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Abstract: 14-3-3σ is an acidic homodimer protein with more than one hundred different protein
partners associated with oncogenic signaling and cell cycle regulation. This review aims to highlight
the crucial role of 14-3-3σ in controlling tumor growth and apoptosis and provide a detailed
discussion on the structure–activity relationship and binding interactions of the most recent 14-3-3σ
protein-protein interaction (PPI) modulators reported to date, which has not been reviewed previously.
This includes the new fusicoccanes stabilizers (FC-NAc, DP-005), fragment stabilizers (TCF521-123,
TCF521-129, AZ-003, AZ-008), phosphate-based inhibitors (IMP, PLP), peptide inhibitors (2a–d),
as well as inhibitors from natural sources (85531185, 95911592). Additionally, this review will also
include the discussions of the recent efforts by a different group of researchers for understanding
the binding mechanisms of existing 14-3-3σ PPI modulators. The strategies and state-of-the-art
techniques applied by various group of researchers in the discovery of a different chemical class of
14-3-3σ modulators for cancer are also briefly discussed in this review, which can be used as a guide
in the development of new 14-3-3σmodulators in the near future.
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1. Introduction

The 14-3-3 proteins are a group of acidic polypeptides that are highly conserved in all eukaryotic
cells [1–3]. The 14-3-3 family was initially described by Moore & Perez in 1967 as an abundant
mammalian brain protein family which took its name based on its elution profile, specifically the
fraction number of bovine brain homogenate from diethylaminoethyl (DEAE) cellulose column
(14th fraction) and subsequent purified fraction 3.3 from gel electrophoresis [4–8]. The 14-3-3 family
comprises seven human isoforms which are named after their respective elution positions on high
performance liquid chromatography (HPLC) (β-beta, ε-epsilon, γ-gamma, η-eta, σ-sigma, τ-tau,
and ζ-zeta) with at least 500 partners forming protein–protein interaction (PPI) in mammalian
cells [9–12]. Moreover, 14-3-3 proteins have also been detected in non-vertebrate species such as
plants and yeasts [13–17]. The overall structure of 14-3-3 proteins is highly conserved among the
family members with a molecular mass of approximately 28–30 kDa and isoelectric point of 4–5 [9,18].
Crystal structures of 14-3-3 proteins revealed that they are highly helical with a clamp-like shape dimer.
All human 14-3-3 isoforms are expressed as both homo- and heterodimers. The dimer form of 14-3-3
proteins is capable of binding two ligand motifs at the same time, either from the same target or from
two different partners [19].

The 14-3-3 proteins are also classified as phosphoserine/phosphothreonine (pSer/pThr)-
recognition proteins, as they generally exert their activity through binding to the phosphoserine/

phosphothreonine-containing motifs of a multitude of molecules with various functions such as kinases,
phosphatases, transmembrane receptors, and transcription factors [2,20–22]. In general, there are
two high-affinity phosphorylation-dependent binding motifs that are recognized by the amphipathic
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binding grooves of all 14-3-3 isoforms, i.e., Arg-Ser-Xaa-pSer-Xaa-Pro (R-S-X-pS-X-P, mode I, Figure 1a)
and Arg-Xaa-Xaa-Xaa-pSer/Thr-Xaa-Pro (R-X-X-X-pS/T-X-P, mode II, Figure 1b), where X is any amino
acid and pS/T represents phosphorylated serine or threonine [23–27]. A third binding motif recognized
by the C-terminus of 14-3-3 proteins, i.e., pS/pT-X1–2-COOH (mode III, Figure 1c) has also been
reported [28,29]. Nevertheless, not all 14-3-3 interactions require a phosphorylated residue as 14-3-3 has
also been reported to bind to several non-phosphorylated proteins and peptides, such as exoenzyme S,
Cdc25B, and p190RhoGEF [30–35].
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complex (mode II, PDB: 1QJA), (c) 14-3-3σ/TASK3 peptide (mode III, PDB: 6GHP).

Consistent with the ability of 14-3-3 proteins to bind to various binding motifs, 14-3-3 proteins are
found to be involved in a wide range of physiological processes which include cell proliferation [36–38],
cell cycle control [39–43], and cell apoptosis [44–47].

