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Abstract: Blood parasites of the Haemosporida order, such as the Plasmodium spp. responsible for
malaria, have become the focus of many studies in evolutionary biology. However, there is a lack of
molecular investigation of haemosporidian parasites of wildlife, such as the genus Polychromophilus.
Species of this neglected genus exclusively have been described in bats, mainly in Europe, Asia, and
Africa, but little is known about its presence and genetic diversity on the American continent. Here,
we investigated 406 bats from sites inserted in remnant fragments of the Atlantic Forest and Cerrado
biomes and urbanized areas from southern Brazil for the presence of Polychromophilus species by PCR
of the mitochondrial cytochrome b encoding gene. A total of 1.2% of bats was positive for Polychro-
mophilus, providing the first molecular information of these parasites in Myotis riparius and Eptesicus
diminutus, common vespertilionid bats widely distributed in different Brazilian biomes, and Myotis
ruber, an endangered species. A Bayesian analysis was conducted to reconstruct the phylogenetic
relationships between Polychromophilus recovered from Brazilian bats and those identified elsewhere.
Sequences of Brazilian Polychromophilus lineages were placed with P. murinus and in a clade distinct
from P. melanipherus, mainly restricted to bats in the family Vespertilionidae. However, the sequences
were split into two minor clades, according to the genus of hosts, indicating that P. murinus and a
distinct species may be circulating in Brazil. Morphological observations combined with additional
molecular studies are needed to conclude and describe these Polychromophilus species.

Keywords: Polychromophilus; bats; phylogeny; Brazil

1. Introduction

The phylum Apicomplexa forms one of the most diverse groups of unicellular protists
with a wide environmental distribution. They are classified as mandatory intracellular
parasites and they have mobile invasive stages. They are characterized by the presence of
an evolutionarily unique structure called the apical complex, used to adhere and invade
host cells. Many of the species that are part of this group are considered pathogens in
humans and other vertebrates. All animal species are believed to host at least one species
of apicomplexan parasites [1–3]. Apicomplexa are divided into two orders: Eucoccidiorida
(coccidian parasites) and Haemosporida (haemosporidian parasites). Haemosporida are
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organized into four families: Garniidae, Haemoproteidae, Leucocytozoidae, and Plas-
modiidae, which include malaria parasites that infect various vertebrates and invertebrate
hosts [4].

The hosts of the order Chiroptera have the greatest diversity of haemosporidian para-
sites among mammals, including nine genera. In addition to the well-known genera (Plas-
modium and Hepatocystis), seven genera exclusively infect chiropterans: Polychromophilus,
Nycteria, Bioccala, Biguetiella, Dionisia, Johnsprentia, and Sprattiella [5,6], clearly highlighting
this group of mammals as a vital tool in the taxonomic, systematic, and evolutionary study
of haemosporidians in mammals. Although Bioccala was elevated to a genus in 1984 [7],
many studies, as well as this work, still use it as a subgenus of Polychromophilus, since
its species present similar morphological characteristics and its genetics have not been
studied [8].

The genus Polychromophilus has been found in insectivorous bats in tropical and
temperate regions [9–12]. Only five species of Polychromophilus are known. Although they
can be distinguished by slight differences in ultrastructure, they are classified mainly based
on the type of host [13]. Of the five species of Polychromophilus described, Polychromophilus
(Polychromophilus) melanipherus and Polychromophilus (Bioccala) murinus are mainly linked
to two bat families: Miniopteridae and Vespertilionidae, respectively [14]. However,
occasionally, P. melanipherus has been reported in Hipposideridae and Vespertilionidae
and P. murinus in Rhinolophidae, Hipposideridae, and Miniopteridae [6]. In addition, the
species P. (P.) corradetti and P. (P.) adami have been described in bats from the African
region: Miniopterus inflatus in Gabon and Miniopterus minor in the Republic of Congo [13].

Recent studies have demonstrated a greater concentration of molecular studies aimed
at African and European bats, e.g., [8,15–17]. In contrast, our knowledge about haemo-
sporidian parasites of Brazilian bats is still restricted to morphological investigations, such
as the case of Polychromophilus (Bioccala) deanei found in Myotis nigricans (Vespertilionidae).
Myotis nigricans is an evening bat from Brazil, and is the first chiropteran host in which
this group of parasites was found in the New World [18,19]. Nevertheless, no molecular
data is available for this parasite in Brazil, and the only sequence of Polychromophilus sp. of
bats from the American continent is from Myotis nigricans, from the Vespertilionidae family,
found in Panama [20].

