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PURPOSE. To apply computational techniques to wide-angle swept-source optical coherence
tomography (SS-OCT) images to identify novel, glaucoma-related structural features and
improve detection of glaucoma and prediction of future glaucomatous progression.

METHODS. Wide-angle SS-OCT, OCT circumpapillary retinal nerve fiber layer (cpRNFL) circle
scans spectral-domain (SD)-OCT, standard automated perimetry (SAP), and frequency
doubling technology (FDT) visual field tests were completed every 3 months for 2 years
from a cohort of 28 healthy participants (56 eyes) and 93 glaucoma participants (179 eyes).
RNFL thickness maps were extracted from segmented SS-OCT images and an unsupervised
machine learning approach based on principal component analysis (PCA) was used to identify
novel structural features. Area under the receiver operating characteristic curve (AUC) was
used to assess diagnostic accuracy of RNFL PCA for detecting glaucoma and progression
compared to SAP, FDT, and cpRNFL measures.

RESULTS. The RNFL PCA features were significantly associated with mean deviation (MD) in
both SAP (R2 ¼ 0.49, P < 0.0001) and FDT visual field testing (R2 ¼ 0.48, P < 0.0001), and
with mean circumpapillary RNFL thickness (cpRNFLt) from SD-OCT (R2 ¼ 0.58, P < 0.0001).
The identified features outperformed each of these measures in detecting glaucoma with an
AUC of 0.95 for RNFL PCA compared to an 0.90 for mean cpRNFLt (P ¼ 0.09), 0.86 for SAP
MD (P ¼ 0.034), and 0.83 for FDT MD (P ¼ 0.021). Accuracy in predicting progression was
also significantly higher for RNFL PCA compared to SAP MD, FDT MD, and mean cpRNFLt (P
¼ 0.046, P ¼ 0.007, and P ¼ 0.044, respectively).

CONCLUSIONS. A computational approach can identify structural features that improve
glaucoma detection and progression prediction.
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With worsening of glaucoma damage, there are character-
istic changes to the retinal nerve fiber layer (RNFL) in

both the optic nerve head (ONH) and macula. For clinicians to
detect such changes early, it is important to have sensitive and
specific structural measurements.

Over the past decade, standard clinical management of
glaucoma has incorporated imaging using spectral domain
optical coherence tomography (SD-OCT) to assess both the
ONH and macula. This imaging technology allows for direct
observation of 3D retinal structure and objective, quantitative
measurements of these regions. SD-OCT measurements have
been studied extensively and shown to reliably detect and
monitor glaucoma.1–3 ONH and peripapillary measurements
including global and sectoral RNFL thickness (Hammel N, et al.
IOVS 2015;56:ARVO E-Abstract 4568).4 minimum rim width,5–7

and lamina depth8,9 have been identified as predictors that can
aid early detection and monitoring. Structural changes in the
macula region, including thinning of the RNFL as well as
ganglion cell and inner plexiform layers, have been associated
with glaucomatous damage.10,11

More recently, swept source (SS)-OCT has become available
as an alternative to standard SD-OCT. This imaging technique
has a fast acquisition speed (~100,000 A-scans per second) and
can capture wide-angle scans that include both the ONH and
macula regions.12,13 Previous work has shown SS-OCT mea-
surements of RNFL thickness in both the ONH and macula
regions are comparable to measurements derived from SD-OCT
for diagnosing glaucoma.14 Unlike SD-OCT, these wide-angle
images provide an opportunity to identify structural changes to
ONH and macula regions simultaneously. These complex
changes may not be well described by the common measure-
ments that include global and sectoral averages of RNFL and
ganglion cell layer (GCL) thickness. These standard thickness
measurements attempt to represent the high-dimensional,
complex RNFL structure using only a limited number of
averaged thickness values. Applying data-driven techniques
that learn a representation of RNFL structure may reveal latent
features useful in characterizing and predicting disease. One
such approach employs unsupervised machine learning to
identify patterns in SS-OCT measurements of RNFL thickness.
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Broadly, unsupervised machine learning techniques can
identify latent structure within high-dimensional data.15

Previous work has applied unsupervised techniques to
identity patterns in visual field data that are related to glaucoma
and glaucoma progression.16–18 A similar unsupervised ap-
proach has also been applied to identify ONH structural
features using stereo fundus photographs.19 Here, we adapt
and extend these approaches to identify novel RNFL structural
features from a large SS-OCT dataset. These features can then
be evaluated based on their ability to predict glaucomatous
progression.