2. 14-3-3σ (Stratifin, or Sfn)

The 14-3-3σ protein was first identified in differentiated squamous epithelium by Leffers et al. (1993).
14-3-3σ is unique as it is abundantly expressed in the keratinocytes and epithelial cells [48,49].
14-3-3σ regulates a wide range of proteins which are mostly involved in oncogenic signaling and cell
cycle regulation [50,51]. A comprehensive proteomic study conducted by Benzinger and co-workers
found up to 117 proteins associated with 14-3-3σ in human cells, of which the main functional
groups include proteins that regulated cytoskeletal organization and dynamics, polarity, adhesion,
mitogenic signaling, and motility [52].

The 14-3-3σ isoform only exists as a homodimer, because the heterodimer form is destabilized by
the force of electrostatic interaction between the residue of Glu in position 80 and the residue of Asp
or Glu, that replace Ser in position 5 in the 14-3-3σ structure [53–56]. Like other isoforms, the dimer
molecule of 14-3-3σ forms a cup-like shape in which each monomer consists of nine elongated bundles
of anti-parallel helices (H1–H9). While four helices (H1–H4) involve in the dimerization with the
other monomer, the remaining five helices (H5–H9) form the amphipathic ligand-binding groove
(Figure 2a) [53]. Earlier reports indicated that the 14-3-3σ protein can be found in either open (apo form)
or closed state when it is bound to its target protein or peptides [57]. While helices H1–H4 were stable
in both open and closed state, the intermolecular interactions between the residues in helices H5–H9
were different in the apo-form compared to the bound one. Four hydrophilic residues (Lys49, Arg56,
Arg129, and Tyr130) at H3 and H5 have been proposed to contribute to the equilibrium between both
states. These residues are believed to form hydrogen bonds with the binding peptide and drive the
transit from the open conformation to the closed conformation [57].

The structures of 14-3-3 proteins are highly conserved among all human isoforms. The highest
degree of conservation is observed for the amino acid residues lining the amphipathic binding groove.
However, major differences were observed in the region adjacent to the amphipathic binding groove
and the loop between the residues Ala203 and Asp215 of H8 and H9, respectively (yellow-colored,
Figure 2b). These differences illustrate the specific isoform–ligand interaction and subsequently the
characteristic biological function of the respective isoforms.
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3-3η: Q04917; h14-3-3τ: P27348; h14-3-3ζ: P63104; h14-3-3β: P31946), as performed with ClustalW and 
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frame: similarity across group. The α-helical regions are indicated above the sequence. 

In the case of 14-3-3σ, major non-conserved amino acid residues (Ser5, Glu20, Phe25, Gln55, and 
Glu80) are located at the interface between both monomers near the N-terminus of the 14-3-3σ 
isoform. Among them, the residues Ser5, Glu20, Phe25, and Glu80 together with the highly conserved 
hydrophobic core residues located at the dimer interface, i.e., Leu12 and Tyr84, were found to play a 
crucial rule in the stabilization of the homodimer molecule and maintaining the full dimerization 
activity of 14-3-3σ (Figure 3) [53,58]. This is evidenced by the dissociation of the dimeric 14-3-3σ into 
monomers with diminished function upon mutation of these residues [53,58,59]. 

Figure 2. (a) Ribbon and (b) surface representations of the 14-3-3σ homodimer (PDB: 1YZ5 and 1YWT,
respectively). The amphipathic binding grooves are indicated by blue triangles while the conserved
residues are highlighted in yellow color. The second and third structures are rotated 90◦ and 180◦,
respectively, around the x-axis from the previous structure. (c) Sequence alignment of the seven human
14-3-3 isoforms (UniProtKB codes, h14-3-3ε: P62258; h14-3-3σ: P31947; h14-3-3γ: P61981; h14-3-3η:
Q04917; h14-3-3τ: P27348; h14-3-3ζ: P63104; h14-3-3β: P31946), as performed with ClustalW and
ESPript 3.0, with red box, white character: strict identity; red character: similarity in group; blue frame:
similarity across group. The α-helical regions are indicated above the sequence.