2. Materials and Methods
2.1. Sampling

Brain tissue samples of bats with no identified species (n = 406) were acquired from
the Parana State Reference Laboratory (LACEN) program for monitoring rabies virus
circulation. They were collected between September 2019 and August 2020 in 67 different
municipalities in the State of Paraná, most of them inserted in remnant fragments of
Atlantic Forest and Cerrado biomes, as well as in urbanized areas (Figure 1).

All tissue samples and bats were collected and handled under appropriate authoriza-
tions by the Brazilian government. The project was approved by the Ethics in Use of Ani-
mals Committee, CEUA/SESA, of the Centro de Produção e Pesquisa de Imunobiológicos—
CPPI/PR (approval number 01/2019 and date of approval 3 March 2020).
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Figure 1. Location of municipalities in the State of Paraná, Brazil, where bat samples were collected. 
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chrome b gene (cytb) was amplified using a nested polymerase chain reaction (PCR), tak-
ing standard precautions to prevent cross-contamination of samples. The PCR reactions 
were conducted as previously described [21] using primers DW2 and DW4 and 5 uL of 
genomic DNA in the first reaction, and 1 uL aliquot of this product was used as a template 
for a nested reaction with primers DW1 and DW6. 

PCR products were sequenced using BigDye® Terminator v3.1 Cycle Sequencing Kit 
in ABI PRISM® 3500 Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA) using 
nested PCR primers. The cytb sequences were obtained and aligned with the sequences 
available at the GenBank® database. 

The phylogenetic relationship among reported parasites was inferred using partial 
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the phylogenetic trees. The phylogenetic reconstruction was performed using the Bayes-
ian inference method implemented in MrBayes v3.2.0 [22]. Bayesian inference was exe-
cuted with two Markov Chain Monte Carlo searches of 3 million generations, with each 
sampling 1 of 300 trees. After a burn-in of 25%, the remaining 15,002 trees were used to 
calculate the 50% majority-rule consensus tree. The phylogeny was visualized using 
FigTree version 1.4.0 [23]. 

2.3. Host Species Identification 

Figure 1. Location of municipalities in the State of Paraná, Brazil, where bat samples were collected.

2.2. Polychromophilus Detection

The extraction of total nucleic acid (DNA and RNA) from collected samples was
performed using the BioGene Extraction kit (K204-4, Bioclin, Belo Horizonte, MG, Brazil),
following the manufacturer’s instructions.

A fragment of ~1.1 kb (approximately 92% of the gene) from the mitochondrial
cytochrome b gene (cytb) was amplified using a nested polymerase chain reaction (PCR),
taking standard precautions to prevent cross-contamination of samples. The PCR reactions
were conducted as previously described [21] using primers DW2 and DW4 and 5 uL of
genomic DNA in the first reaction, and 1 uL aliquot of this product was used as a template
for a nested reaction with primers DW1 and DW6.

PCR products were sequenced using BigDye® Terminator v3.1 Cycle Sequencing Kit
in ABI PRISM® 3500 Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA) using
nested PCR primers. The cytb sequences were obtained and aligned with the sequences
available at the GenBank® database.

The phylogenetic relationship among reported parasites was inferred using partial
cytb gene sequences (1116 bp). GenBank® accessions of the used sequences are shown in
the phylogenetic trees. The phylogenetic reconstruction was performed using the Bayesian
inference method implemented in MrBayes v3.2.0 [22]. Bayesian inference was executed
with two Markov Chain Monte Carlo searches of 3 million generations, with each sampling
1 of 300 trees. After a burn-in of 25%, the remaining 15,002 trees were used to calculate the
50% majority-rule consensus tree. The phylogeny was visualized using FigTree version
1.4.0 [23].

