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Neuroinflammation driven by type-I interferons in the CNS is well established to
exacerbate the progression of many CNS pathologies both acute and chronic. The role
of adaptor protein Stimulator of Interferon Genes (STING) is increasingly appreciated
to instigate type-I IFN-mediated neuroinflammation. As an upstream regulator of
type-I IFNs, STING modulation presents a novel therapeutic opportunity to mediate
inflammation in the CNS. This review will detail the current knowledge of protective
and detrimental STING activity in acute and chronic CNS pathologies and the current
therapeutic avenues being explored.
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INTRODUCTION

Type-I interferons (IFNs) have been strongly implicated in the progression of neuroinflammation
in a host of central nervous system (CNS) pathologies including Alzheimer’s disease (Taylor et al.,
2014; Minter et al., 2016; Roy et al., 2020), Parkinson’s disease (Main et al., 2016; Qin et al., 2016),
traumatic brain injury (Karve et al., 2016; Barrett et al., 2020) and amyotrophic lateral sclerosis
(ALS) (Oakes et al., 2017; Shelkovnikova et al., 2019). However, the role of the type-I IFN upstream
regulator, the stimulator of interferon genes (STING), in driving this response in the CNS remains
largely unknown. Over the last 10 years, STING signalling has been identified as a therapeutic target
in autoinflammatory disorders and cancer with its role in neuroinflammation being increasingly
recognised. Therefore, a greater understanding of STING signalling in driving a neuroinflammatory
response in the diseased brain may also uncover similar therapeutic potential in treating acute and
chronic CNS pathologies.

TYPE-I INTERFERON SIGNALLING

The type-I IFN response is known to be a key in the innate immune response to viral infection.
However, this response has also been associated with a potent inflammatory response in the
absence of pathogen invasion. In the context of viral infection, pathogen-associated molecular
patterns (PAMPs) are produced by the invading pathogen and bind to pattern recognition receptors
(PRRs) including toll-like receptors (TLR) and cyclic GMP-AMP synthase (cGAS) on the surface of
resident immune cells such as microglia and astrocytes in the CNS (Bowman et al., 2003; Olson
and Miller, 2004; Jack et al., 2005). This elicits an array of innate anti-viral responses, notably
the production of pleiotropic pro-inflammatory cytokines known collectively as the type-I IFNs
(Koyama et al., 2008; Murira and Lamarre, 2016). PRRs on CNS immune cells are capable of
mounting a similar pro-inflammatory response upon detection of endogenous damage-associated
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molecular patterns (DAMP) released during injury and stress
(Loane et al., 2014; Cox et al., 2015; Kumar, 2019).

Following binding to their cognate receptor, IFNAR
(composed of the IFNAR1 and IFNAR2 subunits), the type-I
IFNs signal through the Janus kinase (JAK)-signal transducer
and activator of transcription (STAT) pathway to elicit an
anti-viral, anti-proliferative and immunostimulatory response
through interferon-stimulated gene (ISG) induction (Platanias,
2005; Schneider et al., 2014). This results in the secretion of
proinflammatory cytokines and chemokines, including tumour
necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β

(IL-1β) and the type-I IFNs themselves (IFN-alpha [IFN-α] and
IFN-beta [IFN-β]) (Lousberg et al., 2010).

THE cGAS-STING PATHWAY

A DNA sensor known as cGAS was recently shown to be
critical in type-I IFN induction (Sun et al., 2013). cGAS detects
circulating double-stranded DNA (dsDNA) in the cytosol and
mounts a potent type-I IFN response through the adaptor protein
STING (Sun et al., 2013; Zhang et al., 2013). Exogenous DNA
introduced into the cells by invading pathogens is recognised as
a PAMP by cGAS, activating STING, a transmembrane adaptor
protein located on the endoplasmic reticulum and eliciting a
potent type-I IFN response (Li et al., 2013; Watson et al., 2015).
Endogenous DNA found outside of the nucleus, in the absence of
pathogen invasion, is strongly immunogenic and prompts a pro-
inflammatory response, termed sterile inflammation. Released
from the nucleus and mitochondria, this DNA can be the result of
cell death or genotoxic, mitochondrial or endoplasmic reticulum
(ER) stress (Jahr et al., 2001; Kono and Rock, 2008; Petrasek
et al., 2013; West et al., 2015; Motwani and Fitzgerald, 2017). This
cytosolic DNA is recognised by cGAS as a DAMP and initiates
the type-I IFN response through STING (Ishikawa and Barber,
2008; Ishikawa et al., 2009; Sun et al., 2013; Chen et al., 2016b).
Once bound to dsDNA, cGAS facilitates the production of a cyclic
dinucleotide, 2′5-cyclic adenosine monophosphate guanosine
monophosphate (2′5′-cGAMP) from adenosine triphosphate
(ATP) and guanosine triphosphate (GTP) (Ablasser et al., 2013);
2′5′-cGAMP is the endogenous agonist of STING, inducing
STING phosphorylation and oligomerisation (Ablasser et al.,
2013; Shang et al., 2019). Alternatively, STING can be activated
by directly binding to bacterial cyclic dinucleotides (CDNs)
(Burdette et al., 2011).