In the case of 14-3-3σ, major non-conserved amino acid residues (Ser5, Glu20, Phe25, Gln55,
and Glu80) are located at the interface between both monomers near the N-terminus of the 14-3-3σ
isoform. Among them, the residues Ser5, Glu20, Phe25, and Glu80 together with the highly conserved
hydrophobic core residues located at the dimer interface, i.e., Leu12 and Tyr84, were found to play
a crucial rule in the stabilization of the homodimer molecule and maintaining the full dimerization
activity of 14-3-3σ (Figure 3) [53,58]. This is evidenced by the dissociation of the dimeric 14-3-3σ into
monomers with diminished function upon mutation of these residues [53,58,59].Pharmaceuticals 2020, 13, x FOR PEER REVIEW 4 of 18 
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3. Role of 14-3-3σ in Cancer

The 14-3-3σ protein has attracted the attention of researchers as a vital target to fight against cancer
growth and metastasis. Previous studies have demonstrated the role of 14-3-3σ in suppressing tumor
metabolic reprogramming [60]. In addition, few reports have also highlighted the crucial role of 14-3-3σ
against the cancer cell invasion and metastasis. For instance, a low level of 14-3-3σ has been shown to
promote production of lactate which stimulates the migration of epithelial cancer cells to a distant organ
through breaking down of extracellular matrix [60,61]. Studies have also showed that, among all seven
well-known human 14-3-3 isoforms, 14-3-3σ is the only isoform that possesses tumor-suppressing
activity [9,19,52,62,63]. It has been shown that 14-3-3σ protein directly controls the G2-M checkpoint of
the cell cycle by protecting the tumor suppressor factor P53 against the MDM2-mediated ubiquitination
and degradation [64–66]. In addition, 14-3-3σwas also reported to play a crucial role in the cell cycle
arrest regulation by acting as a cyclin-dependent kinase (Cdk) inhibitor, i.e., through sequestering the
cyclin-dependent kinase 1-cyclin B1 complex from entering nucleus and initiate mitosis, as well as
binding to the cyclin-dependent kinases 2 and 4 [67,68]. Moreover, 14-3-3σwas also found to negatively
regulates the oncogenic activity of the Protein kinase B (also known as Akt) and thus protecting
against Akt-mediated tumorigenesis [64]. Further, 14-3-3σ has also been reported as a target gene in
mammary epithelial cells which regulates the antiproliferative activity of the transforming growth
factor-beta 1 (TGF-b1) through the Smad3-dependent mechanism [69,70]. Furthermore, reports have
demonstrated 14-3-3σ involvement in controlling cell proliferation and cancer metastasis via the
termination of NF-kB signal in mammary cells by regulating the nuclear export of the p65 subunit
of NF-kB transcription factor and subsequently inhibits its transcriptional activity [71,72]. Moreover,
14-3-3σ has also been reported to regulate the expression of human TASK-3 channel (which is believed
to facilitate cancer cell’s proliferation and survival), by blocking the endoplasmic reticulum retention
sequences, and thereby promoting the surface expression of this channel [73–75]. 14-3-3σ also regulates
the oncogenic activity of transcriptional coactivator TAZ which is an oncogenic protein that promotes
cell proliferation and migration. The binding of TAZ to 14-3-3σ leads to cytoplasmic retention of TAZ
which subsequently disabling its function [76,77].

Unlike other isoforms which show elevated expression in many types of cancer, 14-3-3σ protein
level is downregulated in chronic myeloid leukaemia, nasopharyngeal carcinoma, as well as lung, breast,
oesophageal, uterine, ovarian, and skin cancers [2,78–82]. The low expression level of 14-3-3σ protein
in many cancer types has been linked to either promoter hypermethylation of Sfn gene (which encodes
the 14-3-3σ protein) or direct 14-3-3σ degradation through ubiquitination which eventually aborts
the normal physiological role of 14-3-3σ against tumor growth and metastasis [62,83–86]. Consistent
with these observations, introduction of a DNA demethylating agent, 5-aza-20-deoxycytidine
significantly upregulated the expression level of 14-3-3σ in salivary gland adenoid cystic carcinoma and
nasopharyngeal carcinoma [87,88]. In addition, a separate study demonstrated that an upregulation of
14-3-3σ expression by Marsdenia tenacissima extract was able to mediate G2/M cell cycle arrest in breast
cancer [89].

Although numerous studies have showed the vital role of 14-3-3σ in controlling the tumor
formations and metastasis, some studies have also indicated that the 14-3-3σ could be a double-edged
sword [79] as its upregulation has also been linked with resistance to chemotherapeutic agents [90–92].
In addition, studies have shown that 14-3-3σ also induces overexpression of matrix metalloproteinase
1 (MMP-1), a proteolytic enzyme that degrades native fibrillar collagens, and is often associated
with poor prognosis in malignant tumor [79,93,94]. Furthermore, 14-3-3σ has also been reported to
bind to the c-Abl protein, preventing its nuclear translocation and subsequently interfering with its
pro-apoptotic effect [95,96].