2.3. Host Species Identification

The positive samples were processed using a PCR protocol that amplifies host DNA
with primers L14841 and H15149 that were designed to amplify fragments with ~390 bp
of the mitochondrial cytb gene from a wide range of animals, including mammals, birds,
amphibians, reptiles, and fish [24]. Amplified fragments were sequenced directly using the
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corresponding flanking primers. Obtained sequences were compared to other sequences
deposited in the GenBank® database (www.ncbi.nlm.nih.gov/blast/Blast.cgi accessed
on 19 March 2021). The best close match (BCM) algorithm was used to identify the best
barcode matches of a query, and the species name of that barcode was assigned to the
query if the barcode was sufficiently similar [25]. Positive identification and host species
assignment were made when sequences presented a match of >97%.

Alternatively, for some specimens, a fragment with ~650 bp from the mitochondrial
cytochrome c oxidase (coi) gene was amplified by two methods: (i) using the primers
VF1_t1 (5′-TGT AAA ACG ACG GCC AGT TCT CAA CCA ACC ACA AAG ACA TTG
G-3′) [26] and VR1_t1 (5′-AGG AAA CAG CTA TGA CTA GAC TTC TGG GTG GCC
AAA GAA TCA-3′) [27] with PCR conditions and cycling from Kumar et al. [28], and (ii)
using the universal primers LCO 1490 and HCO 2198 [29] and PCR protocol based on
Ruiz et al. [30].

3. Results

This study detected five samples that were positive for Polychromophilus sp. (sample
IDs: 116, 198, 335, 650, and 69642), confirming the presence of parasites of this genus in
Brazilian bats. The percentage of positives was 1.2% (5/406) of the number of samples
analyzed. Accordingly, the sequences of cytb and coi genes from the positive host samples
were from Myotis ruber (116), Myotis riparius (198, 335, and 69642), and Eptesicus diminutus
(650), all bats belonging to the Vespertilionidae family, collected in four municipalities in
the State of Paraná (Araucaria, Cruz Machado, Curitiba, and Pato Branco) (Figure 2). The
two samples obtained in Curitiba city were probably from an urban area since Curitiba is
the most populous municipality of Paraná state and the eighth in the country.
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Figure 2. Distribution of the positive samples of Polychromophilus sp. isolates from Paraná state, Brazil.

The nucleic acid polymorphism in mitochondrial cytb sequences (1116 bp) of Polychro-
mophilus sp. isolates from Brazil compared to the best match sequence from GenBank®

(#LN483038 of Myotis nigricans from Panama with 595 bp) is shown in Table 1. Thirteen
sites were polymorphic among Brazilian sequences (Table 1). The Panamanian sequence,
the only available one obtained from bats from the American continent, showed two nucleic
acid substitutions found only in this isolate (gray columns) (Table 1).

www.ncbi.nlm.nih.gov/blast/Blast.cgi
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Table 1. Nucleic acid polymorphism in mitochondrial cytochrome b gene (cytb) sequences of Polychromophilus sp. isolates
from Brazil (116, 198, 335, 650, and 69642) and Panama (MYOPA01).

Isolate 219 247 261 273 339 405 512 789 792 810 811 853 885 945 1086

116 C T A T T T T T C C T C A T A

198 C T A T G T T T T C T C A T G

335 C T A T G T T T T C T C A T G

650 T T C A A C T C T T C T T T A

69642 C T A T T T T T C C T C A C A

MYOPA01 C C A T T T G

MYOPA01 has 595 bp and thus, there was no overlap for the nucleotides from 789–1086 with the Brazilian sequences (1116 bp). Gray
columns show two nucleic acid substitutions found only in this isolate.

The sequence obtained from bat 650 was the most divergent, with 98–99% of identity
with the others (with 11 or 12 nucleic acid substitutions) (Table 2). The Panamanian
sequence presented two to eight nucleic acid substitutions compared to Brazilian sequences
(98–99% of identity) (Table 2).

Table 2. Similarity percentage between the mitochondrial cytochrome b gene (cytb) sequences of
Polychromophilus sp. found in different bats from Brazil and Panama (MYOPA01).

Bat Species 116 198 335 650 69642 MYOPA01

116 Myotis ruber 1116 99% 99% 99% 99% 99%

198 Myotis
riparius 1113 1116 100% 99% 99% 99%

335 Myotis
riparius 1113 1116 1116 99% 99% 99%

650 Eptesicus
diminutus 1105 1105 1105 1116 98% 98%

69642 Myotis
riparius 1115 1112 1112 1104 1116 99%

MYOPA01 Myotis
nigricans 592 591 591 587 592 595

The phylogenetic tree in Figure 3 was generated with reference sequences found in
the Genbank® database, covering different haemosporidian genera obtained from different
hosts (Table A1, Appendix A). The Polychromophilus sequences found in this study and all
sequences of the genus available in the Genbank® database (Table A2, Appendix A) were
included. The clade of the genus Polychromophilus is shown in evidence, and the remaining
haemosporidian from other genera were collapsed.