Once activated, the STING oligomer translocates to the
Golgi apparatus where it recruits and phosphorylates kinases
tank binding kinase 1 (TBK1) and IκB kinase (IKK), forming
multimeric dimers at the cytosolic domain of STING (Tanaka
and Chen, 2012; Liu et al., 2015; Haag et al., 2018; Zhang
et al., 2019). Activated STING, TBK1 and IKK recruit and
phosphorylate interferon regulatory factor 3 (IRF3) and nuclear
factor kappa-light-chain-enhancer of activated B cells (NF-κB) at
the C-terminal tail of STING (Tanaka and Chen, 2012; Abe and
Barber, 2014; Liu et al., 2015). IRF3 once activated migrates to the
nucleus, binds to IFN promoter regions and potently upregulates
type-I IFN production (Liu et al., 2015). Following activation

by TBK1 and IKK, NF-κB also translocates to the nucleus to
upregulate the production of proinflammatory cytokines and
chemokines including TNF-α, IL-1β and IL-6, all implicated in
driving the neuroinflammatory response in the CNS (Barnes and
Karin, 1997) (Figure 1).

STING ACTIVITY IN VIRAL INFECTIONS

Much of our knowledge of STING signalling in the brain
originates from mouse models of viral infections. A protective
role of STING signalling in mice has been reported following
Herpes simplex virus (HSV) and West Nile virus (WNV)
infection. Herpes simplex encephalitis (HSE) is a sporadic and
fatal form of necrotising encephalitis caused by infection with
herpes simplex virus 1 and 2 (Gnann and Whitley, 2017). STING
knockout (STING−/−) mice demonstrate a markedly increased
susceptibility and lethality to HSV-1 infection (Ishikawa et al.,
2009). Furthermore, increased HSV-1 viral loads have been
detected in the brains of STING−/−, STING loss of function
(STINGgt/gt) and cGAS knockout (cGAS−/−) mice compared
to wild-type controls, indicating increased HSE susceptibility
(Ishikawa et al., 2009; Reinert et al., 2016). Microglia were the
primary producers of the type-I IFNs following HSV-1 infection,
and this IFN production was found to be STING dependent
(Reinert et al., 2016). STING-deficient mice also display increased
morbidity and mortality following WNV infection compared
to their wild-type counterparts (You et al., 2013; McGuckin
Wuertz et al., 2019). Infection with WNV can progress to West
Nile Neuroinvasive Disease (WNND) resulting in meningitis,
encephalitis and Parkinsonian-like symptoms (Sejvar et al., 2003).
Taken together, these results support a neuroprotective role of
STING following HSV-1 and WNV infection.

STING ACTIVITY IN ACUTE CNS
PATHOLOGIES

In direct contrast with acute viral infections, STING signalling
has recently been shown to be a key instigator of the detrimental
prolonged neuroinflammation that ensues following traumatic
brain injury (TBI), subarachnoid haemorrhage (SAH) and
hypoxia-ischemia (HI) (Table 1). Increased STING signalling was
detected in post-mortem human TBI samples (Abdullah et al.,
2018) and 24 and 72 h post-CNS injury in mice in a controlled
cortical impact model of TBI (Abdullah et al., 2018; Barrett
et al., 2020). Additionally, STING−/− mice showed a significantly
smaller lesion size compared to wild-type mice suggesting that
STING is a driver of TBI-induced neurodegeneration (Abdullah
et al., 2018). Sen et al. (2020) identified a possible upstream
activator of STING in TBI, a protein produced in response to
endoplasmic reticulum stress known as protein kinase R-like
ER kinase (PERK). As STING is localised on the endoplasmic
reticulum in its resting state, this supports a connection
between the ER stress response and STING. Significantly,
the TBI-induced activation of STING was attenuated in mice
administered a PERK inhibitor (GSK2656157), with reduced

