substituting the obtained variables
into (2), the incident impedance Zin of the absorber is calculated, and the return loss can be
obtained by substituting Zin and the free space impedance Z0 into (4).

Figure 6 shows the results of the calculated RL value for each thickness and frequency
using the above impedance and return loss equation. (a), (c), and (e) on the left side are
graphs showing the RL value according to the thickness and frequency of samples A, B,
and C, respectively, and (b), (d), and (f) on the right side are those three-dimensional plots
and a contour line. The tendency of the increasing RL value in proportion to the nanofibers
content was clearly shown, and the shift of the peak frequency was slight. For all samples,
the minimum RL value was confirmed at 12 mm thickness, and at the peak data, the
frequency was 2.75~2.89 GHz, and the RL value was −41.99~−59.66 dB. Nanomaterials
such as nanoparticle and nanofiber tend to agglomerate due to various reasons such as
surface free energy contributed by a large specific surface area, weak electric double layer
repulsion, and limitation of mechanical dispersion, so it is difficult to disperse nanomateri-
als in the matrix. Well-dispersed absorber network is an important issue as it can show
optimal performance by making the local impedance uniform, increasing the interface with
free space, and having benefits in incident wave absorption and heat dissipation [46,47].
Although this study focused on EM properties and performances of absorbers which have
the same chemical composition and the difference microstructure, well-dispersed absorbers
of NZF nanoparticle and nanofiber will enhance the EM performances. Additional research
on the surfactant and surface modification using functional group and heterogeneous
structure with like MXenes [46], graphene [47] is needed.
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4. Conclusions

In this study, we prepared NZF nanofibers using electrospinning and calcination. The
crystal structure and 1-D nanostructure were well-formed, and the average diameter was
measured to be 133.56 ± 12.73 nm. We observed that the NZF absorber performance was
dominantly affected by magnetic loss regardless of the nanofiber content. We measured
the EM properties of samples of pure commercial nanoparticles and samples containing
nanofibers of 10 wt% and 20 wt%. We found that as the nanofiber content increased, the
EM wave absorption performance improved. In all the samples, the frequency at which the
minimum RL value was confirmed was near 2.8 GHz and the thickness was near 12 mm.
The increasing of absorbing performance due to nanofiber content is consistent with the
results of previous studies that demonstrated that the mixed structure of acicular and
particles increased the absorber performance. Our study confirmed that the nanofiber
structure is a superior structure for improving the performance of the EM wave absorber
and is expected to be effective for any type of magnetic absorber, such as panels, films,
and paints.
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