Phylogenetic analysis based on cytb did not produce conflict in any of the main nodes.
All the main genera and subgenera were recovered and represented in the phylogenetic
tree by separate monophyletic clades. The results show the existence of four clades within
the Haemosporida order analyzed here. Phylogeny also showed Polychromophilus as a
sister clade of a group that contains Plasmodium species of ungulates, but with a distant
relationship between Plasmodium and Hepatocystis from other mammals, such as primates
and rodents.
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Figure 3. Bayesian phylogeny based on the mitochondrial cytochrome b gene (cytb) from Polychromophilus spp. of the
sequences identified in the present study (1116 bp) and reference sequences listed in Tables A1 and A2 in Appendix A.
* Sequence HM055583 has also been reported in P. murinus from Eptesicus serotinus, Nyctalus noctule, and Myotis myotis
(Table A2, Appendix A). Eimeria spp. were used as an external group. The support values of the nodes (in percentage)
indicate posterior probabilities. The red branches highlight the haemosporidian sequences found in mammals. The yellow
branches highlight the haemosporidian sequences found in birds. The green branches highlight the haemosporidian
sequences found in reptiles. The sequences found in the present study are highlighted in bold. The remaining reference
sequences are collapsed to highlight the branch of the Polychromophilus genus.

All Polychromophilus sequences from bats of different parts of the world were grouped
into a monophyletic clade (posterior probability of 100) composed of four subclades, with
all Polychromophilus found in Brazilian bats segregated in only one of them. The first distinct
subclade comprised all sequences of P. melanipherus from Miniopterus bat hosts, and the
second subclade exclusively included sequences of Polychromophilus from vespertilionids
(including Brazilian ones), confirming a clear separation of parasites from miniopterid and
vespertilionid hosts. The other subclade that was separated contained the Polychromophilus
sequences from Scotophilus kuhlii from Thailand (MT750305-MT750309). Two samples of
parasites of Pipistrellus aff. grandidieri and Laephotis capensis from Guinea (KF159700 and
KF159714) formed a separate group.

The subclade of Polychromophilus from vespertilionids was divided into two branches:
one contained sequences of P. murinus from bats in Europe (Switzerland, Bulgaria), Mada-
gascar, and Thailand, and a sequence of Eptesicus diminutus (650) from Brazil, and the other
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clade with M. nigricans from Panama and all the other Brazilian sequences isolated from
the Myotis species.

4. Discussion

Based on the results presented herein, although the total number of bat families tested
is unknown, Polychromophilus infection in Brazilian bats appears to be limited to just one
family (Vespertilionidae). This finding is in accordance with the only previous report
of Polychromophilus from Brazil, described as P. deanei, found in Myotis nigricans, also a
Vespertilionidae bat [18,19].

According to one study, Paraná state has poor fauna regarding the number of bat
species, with only 53 species from five families recorded [31]. The Phyllostomidae fam-
ily has the highest species richness (25; 47% of the total), followed by Molossidae (13;
24%), Vespertilionidae (12; 22%), Noctilionidae (2; 4%), and Emballonuridae (1; 2.5%) [31].
Miretzki also showed the occurrence of only 55% of the species of the Atlantic Forest
biome and the relative predominance of vespertilionids and molossids over phyllostomids.
Herein, we analyzed samples obtained from much of the state’s area, with great sampling
opportunities for other families. However, we were unable to find Polychromophilus in bat
species that were not vespertilionids, suggesting that this parasite may be restricted to this
group of bats in Brazil.

Regarding the frequency, we found the lowest positivity rate reported to date, although
the total number of samples analyzed herein is one of the highest among published studies
(Table 3). This could be related to the sample type analyzed in this study. This was the first
time that Polychromophilus DNA was obtained from brain tissue, probably from parasites
in the blood vessels that irrigate the organ. Thus, the direct comparison of the prevalence
data with published studies that used blood samples is impaired.