Frontiers in Neuroscience | www.frontiersin.org 2 February 2021 | Volume 15 | Article 621501

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-621501 February 2, 2021 Time: 18:54 # 3

Fryer et al. STING and Neuroinflammation

FIGURE 1 | cGAS-STING pathway and type-I IFN signaling. Double-stranded DNA (dsDNA) released from damaged cells or following pathogen infection is taken up
cells into the cytosol where it is detected by the enzyme cyclic GMP-AMP synthase (cGAS) which synthesises the cyclic di-nucleotide 2′3′-cGAMP from GTP and
ATP. 2′3′-cGAMP is detected by stimulator of interferon genes (STING) residing on the endoplasmic reticulum, and once activated, STING oligomerises and
translocates to the Golgi apparatus where it recruits kinases tank binding kinase 1 (TBK1) and IκB kinase (IKK). TBK1 recruits and phosphorylates interferon
regulatory factor 3 (IRF3) and IKK recruits and phosphorylates nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). IRF3 and NF-κB translocate to
the nucleus and upregulate the production of type-I IFNs, which through their receptors interferon alpha and beta receptor subunits 1 and 2 (IFNAR1 and IFNAR2)
activate Janus kinase 1 (JAK1) and tyrosine kinase 2 (TYK2). JAK1 and TYK2 activate signal transducer and activator of transcription 1 and 2 (STAT1 and STAT2),
which phosphorylate IRF3, IRF7 and IRF9 to stimulate the transcription of interferon stimulated genes (ISG) in the nucleus. Image created with BioRender.com.

lesion volume as well as improvements in anxiety and depression
tests reported (Sen et al., 2020). SAH is a form of stroke
often resulting from a ruptured aneurism or CNS injury
(Tenny and Thorell, 2020). Recently, Peng et al. (2020) found
increased STING and p-TBK1 protein expression 12 h post-
injury in a mouse model of SAH. The administration of a
STING agonist, CMA in SAH mice worsened the neuronal
damage and neurobehavioral deficits when compared to vehicle-
treated mice. In contrast, administration of a small-molecule
STING inhibitor C-176 shortly after SAH modelling conferred
neuroprotection by reducing brain oedema, neuronal damage
and attenuated the upregulation of pro-inflammatory microglial
markers including IL-1β, iNOS and caspase-1 (Peng et al.,
2020). Upregulation of STING signalling has also been reported
in rats 48–72 h after neonatal HI (Gamdzyk et al., 2020).
Furthermore, silencing of STING signalling using siRNA was

found to reduce infarct size and neurological impairments 48 h
after HI. The significant reduction in TBI lesion size, HI infarct
size and neuronal damage through both direct and indirect
inhibition of STING signalling suggests a critical role of the
STING signalling pathway in perpetuating neurodegeneration
with potential therapeutic opportunities to treat acute CNS
injuries such as TBI and stroke.

STING ACTIVITY IN CHRONIC CNS
PATHOLOGIES

STING signalling has recently been associated with worsened
disease progression in a number of chronic neurodegenerative
disease models (Table 2). The ME7 prion disease model
is a widely used mouse model for studying chronic
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TABLE 1 | STING activity in acute CNS pathologies.

Pathology Rodent models Human Genetic/pharmacological intervention References

Traumatic brain
injury (TBI)

Increased cortical
mRNA and protein
expression of STING 24
and 72 h post-TBI in
mice

Increased STING
mRNA expression
reported in
post-mortem brain
tissue of TBI patients

Smaller TBI-induced lesion size measured in STING−/− mice
Small-molecule inhibition of ER-stress protein PERK reduced
white matter injury and improved mouse behavioural
outcomes by attenuating STING dependent signalling

Abdullah et al., 2018;
Barrett et al., 2020;
Sen et al., 2020

Subarachnoid
haemorrhage (SAH)

Increased STING and
p-TBK1 protein
expression 12–72 h
post-injury in mice

N/A Administration of small-molecule STING inhibitor C-176 in
mice attenuated brain oedema, neuronal injury, and
expression of microglial proinflammatory markers and
improved neurobehavioral outcomes
Administration of STING agonist CMA worsened
neurobehavioral performance, exacerbated neuronal
damage, and upregulated microglial proinflammatory
markers in mice

Peng et al., 2020

Hypoxia-ischemia (HI) STING upregulated in
neonatal rats 24–48 h
post-HI

N/A Inhibition of STING signalling using siRNA attenuated the size
of the infarct, neurodegeneration and neurological
impairments in rats

Gamdzyk et al., 2020

TABLE 2 | STING activity in chronic CNS pathologies.