4. 14-3-3σ PPI Modulators

As 14-3-3 proteins are capable of binding several hundreds of partner proteins and therefore are
involved in the regulation of various cellular functions, a great number of 14-3-3 protein modulators has
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since been developed in order to address the possibility of modulating the interaction between 14-3-3
proteins and their partner proteins, i.e., either through inhibition or stabilization of their protein-protein
interaction [1,97,98]. In this review, we focus to provide an updated overview of the 14-3-3σmodulators
that were specifically developed for cancer.

4.1. 14-3-3σ PPI Stabilizers

With the increasing evidence highlighting the role of 14-3-3σ in suppressing cancer cell growth,
metabolism, and metastasis, 14-3-3σ PPI stabilization has begun to gain attention as a promising
therapeutic strategy in the discovery of novel bioactive compounds against cancer. In general,
PPI stabilizers work as a ‘molecular glue’ to increase the affinity of the partner protein to 14-3-3σ in
order to achieve a positive therapeutic effect. An example of a well-studied 14-3-3σ PPI stabilizer is
fusicoccin-A (FC-A (1)) (Figure 4a), a diterpene glycoside fungal phytotoxin which was initially found
to significantly enhance the interaction between the plant analogue of 14-3-3 and the plant plasma
membrane H+-ATPase (PMA2) by about 90-fold [99,100]. Recently, compound 1 has been reported to
be able to stabilize the interaction between 14-3-3σ and the tumor suppressor gene p53, as confirmed
by fluorescence polarization and isothermal titration calorimetry techniques. Nevertheless, a greater
disorder in the ternary complex of 14-3-3σ/p53/compound 1 was observed in the crystallographic data
where the C-terminus of the peptide is no longer visible (Figure 4b,c), suggesting that either crystal
soaking may have forced the p53 peptide to form an unpreferred conformation in the presence of
1 or the fact that 1 acts as an allosteric modulator rather than a ‘molecular glue’ in stabilizing the
14-3-3σ/p53 interaction [101].
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Figure 4. (a) Chemical structure of common fusicoccanes stabilizers of 14-3-3σ PPI with the modified
groups from compound 1 in red. Three-dimensional (3D) crystal structure of P53/14-3-3σ complex (b) in
the absence of FC-A (PDB: 5MOC) and (c) in the presence of FC-A (PDB: 5MXO), revealed that
the C-terminus of the P53 peptide cannot be observed upon binding of FC-A (dashed circles).
3D complex of 14-3-3σ/TASK-3 with (d) FC-THF (PDB: 3SMN) and (e) FC-NAc (PDB: 6GHP) revealed
hydrophobic (purple dashed lines) and hydrogen bond (green dashed lines) interactions between
14-3-3σ and the isopropyl or 19-acetamide moiety of FC-THF and FC-NAc, respectively (dashed circles).
(f) 14-3-3σ/DP-005/ p65_45R ternary complex (PDB: 6NV2) showed that DP-005 not only forms
hydrophobic interactions (purple dashed lines) with 14-3-3σ, but also with P65_45 (dashed circle).
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Following promising results with FC-A in stabilizing the interactions of 14-3-3σwith its protein
partner, semi-synthetic analogue to 1, FC-THF (2) (Figure 4a), which a tetrahydrofuran ring was added
to ring C of 1 was generated. However, unlike 1, which stabilizes the interaction of 14-3-3σwith p53,
2 was found to stabilize the interaction between 14-3-3σ and the human potassium channel TASK-3
which is a pro-oncogenic protein that is mainly involved in cancer development. 2 was reported to
be able to increase the binding affinity between TASK-3 binding motif and 14-3-3σ protein by up to
19-fold at 100 µM (Figure 4d) (PDB: 3SMN) [74].