Table 3. Occurrence of Polychromophilus sp. in this study and previous studies worldwide.

Country or Continent Analyzed Samples Positive Samples
(Positivity) Positive Host Species Reference

Africa 1 505 56 (11%)

Miniopterus africanus,
M. fraterculus, M. minor,
M. natalensis, M. rufus,

Myotis tricolor

[17]

Australia 2 85 47 (55%) Miniopterus orianae [32]

Brazil 3 406 5 (1.2%)
Eptesicus diminutus,
Myotis ruber, Myotis

riparius
This study

Europe 4 310 231 (74.5%) Miniopterus schreibersii [33]

Gabon 164 5 (3%) Miniopterus inflatus [34]

Gabon 92 2 (2%) Miniopterus minor [35]

Guinea 274 5 (2%)

Miniopterus villiersi,
Neoromicia capensis,

Pipistrellus aff.
grandidieri

[15]

Madagascar 947 130 (13.5%)

Paratriaenops furculus,
Miniopterus aelleni, M.
manavi, M. gleni, M.

grifthsi, M. griveaudi, M.
mahafaliensis, M. majori,

M. sororculus, Myotis
goudoti

[36]
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Table 3. Cont.

Country or Continent Analyzed Samples Positive Samples
(Positivity) Positive Host Species Reference

Madagascar 222 27 (12.2%)

Miniopterus egeri, M.
griveaudi, M.

ambohitrensis, M. gleni,
Scotophilus robustus,

Myotis goudoti

[37]

Switzerland 207 70 (34%)
Myotis daubentonii, M.

myotis, Nyctalus noctula,
Eptesicus serotinus

[38]

Thailand 44 5 (11%) Scotophilus kuhlii [39]

Thailand 271 13 (4.8%) Myotis siligorensis,
Taphozous melanopogon [40]

1 Kenya, Malawi, Mozambique, Tanzania, and Uganda. 2 Detection of haemosporidians was performed by microscopy in all samples (274),
but the molecular analysis was performed on only part of them (85 samples). 3 Detection of Polychromophilus was performed in samples of
brain tissue. 4 Croatia, Portugal, Spain, Switzerland, Italy, Slovakia, and France.

Three different Brazilian bats species were found to be positive for Polychromophilus
sp.: two Myotis species (M. ruber and M. riparius) and one species from the Eptesicus
genus (E. diminutus). There are reports of Myotis species infections in Africa (M. tricolor in
Kenya and M. goudoti in Madagascar) [17,36,37], Europe (M. daubentonii and M. myotis in
Switzerland) [38], and Asia (M. siligorensis in Thailand) [40]. However, the only record of
Polychromophilus infection in Eptesicus comes from Europe (E. serotinus in Switzerland) [38].

Myotis riparius is present in Honduras, Uruguay, Bolivia, Argentina, Paraguay, Trinidad,
and Brazil [41], including the state of Paraná [31,42,43]. Myotis ruber is an endangered
species under the category of “vulnerable” according to the Brazilian Institute of Environ-
ment and Renewable Natural Resources—IBAMA [44], and under the category of “near
threatened” at a global level according to IUCN [45]. It is distributed across Argentina,
Uruguay, Paraguay [40,46–48], and southeastern Brazil, including Paraná [49].

It is important to note that in our molecular identification of the host species using
cytb and sequence comparisons, Eptesicus furinalis was the species with the best close match
with the sequence obtained from bat 650. However, the percentage of identity was low
(89%) compared to sequences available in the GenBank® database, making it impossible
to identify the species. Thus, alternatively, we used the coi gene and the BOLD database
(https://www.boldsystems.org/ (accessed on 31 March 2021), finding 98% of identity
with an Eptesicus diminutus sequence, a reliable value for the species identification using
the BCM method. Eptesicus diminutus has a distribution in the north and east regions
of Paraná state [31]. It is from the Vespertilionidae family, and it is absent from the
GenBank® database, which explains the first finding. Thus, we considered specimen 650 to
be Eptesicus diminutus.

Our phylogenetic analysis showed a strongly defined clade represented by Plasmodium
infecting rodents and primate hosts, which also included Hepatocystis isolated from bats.
Similar data were obtained by other authors [38,50]. Haemoproteus and Leucocytozoon species
were grouped separately in individual clades, as previously shown [51,52].