Pathology Rodent models Human Genetic/pharmacological intervention References

Parkinson’s
disease (PD)

STING pathway implicated in the
onset of neuroinflammation,
neurodegeneration and motor
deficits in Parkin−/− mice

N/A Genetic deletion of STING attenuates the loss of
dopaminergic neurons and motor deficits seen in
Parkin−/− mice

Sliter et al., 2018

Ataxia
telangiectasia (AT)

STING drives type-I IFN induction in
ATM−/− mice

N/A Genetic deletion of STING reduced type-I IFN
response caused by loss of ATM gene

Hartlova et al., 2015

Huntington’s
disease (HD)

Increased cGAS, p-TBK1 and
p-STING expression found in
HdhQ111/Q111 mice

Increased cGAS protein
expression found in HD
striatal neurons

N/A Sharma et al., 2020

Multiple
Sclerosis (MS)

STING-induced type-I IFN
production attenuates EAE
pathology
Mice lacking functional STING
display attenuated EAE
development

cGAS and STING gene
expression is
downregulated in
relapsed MS patients

Use of STING agonist c-di-GMP delayed disease
onset and severity in EAE mouse model
Activating STING using antiviral therapeutic
ganciclovir was able to attenuate disease
progression in EAE mice

Lemos et al., 2014;
Mathur et al., 2017;
Masanneck et al., 2020

Systemic lupus
erythematosus
(SLE)

Loss of STING accelerates mortality
and disease progression in Lupus
prone mice (MRL-Faslpr )

ISG inducing activity of
sera derived from SLE
patients is STING
dependent

N/A Sharma et al., 2015;
Kato et al., 2018

Amyotrophic lateral
sclerosis (ALS)

Increased cGAS and cGAMP
detected in the spinal cords of
Prp-TDP-43Tg/+ mice
Genetic deletion of STING in
Prp-TDP-43Tg/+ mice increased
average lifespan by 40%

Elevated levels of
cGAMP detected in the
spinal cords of ALS
patients

Administration of small-molecule STING inhibitor
H-151 reduced cortical and spinal cord
proinflammatory cytokine gene expression and
reduced neurodegeneration in ALS mice.
Death of ALS patient iPSC -derived motor neurons
was prevented following H-151 administration

Yu et al., 2020

neurodegeneration. Nazmi et al. (2019) confirmed STING
is a critical driver of the type-I IFN mediated neurodegeneration
in this model with mice deficient in STING or IFNAR1 displaying
attenuated neuroinflammation (Nazmi et al., 2019). STING has
also been reported to exacerbate the neuropathology of a mouse
model of Parkinson’s disease (PD). Mutations in PARKIN, a
ubiquitin ligase, are the most common cause of early-onset PD
and have been linked in mouse models to the inefficient removal
or autophagy of dysfunctional mitochondria (Pickrell and
Youle, 2015). In a model of PD, Parkin−/− mice lacking STING
displayed attenuated neuroinflammation and neurodegeneration
with improvements in motor function compared Parkin−/−