To further improve the affinity of fusicoccanes stabilizers on 14-3-3σ, a series of 1 derivatives
was designed using molecular dynamic (MD) techniques. As the conserved mode of interaction
between 1 and 14-3-3σ is mainly in the form of two hydrogen bonds with Asp215 and hydrophobic
interactions with Leu218 and Leu222 of 14-3-3σ, it was hypothesized that presenting a third hydrogen
bond with Asp215 would increase the potency of the stabilizer. Therefore, the 19-acetoxy moiety of
1 was replaced with an isostere, 19-acetamide moiety. In addition, the 3′ acetyl group which does
not show a significant potency enhancement was also removed from 1 in order to generate a more
feasible compound to synthesize. All these modifications led to compound FC-NAc (3), (Figure 4a)
which showed enhanced potency and biological activity. Further investigation into the structure of
the ternary complex: 14-3-3σ, TASK-3 peptide, and 3 (Figure 4e) (PDB: 6GHP) revealed that Asp215
carboxylate group of 14-3-3σ adopted a new conformation in order to allow the formation of three
hydrogen bonds with 3 [102].

Recently, another semisynthetic analogue of 1, DP-005 (4) (Figure 4a) has been reported. Unlike its
predecessors which stabilize TASK-3 or p53 interactions with 14-3-3σ, compound 4 acts as a selective
14-3-3/p65 stabilizer. Structural elucidation of the ternary complex p65_45R/14-3-3σ/4 (Figure 4f)
(PDB: 6NV2) revealed that upon binding of 4, p65_45R peptide adopted a new orientation allowing 4
to form a hydrophobic contact via its isopropyl moiety with Ile46 and Pro47 of the peptide while it
binds to Leu218, Ile219, and Leu222 of 14-3-3σ. This additional hydrophobic interaction with p65_45R

peptide however is not observed in 1 as the extra 12-hydroxyl group in 1 created a steric and polar
clash with the hydrophobic residues of the peptide resulting in unpreferred interactions [72].

Apart from fusicoccanes stabilizers, other small-molecule stabilizers of 14-3-3σ have also been
reported. This include TCF521-123 (5) and TCF521-129 (6) (Figure 5a) which are aldehyde-containing
fragment stabilizers of 14-3-3σ/p65 complex. Both 5 and 6 were identified using the site-directed
fragment tethering approach whereby the aldehyde-bearing fragments were found to form an imine
covalent anchor (instead of hydrogen bond in fusicoccanes stabilizers) to the side chain of Lys122
residue at the amphipathic binding groove. Additionally, the crystallographic data obtained by crystal
soaking experiments also revealed a hydrophobic interaction between the aromatic benzaldehyde ring
of 5 and 6 with Ile46 of p65, while the sulfonamide group makes additional water-mediated contacts
with Asn42 and Asp215 of the 14-3-3σ. However, while the morpholine ring of 6 is engaged directly
with p65 peptides, the piperazine moiety of 5 is pointed away from p65 and only engaged in extra
water-mediated contacts with both 14-3-3σ and p65 (Figure 5b,c). Nevertheless, both fragments are
efficient stabilizers of the 14-3-3σ/p65 complex [103].

Other examples of small-molecule stabilizers of 14-3-3σ are AZ-003 (7) and AZ-008 (8) (Figure 5a),
which are fragments with an amidine-containing scaffold. These fragments were identified from
fragment-based drug discovery approach in attempts to discover novel compounds to stabilize
the interaction between 14-3-3σ and its partners, p53 or transcriptional coactivator, TAZ. However,
although 7 was able to interact with 14-3-3σ and TAZ peptide (Figure 5d) (PDB: 6RHC), the stabilization
activity could not be confirmed by fluorescence polarization. On the other hand, 8 showed a small
overall stabilization of 14-3-3σ/p53pT387 as it preferentially binds to the Glu388 side chain of p53pT387
and forms a salt bridge with the Glu14 carboxylate moiety of 14-3-3σ (Figure 5e) [76].
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Figure 5. (a) Chemical structure of fragment-derived small molecule stabilizers of 14-3-3σ PPI with the
key functional groups (i.e., aldehyde and amidine groups) colored in red. (b) 14-3-3σ/P65/TCF521-123
ternary complex (PDB: 6YPY). (c) 14-3-3σ/P65/TCF521-129 ternary complex (PDB: 6YQ2). (d) 14-3-3σ
/TAZ/AZ-003 ternary complex (PDB: 6RHC). (e) Docked structure of AZ-008/14-3-3σ in complex with
p53pT387. Water-mediated hydrogen bonds are shown as blue dashes, while hydrogen bond and ionic
interactions are shown as green and orange dashed lines, respectively.