Regarding Polychromophilus sequences, a similar topology in the phylogenetic tree
was obtained by Chumnandee et al. [39], where they grouped into a monophyletic clade
with a clear separation of parasites from miniopterid and vespertilionid hosts. Four
Brazilian sequences (GenBank® MW984519, MW984520, MW984522 from Polychromophilus
sp. isolated of Myotis riparius, and MW984518 from Polychromophilus sp. isolated of
Myotis ruber) were positioned close to the sequence of Polychromophilus sp. of bats of
the species Myotis nigricans, Vespertilionidae family, from the Latin American region
(Panama) (GenBank® #LN483038) [20]. One Brazilian sequence (GenBank® #MW984521,
from Polychromophilus isolated from Eptesicus diminutus) was grouped with all P. murinus

https://www.boldsystems.org/
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sequences in a sister clade. The latter, likely P. murinus, presented 1% divergence in the cytb
sequence compared to the other Brazilian or Panamanian sequences, and was obtained
from a different genus of bats. Thus, the possibility of most Brazilian sequences being a
different Polychromophilus species must be investigated.

The present study provides the first molecular description of Polychromophilus par-
asites in Myotis ruber, Myotis riparius, and Eptesicus diminutus from Brazil and confirms
the presence of this parasite 50 years after its first and only report in Brazilian territory.
Moreover, our results suggest the occurrence of two distinct Polychromophilus species in-
fecting two different genera of hosts, improving the current knowledge on blood parasites
infecting Brazilian bats. However, it is crucial to add additional molecular markers to
the phylogenetic analysis for an in-depth investigation. A three-genome phylogenetic
analysis for robust haemosporidian phylogenies has been recommended [53] and must be
properly included as part of a follow-up paper. Moreover, additional studies including
morphological observations of these parasites combined with molecular data are needed to
resolve its taxonomy. Furthermore, due to the great Brazilian extensions and the immense
diversity of species and biomes, new bat populations should be investigated to provide a
complete portrait of the biology of host–parasite interactions.
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Appendix A

Table A1. Mitochondrial cytochrome b gene (cytb) sequences of the parasite used as references for
phylogenetic analyses and their respective accession numbers in the Genbank® database.

GenBank® Accession Number Parasite Species Host

HQ173882 Eimeria magna Rabbit

HQ173892 Eimeria vejdovskyi Rabbit

AY099045 Haemoproteus majoris Bird

HM222472 Haemoproteus sp. Bird

KT367832, KT367833, KT367822,
KT367828 Haemosporida sp. Antelope

KT367830, KT367819, KT367837 Haemosporida sp. Antelope

FJ168565 Hepatocystis sp. Bat

JQ070951, JQ070956 Hepatocystis sp. Monkey

AY099063 Leucocytozoon dubreuli Bird

NC_012450, FJ168563 Leucocytozoon majoris Bird

KF159690, KF159720,
MK098843-MK098847 Nycteria sp. Bat

GQ141581, GQ141585, KT367845,
KM598212 Parahaemoproteus sp. Bird

NC_012447, FJ168561 Parahaemoproteus vireonis Bird

HM235081 Plasmodium adleri Gorilla

AY099054, HQ712051 Plasmodium atheruri Rodent

AY099055 Plasmodium azurophilum Lizard

KP875474 Plasmodium billcollinsi Chimpanzee

HM235065 Plasmodium blacklocki Gorilla

KF159674 Plasmodium cyclopsi Bat

AB444126 Plasmodium cynomolgi Monkey

FJ895307 Plasmodium gaboni Chimpanzee

AF069612 Plasmodium gallinaceum Bird

AY099053 Plasmodium giganteum Lizard

JF923751 Plasmodium gonderi Mandrill

JQ345504 Plasmodium knowlesi Human

HM000110 Plasmodium malariae Chimpanzee

GU723548 Plasmodium ovale Human

JF923762 Plasmodium praefalciparum Monkey

KP875479 Plasmodium reichenowi Chimpanzee

AY733090 Plasmodium relictum Bird

HM222485 Plasmodium sp. Bird

JF923753 Plasmodium sp. Mandrill

KJ700853, KJ700854 Plasmodium vinckei Rodent

KF591834 Plasmodium vivax Human

KF159671 Plasmodium voltaicum Bat

DQ414658 Plasmodium yoelii killicki Rodent
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Table A2. Genbank® accession numbers of Polychromophilus mitochondrial cytochrome b gene (cytb) sequences used as a
reference for phylogenetic analyses and sequences found in this study.