mice (Sliter et al., 2018). This suggests an interplay between
mitochondrial stress and STING signalling in PD. Specifically,
the inefficient clearing of damaged mitochondria by parkin
leads to increased circulating cytosolic mtDNA which when
recognised by cGAS initiates the STING signalling cascade.
Similarly, a detrimental role for STING in ataxia telangiectasia
(AT), an autosomal recessive disorder caused by mutations
in the ataxia-telangiectasia (ATM) gene, has been reported.
AT is clinically characterised by cerebellar degeneration,
telangiectasia and immunodeficiency (Amirifar et al., 2019).
Mutations in the ATM gene in mice have been associated with
the accumulation of DNA in the cytoplasm, leading to increased
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type-I IFN production through a STING-mediated pathway
(Hartlova et al., 2015). However, the implications of targeting
this STING-mediated IFN production in terms of reducing the
cerebellar degeneration and improving motor control in this
mouse model are still unknown. Recently, Sharma et al. (2020)
identified upregulated cGAS-STING signalling in Huntington’s
disease (HD). Increased cGAS protein expression was found
in human HD striatal neurons and in neurons derived from
HdhQ111/Q111 mice. Furthermore, increased expression of
p-TBK1 and p-STING, downstream of cGAS was detected
in the striatal neurons of the HD mice (Sharma et al., 2020).
Increased mRNA levels of Ccl5 and Cxcl10 was found to be
cGAS dependent in both human and mouse striatal HD tissue
further implicating the cGAS-STING pathway in driving the
neuroinflammatory response in HD (Sharma et al., 2020).
A relationship between STING and TDP-43, a hallmark protein
of ALS has recently been established with TDP-43 found to
trigger mtDNA release into the cytoplasm, activating the cGAS-
STING pathway (Yu et al., 2020). Increased cGAS and cGAMP,
the STING activating molecule produced by cGAS was detected
in spinal cords and in the cortex of ALS mice overexpressing
TDP-43 (Prp-TDP-43Tg/+). When STING was genetically
deleted from these mice, the average lifespan increased by 40%
and the mice exhibited improved rotarod performance compared
to Prp-TDP-43Tg/+ mice with intact STING (Yu et al., 2020).
Furthermore, elevated levels of the STING activator cGAMP
were detected in spinal cord samples from ALS patients (Yu
et al., 2020). Together these findings implicate the cGAS-STING
pathway in driving the damaging inflammatory processes
present in ALS.

In contrast to other chronic neurodegenerative diseases,
the type-I IFNs have been implicated in a neuroprotective
role in Multiple Sclerosis (MS). Intramuscular IFN-β1 is used
therapeutically in patients with relapsing and remitting MS to
reduce the number and volume of brain lesions; however, its exact
mechanism of action remains to be fully elucidated (Kieseier,
2011). More recently, a protective effect of STING activation has
been reported in experimental autoimmune encephalitis (EAE),
a mouse model of MS. The CDN STING activator c-di-GMP
and DNA nanoparticles (DNPs) were able to delay EAE and
reduce the overall disease severity (Lemos et al., 2014). A later
study confirmed the therapeutic potential of activating STING
in EAE mice using a clinically approved antiviral, ganciclovir
(GCV), which has been previously shown to attenuate EAE
pathology in mice. The study found that STING was required
for GCV to elicit its neuroprotective and anti-inflammatory
activity in EAE mice (Mathur et al., 2017). This is supported
by a gene expression analysis of peripheral blood mononuclear
cells from relapsing remitting MS patients and healthy donors.
cGAS and STING gene expression was downregulated in relapsed
MS patients compared to both patients in remission and healthy
donors, further suggesting a neuroprotective role of cGAS-
STING signalling in MS (Masanneck et al., 2020). Together
these results support the therapeutic potential of upregulating
STING mediated-type-I IFN production through the use of
STING agonists as an adjunct to antivirals such as GCV used
in MS. Although upregulating IFN production through STING

shows promise in mouse models of MS, this same efficacy
may not translate to humans. Long-term IFN-β therapy has
been associated with the increased incidence of adverse CNS
effects including depression and ‘flu-like symptoms’ such as fever,
muscle aches and headaches, which have been noted as a major
factor for MS patients to discontinue IFN-β therapy in addition
to poorly perceived efficacy (Neilley et al., 1996; O’Rourke and
Hutchinson, 2005; Fox et al., 2013).

The role of STING in systemic lupus erythematosus (SLE)
is also less clear, with both detrimental and beneficial effects
in the disease progression reported. SLE is an autoimmune
disease that can present as neuropsychiatric lupus (NPSLE)
in approximately 20% of cases causing a range of syndromes
including aseptic meningitis, cerebrovascular disease, seizure
disorders and cognitive dysfunction (Manson and Rahman,
2006). Lupus prone mice (MRL-Faslpr) lacking STING display an
accelerated disease progression and mortality compared to lupus-
prone mice (Sharma et al., 2015). However, a later study with
apoptosis-derived vesicles (AdMVs) from the sera of patients
with SLE identified dampened ISG induction in STING−/−

reporter cells compared to parental cells when challenged with
these AdMVs (Kato et al., 2018). This suggests that ISG induction
in human SLE is amplified in the presence of STING. The
contrasting roles of STING in promoting disease susceptibility
and severity whilst amplifying the autoinflammatory response
in SLE warrant further investigation. In addition, these studies
failed to study the role STING may play in the CNS and
lupus progression.