4.2. 14-3-3σ PPI Inhibitors

4.2.1. Phosphonate- and Phosphate-Type Inhibitors of 14-3-3σ

Apart from 14-3-3σ stabilizers, inhibition of 14-3-3σ interactions with selective protein partners has
also received equal attention from the research community in efforts to identify novel therapeutics for
cancer. In 2013, Ottmann and his group reported the first exclusively extracellular inhibitors of 14-3-3σ
which inhibits the interaction between 14-3-3σ and its membrane receptor aminopeptidase N (APN).
APN is required for 14-3-3σ-mediated MMP-1 expression, which its upregulation has been associated
with enhanced cancer growth and metastasis [104]. Fourteen potential compounds were identified from
the ligand-based virtual screening of about 8 million compounds in the commercial ZINC database and
structure-based docking of 512 drug-like initial hits (with phosphonate or phosphate moiety) against
the 14-3-3σ amphipathic groove active site. Out of the 14 compounds, compound B1 (9) (Figure 6a)
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was identified as the most promising inhibitor with the extracellular 14-3-3σ-stimulated MMP-1 levels
in human lung fibroblasts downregulated by 9 in a concentration-dependent manner with an IC50 of
81 ± 15 µM [94]. Further investigation into the mechanism of interaction between this type of inhibitors
and their 14-3-3σ target using molecular dynamic study showed that the phosphate group of the
inhibitors existed in an unprotonated state and formed strong hydrogen bonds with the hydrophilic
residues (Arg56, Arg129, and Tyr130) inside the amphipathic groove of the 14-3-3σ which largely
contributed to their strong binding free energies [105].
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In addition to 9, two other phosphate-containing compounds, i.e., inosine monophosphate,
IMP (10), and pyridoxal phosphate, PLP (11) (Figure 6a), targeting the amphipathic groove of the
14-3-3σ have also been reported. These compounds were identified via X-ray crystallography and
fluorescence polarization assay. Similar to the previously reported phosphate-based inhibitors,
the phosphate moiety of 10 and 11 also interacted with the positively charged residues (Arg56,
Arg129 and Tyr130) via a H-bonding network (Figure 6b,c). Although both showed a weak inhibitory
activity against 14-3-3σ/c-Abl interaction, they were able to localize the cytoplasmic c-Abl into the
nucleus in a c-Abl overexpressing cell line at low micromolar concentrations [96].

In 2013, Bier and his group introduced another new phosphonate-type inhibitor of 14-3-3σ,
compound 12 (Figure 7a), which is a supramolecular ligand with a belt-like electron-rich molecular
cavity formed by alternating fused norbornadiene and benzene rings with a central hydroquinone
ring that carries two phosphonate groups [106]. This type of ligand is also classified as molecular
tweezer, i.e., a group of artificial receptor molecules with two flat arms that converge to provide a
pocket for guest binding [107]. Due to its unique structure, generally only the side chains of lysine
and, to a lesser extent, arginine of the target protein would be long enough to be threaded through the
tweezer cavity via hydrophobic interactions and form a salt bridge with the anionic phosphate moiety
of the tweezer (Figure 7b). As for the 14-3-3σ protein, although 14-3-3σ has 17 surface Lys residues,
the tweezer ligand was only found to interact with Lys214 at the edge of the amphipathic binding
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groove of 14-3-3σ protein and interfere with 14-3-3σ binding to its partner proteins, C-Raf and ExoS.
However, such preference for Lys214 by compound 12 over other lysine residues was not observed in
a separate study conducted by Shi and co-workers as the molecular dynamics simulation revealed
that 10 out of the 17 surface lysine residues were found to have recognition affinity for the molecular
tweezer [108]. Nevertheless, both studies observed similar interactions between 12 and 14-3-3σwith the
major favorable interactions come from (1) the van der Waals interactions between the long alkyl chain
of the lysine residue and the cavity formed by the norbornadiene and benzene rings of 12, and (2) the
stable ion pair interactions between the phosphate group of 12 and the positively charged residues on
the surface of the protein [108,109]. Intriguingly, unlike other phosphonate-type 14-3-3σ inhibitors
which target the central conserved amphipathic groove, compound 12 only binds at the periphery,
as evidenced in the co-crystal structures of the molecular tweezer and 14-3-3σ (PDB: 5OEH and
5OEG) [109], suggesting a new interfering mechanism (Figure 7c).Pharmaceuticals 2020, 13, x FOR PEER REVIEW 10 of 18 
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4.2.2. Non-Phosphonate-Type Inhibitors of 14-3-3σ