GenBank Accession Number Parasite Species Host Origin

KU318045 P. melanipherus Anopheles marshallii Gabon

HM055583 P. murinus Myotis daubentonii Switzerland

HM055583 P. murinus Eptesicus serotinus Switzerland

HM055583 P. murinus Nyctalus noctula Switzerland

HM055583 P. murinus Myotis myotis Switzerland

HM055584–HM055589 P. murinus Myotis daubentonii Switzerland

MW984521 Polychromophilus sp. Eptesicus diminutus Brazil (this study)

KT750375 Polychromophilus sp. Miniopterus africanus Kenya

MH744509–MH744511,
MH744518, MH744521 P. melanipherus Miniopterus gleni Madagascar

MH744506, MH744519 P. melanipherus Miniopterus griffithsi Madagascar

MH744514–MH744516 P. melanipherus Miniopterus griveaudi Madagascar

MH744508,
MH744522–MH744525 P. melanipherus Miniopterus griveaudi Madagascar

JQ995284–JQ995288 Polychromophilus sp. Miniopterus inflatus Gabon

MH744504, MH744505 P. melanipherus Miniopterus mahafaliensis Madagascar

MH744512, MH744526 P. melanipherus Miniopterus manavi Madagascar

KT750430 Polychromophilus sp. Miniopterus minor Tanzania

MK098848, MK098849 Polychromophilus sp. Miniopterus minor Gabon

MW007677 P. melanipherus Miniopterus natalensis South Africa

KT750376-KT750382,
KT750401, KT750402 Polychromophilus sp. Miniopterus natalensis Kenya

KT750406, KT750408,
KT750409 Polychromophilus sp. Miniopterus natalensis Kenya

MK088162–MK088168 P. melanipherus Miniopterus orianae Australia

KT750383-KT750386,
KT750415, KT750418 Polychromophilus sp. Miniopterus rufus Kenya

JN990708–JN990711 P. melanipherus Miniopterus schreibersii Switzerland

KJ131270–KJ131277 P. melanipherus Miniopterus schreibersii Southern and Central Europe

MW007689 P. melanipherus Miniopterus schreibersii Spain

KT750389 Polychromophilus sp. Miniopterus sp. Tanzania

KT750387 Polychromophilus sp. Miniopterus sp. Kenya

KF159675, KF159681,
KF159699 Polychromophilus sp. Miniopterus villiersi Guinea

JN990712, JN990713 P. murinus Myotis daubentonii Switzerland

MH744532–MH744536 P. murinus Myotis goudoti Madagascar

LN483038 Polychromophilus sp. Myotis nigricans Panamá

MW984519, MW984520,
MW984522 Polychromophilus sp. Myotis riparius Brazil (this study)

MW984518 Polychromophilus sp. Myotis ruber Brazil (this study)
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Table A2. Cont.

GenBank Accession Number Parasite Species Host Origin

MT136168 P. murinus Myotis siligorensis Thailand

KF159700 Polychromophilus sp. Neoromicia capensis Guinea

MW007685 P. melanipherus Nycteribia schmidlii Spain

MW007680, MW007681 P. melanipherus Nycteribia schmidlii Hungary

MW007682 P. melanipherus Nycteribia schmidlii Italy

MW007671–MW007674,
MW007676 P. melanipherus Nycteribia schmidlii scotti South Africa

KU182361–KU182367 P. melanipherus Nycteribia schmidlii scotti Gabon

MH744527 P. melanipherus Nycteribia stylidiopsis Madagascar

MH744520 P. melanipherus Paratriaenops furculus Madagascar

KU182368 P. melanipherus Penicillidia fulvida Gabon

MH744528–MH744531 P. melanipherus Penicillidia leptothrinax Madagascar

MH744537 P. murinus Penicillidia sp. Madagascar

KF159714 Polychromophilus sp. Pipistrellus aff. grandidieri Guinea

LN483036 P. murinus Rhinolophus sp. Bulgaria

MT750305–MT750309 Polychromophilus sp. Scotophilus kuhlii Thailand

MT136167 P. melanipherus Taphozous melanopogon Thailand
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