STING ACTIVITY IN THE AGEING BRAIN

Ageing is a major risk factor for the development of
neurodegenerative diseases. Cell senescence is a hallmark
feature of ageing as senescent cells perpetuate chronic low-level
inflammation by adopting the senescence-associated secretory
phenotype (SASP), resulting in the release of proinflammatory
cytokines, chemokines, growth factors and extracellular matrix
proteins (Coppé et al., 2010; McHugh and Gil, 2018). Increasing
evidence has implicated cGAS-STING signalling in the chronic
inflammation associated with age-induced cell senescence.
Increased cytosolic DNA has been found in aged diploid
fibroblasts when compared to younger cells (Lan et al., 2019).
The inflammation observed in these cells was cGAS-STING
dependent, suggesting aging triggers cGAS-STING mediated
inflammation through the accumulation of cytosolic DNA
(Lan et al., 2019). This idea was further supported using
murine embryonic fibroblast cells, where genetic deletion
of cGAS attenuated senesce processes in these cells (Glück
et al., 2017). Furthermore, upregulation of proinflammatory
markers IL-6 and CXCL-10 following irradiation in vitro and
in vivo was found to be dependent on intact cGAS-STING
signalling (Glück et al., 2017). Further supporting cGAS-
STING signalling as a driver of age-induced inflammation, cells
from AT and Hutchinson-Gilford progeria patients have been
shown to have increased cytosolic DNA compared to healthy
donor cells (Lan et al., 2019). AT and Hutchinson-Gilford
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progeria are genetically inherited disorders characterised by
premature ageing (Merideth et al., 2008; Rothblum-Oviatt et al.,
2016). Together these findings implicate cGAS-STING signalling
as a driver of detrimental chronic inflammation associated
with ageing.

THERAPEUTIC POTENTIAL OF
TARGETING STING

IFN-α and IFN-β are abundantly expressed and highly implicated
in normal and pathological conditions (González-Navajas et al.,
2012; Malireddi and Kanneganti, 2013; Cho and Kelsall, 2014).
As a result, targeting type-I IFN signalling has shown to
be promising in the treatment of infectious diseases, various
cancers, and autoimmune diseases including multiple sclerosis,
SLE and psoriasis (Di Domizio and Cao, 2013; Aricò et al.,
2019). However, their therapeutic success in clinical trials have
been variable and is severely limited due to side effects which
include fever, cognitive dysfunction, depression and in some
cases death. With mounting evidence implicating the cGAS-
STING pathway in driving neuroinflammation in both acute
and chronic neurological diseases, modulation of type-I IFN
signalling by targeting cGAS-STING pathways represents a viable
therapeutic in the treatment of CNS disorders.

The development of small-molecule agonists and antagonists
to target STING signalling in mice and humans is a growing
area of research (Table 3). Small-molecule agonists and CDN
analogues are currently being developed, with several in phase I
and II clinical trials for use against viral infections such as human
papillomavirus (HPV) and in cancer immunotherapy with a
focus on solid tumours (Figure 2) (Feng et al., 2020; Zhang et al.,
2020). The use of bacterial and synthetic CDNs such as c-di-GMP
and 3′3′cGMP as vaccine adjuvants have displayed promising
anti-tumour activity in mouse models of metastatic breast cancer,
melanoma and colon carcinoma (Chandra et al., 2014; Fu et al.,
2015). STING activating nanoparticles is an increasingly active
area of research in treating solid tumours as nanoparticles may
be able to overcome the translational challenges of using CDNs,
which include their negative charge and susceptibility to being
rapidly enzymatically degraded (Wilson et al., 2018; Luo et al.,
2019; Su et al., 2019).

Currently, there is limited research on the use of STING
agonists and antagonists in the CNS. Nonetheless, STING
activation in astrocytes has been reported to promote the growth
of brain metastatic cancer cells in mice (Chen et al., 2016a). This
study found that brain metastatic cells co-cultured with astrocytes
transported cGAMP into the neighbouring astrocytes via Cx43
gap junctions to activate STING. Astrocytic production of IFN-
α and TNF-α was correlated with the inhibition of apoptosis
in the metastatic brain cells when exposed to chemotherapy,
suggesting that STING activation in astrocytes promotes survival
of brain metastatic cancer cells in mice (Chen et al., 2016a).
Further studies elucidating the impact of STING activation and
the development of brain cancers will be required to assess
the suitability of STING agonists for the treatment of these
CNS pathologies.