Apart from the phosphonate or phosphate-based inhibitors of 14-3-3σ, a number of research
groups have also come up with non-phosphonate-type inhibitors of 14-3-3σ in the past decade. In 2010,
Corradi and co-workers has introduced a 14-3-3σ inhibitor, BV02 (13) (Figure 8a) with a remarkable
cytotoxic activity (LD50 = 1.04 µM) against chronic myeloid leukaemia (CML), which was identified
from in silico screening of a commercially available compound library [110]. Compound 13 was reported
to be able to disrupt the interaction between 14-3-3σ and c-Abl protein and subsequently promotes
c-Abl translocation into the nucleus and provide antiproliferative effects in CML cells expressing
the imatinib-resistant T315I Bcr-Abl construct [111,112]. Unfortunately, further studies using NMR
techniques showed that 13 undergoes spontaneous chemical rearrangement at room temperature
and exists in equilibrium between 2-carbamoyl benzoic form (13) and its bioactive phthalimidic
form, 9 (14) [95,113]. To overcome this issue, Corradi and his group used computational techniques,
in combination with biophysical and biochemical techniques, to investigate a new set of promising hits
with a stable scaffold at room temperature, while Iralde-Lorente and colleagues proposed a synthetic
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scheme of compound 14 and its chemically stable derivatives. These studies successfully identified
two synthesizable and chemically stable compounds, BV01 (15) and 16 (Figure 8a) which showed
antiproliferative activity against IM-resistant cells expressing the T315I Bcr-Abl mutation, and a K-562
erythroleukemia cell line at low micromolar concentrations, respectively [95,114].
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small molecule synthetic inhibitors, (b) synthetic peptide inhibitors and (c) small molecule inhibitors
from natural source.

Recently, a series of bivalent 14-3-3σ peptide inhibitors, 2a–d (17–20) (Figure 8b) were generated
using on-resin stepwise substitution reactions on 1,3,5-triazine. While compound 17, which contains
the shortest linker, only displays a monomer binding manner (KD = 12.3 µM), compounds with longer
linker, 18–20 (KD = 59, 47, 55 nM, respectively) were found to be able to bind to the two identical
phosphorylated motifs of 14-3-3σ at the same time and subsequently displayed a 400-fold higher
binding affinity and enhanced cellular activity over the monomeric peptide ligand. When compound
19 was conjugated with a cell-penetrating peptide (Arg8) and tested its inhibitory activity against
DU145 human prostate cancer cells, the prostate cancer cell growth was effectively suppressed in a
dose-dependent manner with minimal cell toxicity [115].

Besides synthetic small molecule and peptide inhibitors, attempt has also been made to identify
14-3-3σ inhibitors from natural source. For example, Shi has recently conducted a virtual screening
on the Taiwan natural product database containing more than 20,000 small molecule compounds
extracted from 453 Chinese medicine against the crystal structure of 14-3-3σ protein (PDB: 1YZ5).
Upon molecular dynamic simulations on the top ranked hits from virtual screening, two compounds,
85531185 (21) and 95911592 (22) (Figure 8c), which contain 16-membered macrocycle and 21-membered
macrocycle, respectively, have been proposed to be potential 14-3-3σ inhibitors. Nevertheless, although
these compounds were reported to bind in the amphipathic binding groove of 14-3-3σ with strong
affinity (with estimated free energy binding values of −10.71 and −15.10 kcal/mol, respectively),
their in vitro inhibitory activities however remain to be tested [116].

An overview of all available 14-3-3σ inhibitors for cancer to date with their key targeted amino
acid residues on 14-3-3σ were summarized in Table 1. Briefly, all inhibitors (except the molecular
tweezers) were found to bind to at least two of the three main residues in the amphipathic groove of
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14-3-3σ (Arg56, Arg129 and Tyr130), irrespective of the identity of the protein partners (APN, c-Abl).
This suggests that there is a possibility of multi-target inhibition with the current 14-3-3σ inhibitors,
resulting in the lack of selectivity of these inhibitors.

Table 1. Comparison between different types of 14-3-3σ inhibitors.