STING inhibitors in the form of competitive antagonists
and covalent inhibitors have also been developed to treat
autoinflammatory conditions such as Aicardi Goutières
syndrome (AGS) and STING-associated vasculopathy with
onset in infancy (SAVI) (Haag et al., 2018; Hansen et al., 2018).
These compounds are nitrofuran and nitro-fatty acid derivatives
and have shown promising results in reducing serum type-I
IFN concentrations in a Trex1−/− mouse model of AGS and
SAVI patient-derived fibroblasts (Haag et al., 2018; Hansen
et al., 2018). C-176 was shown by Haag et al. (2018) to ablate
STING activity through the blockade of activation-induced
palmitoylation, impeding STING’s ability to translocate to the
Golgi in response to CDN binding. Administration of C-176
intraperitoneally in SAH induced mice has also been shown to
improve neurobehavioural outcomes and reduced the expression
pro-inflammatory microglial markers including IL-1β, TNF-α
and IL-6 (Peng et al., 2020). Peng et al. (2020) reported that
inhibition of adenosine monophosphate-activated protein kinase
(AMPK), a regulator of cellular energy homoeostasis (Hardie,
2011) reversed the anti-inflammatory activity of C-176 in vitro
and in vivo, suggesting that AMPK has a role in the inhibition of
STING through C-176.

Gain of function mutations in the STING gene, TMEM173,
is associated with autoinflammatory disorders including
familial chilblain lupus and STING-associated vasculopathy
with onset in infancy (SAVI). A heterozygous mutation in
TMEM173 has been linked to familial chilblain lupus, a rare
autoinflammatory pathology characterised by early onset
arthralgia and lymphopenia (König et al., 2017). This gain of
function mutation enhanced the ability of STING to dimerise in
the absence of cGAMP, resulting in constitutive IFN activation
(König et al., 2017); de novo germline mutations in STING have
been identified in SAVI patients, causing a hypersensitivity to
ligand activation in STING, resulting in constitutive production
of type-I IFNs (Liu et al., 2014). This mutation manifested
clinically in the onset of systemic inflammation, acral necrosis
and interstitial lung in infants and children (Liu et al., 2014).

Multiple STING allele variants have been detected in the
human population, with one variant R293Q, known to impair
the function of STING (Patel and Jin, 2019). A multicentre
study carried out in Polish Caucasians over 65 years of age,
found individuals carrying the R293Q STING allele were less
susceptible to age-related chronic lung disease due to the lowered
immune sensitivity associated with the dysfunctional STING
(Hamann et al., 2019). Given that mutations in the STING gene
correlate with disease prognosis, genetic screening for STING
mutants may serve as potential biomarker in diseases linked to
impaired STING function. In addition, changes in expression
levels of molecules downstream in the STING pathway have
also been associated with various diseases. Exome sequencing
has identified TBK1 as a risk factor in ALS and fronto-temporal
dementia with mutations in the human TBK1 gene implicated in
neuroinflammatory disorders (Cirulli et al., 2015; Ahmad et al.,
2016; Wilke et al., 2017). Unregulated levels of IRF3 and the
type-IFNs have been implicated in tumorigenesis and progression
of autoimmune disorders including rheumatoid arthritis (RA),
SLE and primary Sjogren’s syndrome (Gottenberg et al., 2006;
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TABLE 3 | STING modulators.

Compound Affinity Disease model Disease outcome References

STING activator
CDNs

mSTING; Kd∼110 nM,
hSTING; ∼4.59 nM

Viral infection+;
Cancer+; EAE+

Protective against viral infections; shows anti-tumour activity
in mouse models of various cancers; delays EAE and reduce
the overall disease severity

Burdette et al., 2011;
Chandra et al., 2014;
Lemos et al., 2014;
Li et al., 2014

STING activator
DMXAA

mSTING; Kd∼130 nM Cancer+ Shows potent anti-tumour activity in mouse models of lung
cancer and mesothelioma

Conlon et al., 2013;
Kim et al., 2013

STING activator CMA mSTING; Kd:3.5 µM SAH− Exacerbates neuronal damage and neurobehavioral deficits
in a mouse model of SAH