No. Chemical Classification Mechanism IC50/%
Inhibition/LD50/KD

Main Residues
Involved in the

Interaction
References

9 Phosphonate-type
inhibitors

14-3-3σ/APN interaction
disruption IC50 of 81 ± 15 µM Arg56, Arg129 and

Tyr130, Arg60 [94,104]

10

Phosphate-type
inhibitors

14-3-3σ/c-Abl interaction
disruption 34% at 1.5 mM Arg56, Arg129 and

Tyr130, Asn175 [96]

11 14-3-3σ/c-Abl interaction
disruption 74% at 1.5 mM Arg56, Arg129 and

Tyr130, Asn175 [96]

12
14-3-3σ/C-Raf interaction

disruption 480 µM Lys214 [109]

14-3-3σ/ExoS interaction
disruption 520 µM Lys214 [109]

13

Carboxylate-type
inhibitors

14-3-3σ/c-Abl interaction
disruption LD50 = 1.04 µM Lys49, Arg56, Arg60,

Arg129
[95,110–114]

14 14-3-3σ/c-Abl interaction
disruption 5.2 ± 0.7 µM

Lys49, Arg56,
Arg129, Tyr130,
Asn175, Lys122

15 14-3-3σ/c-Abl interaction
disruption LD50 = 1.41 µM Lys49, Arg56, Arg60,

Arg129

16 14-3-3σ/c-Abl interaction
disruption 7.7 ± 2.0 µM

Arg56, Arg129,
Lys49, Asn175,

Lys122

17–20 Peptide inhibitors

Disrupting 14-3-3σ
interaction with its

partners involved in
cancer progression

KD 12.3 µM, KD = 59,
47, 55 nM

Targeting the two
identical

amphipathic grooves
[115]

21–22 Natural products 14-3-3σ/partners
interaction disruption - Targeting the

amphipathic groove [116]

5. Conclusions

In conclusion, the aberrant expression of 14-3-3σ has been observed in many cancers.
Various protein partners and mechanisms involving 14-3-3σ in cancer growth and metastasis have
been reported. This suggests that 14-3-3σ is an important target for anticancer drug discovery and
development. Consistent with this observation, different chemical classes of 14-3-3σ PPI modulators
have been developed as potential therapeutics against cancer. This includes 14-3-3σ PPI stabilizers such
as fusicoccanes analogues and fragment-derived small molecule stabilizers, as well as phosphonate
and non-phosphonate type 14-3-3σ PPI inhibitors. These modulators were successfully identified
using a combination of techniques including in silico tools (ligand-based screening, docking, molecular
dynamics simulations), biophysical techniques (NMR, X-ray crystallography, isothermal titration
calorimetry), fluorescence polarization, as well as cell-based assays.

However, it is worth noting that both inhibitors and stabilizers of 14-3-3σ PPI available to date
mainly target the amphipathic binding pocket. While inhibitors bind directly to the three key amino
acids in the amphipathic binding pocket (Arg56, Arg129, and Tyr130), the stabilizers generally bind
to the site adjacent to the amphipathic binding pocket, as the amphipathic binding pocket is often
occupied by the protein partner of 14-3-3σ. Having said that, a direct interaction with Lys122 at the
amphipathic binding pocket of 14-3-3σwas observed in both inhibitors and stabilizers. This suggests
that a 14-3-3σ PPI inhibitor is also likely to interfere with the binding of other 14-3-3σ partners which are
involved in suppressing cancer cell growth, metabolism, and metastasis, such as the tumor suppressor
gene P53, TASK-3, p65, and TAZ. Intriguingly, these amino acid residues are also conserved among all
14-3-3 isoforms. This suggests that modulators that target the amphipathic binding groove of 14-3-3σ
may also bind to other isoforms, and may produce other undesirable effects since only 14-3-3σ is
frequently downregulated in cancer while other isoforms are usually upregulated.
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Although the molecular tweezer seems promising as a potentially selective 14-3-3σ inhibitor
as it has been reported to bind to the C-terminal domain of 14-3-3σ, rather than the amphipathic
binding pocket, and yet is effective in displacing the binding of the protein partner from 14-3-3σ, it is
still unclear if this inhibitor is indeed selective to 14-3-3σ since recent finding seems to suggest that
molecular tweezer may binds to any solvently exposed Lys residues. Moreover, the interacting amino
acid residue Lys214 is also conserved across all isoforms. Nevertheless, it is clearly demonstrated that
it is possible to target other sites on 14-3-3σ in modulating its PPI interaction and is potentially the way
forward for the design of new highly selective modulators of 14-3-3σ in the future.
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