Zhang et al., 2015;
Peng et al., 2020

STING activator GCV m/hSTING; Kd:N/A EAE+; Viral infection+ Attenuates EAE pathology in mice; protective against
cytomegalovirus infections

Mathur et al., 2017

STING inhibitor
GSK2656157

N/A TBI+ Reduces lesion volume and improves neurobehavioral
outcome

Sen et al., 2020

STING inhibitor
C-176

mSTING; IC50 < 50 nM AGS+; SAH+ Ameliorates STING associated-inflammation in AGS mouse
model; reduces brain oedema, neuronal damage and
neuroinflammatory response in SAH mouse model

Haag et al., 2018;
Peng et al., 2020

Kd (dissociation constant) indicates the affinity of STING binding to the compound ligand.
Half-maximal inhibitory concentration (IC50) is the concentration of an inhibitor where the response (or binding) is reduced by half.
(+) denotes beneficial and (−) denotes detrimental effects of STING compound in disease outcome.
mSTING, mouse STNG; hSTING, human STING.

FIGURE 2 | Drugs targeting STING currently in development. Data obtained through Cortellis search (Clarivate Analytics). Data correct as of December 2020.

Crow, 2014; Muvaffak et al., 2014; Jiao et al., 2018; Barrat et al.,
2019; Petro, 2020). Together these results implicate genetic
alterations in STING and its downstream mediators in the
progression of autoinflammatory disorders and highlight the
importance of genetic characterisation of STING to gain a
deeper insight into the mechanisms of STING dysregulation in
neurodegeneration.

Key challenges in targeting STING include the high
heterogeneity of STING in the human population and the
differences in structure and signalling between mouse and
human STING. There are multiple alleles present for the gene
that encodes STING (TMEM173) and these alleles have been

found to exhibit a high degree of population stratification (Patel
et al., 2017). Markedly different TMEM173 genotypes have
been detected in different ethnic groups and differential STING
protein expression has been found in cells of these different
genotypes (Patel et al., 2017). Further characterisation of the
variants of STING present in different populations is required
to ensure the accurate development of STING compounds.
The structural difference in mice (mSTING) and humans
(hSTING) is also a challenge in STING targeted therapies
and has been attributed to the clinical failure of the small-
molecule STING activator DMXAA. This initially displayed
promising anti-tumour capability in mice but failed to translate
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to human studies due to the compound’s inability to bind to
hSTING (Conlon et al., 2013). This highlights the importance
of developing animal and cell culture models that can accurately
mimic the activity of hSTING with the binding capabilities of
the compound with hSTING tested. The use of rats instead
of mice has also been proposed to be a more accurate model
to study compounds targeting STING as rat STING (rSTING)
has been found to mimic the substrate binding properties of
hSTING more so than mSTING (Zhang et al., 2015). Moreover,
the double-edge sword of the immune system in suppressing and
promoting tumour growth poses a challenge in targeting STING
as a cancer therapy. Prolonged activation of STING can result
in a tolerogenic immune response, chronic neuroinflammation,
increased tumour growth and impaired T-lymphocyte function
all of which are detrimental in cancer treatment (Huang et al.,
2013; Ahn et al., 2014; Larkin et al., 2017; Lemos et al., 2020).
Conversely, prolonged suppression of the neuroinflammatory
response by STING inhibition may be detrimental in the
treatment of diseases that require an acute, beneficial initial
neuroinflammatory response as seen in spinal cord injury, stroke,
and traumatic brain injury (DiSabato et al., 2016; Simon et al.,
2017; Shields et al., 2020). Given the multifaceted role of STING
and the magnitude of STING signalling pathways still remains
to be determined, caution should be taken in the development
and application of STING modulators. The optimal therapeutic
window for STING activation and inhibition will be essential
in allowing STING modulators to exert their protective effects
whilst minimising toxicity in any disease treatment.

CONCLUSION

Recent studies on STING signalling in the brain have
increased our understanding of the role of this pathway
in neural innate immunity and inflammation-mediated
neurodegeneration. STING activation occurs in response
to a wide array of stressors, from viral infection to ER
and mitochondrial stress, suggesting it is a major player
in a number of neuropathologies. With both beneficial and
detrimental effects of STING reported, it appears there will
be complexity in targeting this pathway. However, with
multiple small-molecule agonists and antagonists of STING
emerging and the critical validation of findings from mouse
models in humans, we are gaining an increased understanding
of the therapeutic potential of targeting STING in specific
CNS disorders.
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