The aim of this report is to apply computational techniques
to a large set of wide-angle SS-OCT images to identify novel,
glaucoma-related structural features to improve detection of
primary open angle glaucoma (POAG) and prediction of
glaucomatous progression.

METHODS

Participant Cohort

Participants included in this retrospective analysis of structural
and functional data were originally were originally recruited
from an existing cohort enrolled in the Diagnostic Innovations
in Glaucoma (DIGS). DIGS is a longitudinal study designed to
investigate structural and functional changes in glaucoma.
Recruitment and methodology was approved by the University
of California, San Diego (UCSD) Institutional Review Board.
Recruitment and methodologies adhered to the tenets of the
Declaration of Helsinki and were approved by the UCSD
Institutional Review Board.

For inclusion in the cohort, participants were required to
have no history of secondary glaucoma or other ocular
diseases, intraocular surgery, stroke, Alzheimer, dementia, or
life-threatening diseases. Participants were also required to
have a baseline corrected visual acuity of 20/40 or better and
less than 5.0 diopters spherical and 3.0 cylindrical refraction.
At enrollment, measurements of intraocular pressure (IOP),
central corneal thickness (CCT), and drainage angle were
collected and standard automated perimetry (SAP) was
performed. Participant eyes were examined using stereoscopic
fundoscopy and simultaneous stereo photographs (Nidek/
Topcon, Tokyo, Japan) were collected. Photographs were
reviewed by two independent, masked graders and assigned
grades of normal or glaucomatous. In the case of disagreement,
a third experienced grader was consulted.

Participants were assigned to the glaucoma group if their
photos indicated glaucomatous damage as judged by at least
two experienced graders. Healthy participants were required
to have normal optic disc photographs as well as an IOP <22
mm Hg and repeatable, normal SAP test results. RNFL
measurements from OCT were not used to assign participants
into the healthy or glaucoma groups. The total cohort
consisted of 179 eyes of 93 glaucomatous participants and
56 eyes of 28 heathy participants. Data was collected at the
baseline visit and at follow-up visits conducted every 3 months
for a period of 2 years. See Table 1 for a summary of data
collected at baseline and follow-up visits.

Visual Field Testing

Visual field testing was performed at all visits using both SAP
and frequency doubling technology (FDT) procedures. SAP
testing was performed using the Humphrey Field Analyzer II
(Carl Zeiss Meditec, Dubin, CA, USA) standard 24-2 testing
pattern using the Swedish interactive thresholding algorithm.
FDT testing was performed using the Humphrey Matrix (Carl-

Zeiss Meditec). Tests that had more than 33% fixation losses,
33% false negative errors, or 15% false positive errors were
exclude. Mean deviation (MD) and pattern standard deviation
(PSD) were computed at baseline and each follow-up visit for
subsequent analysis. Visual fields were processed and evaluat-
ed for quality according to standard protocols by the UCSD
Visual Field Assessment Center.20

OCT Imaging

At baseline and each follow-up visit, participants were imaged
with SD-OCT (Spectralis; Heidelberg Engineering, Inc., Heidel-
berg, Germany) and deep range imaging SS-OCT (Triton; Topcon
Medical Systems, Inc., Tokyo, Japan). Spectralis SD-OCT scans
were acquired using the high resolution RNFL circle scan
protocol that captured 1536 A-scans around the clinically
standard 3.45 mm circle centered on the ONH.21 Images were
processed and segmentation was performed using the built-in
software (Spectralis version 5.4.7; Heidelberg Engineering, Inc.).
The mean circumpapillary RNFL thickness (cpRNFLt) was
automatically computed for each scan by averaging the
segmented RNFL thickness around the circle scan. SS-OCT
imaging was performed using a wide-angle protocol that
captured a 12.0 3 9.0 mm scan including both the ONH and
foveal regions. The RNFL thickness across this region (RNFL
thickness map) was extracted for each scan using the built-in
segmentation software (version 1.57). In both cases, scans were
manually reviewed and those with imaging artifact, misalign-
ment of the ONH and/or fovea, or segmentation errors were
excluded by experienced graders following standard Imaging
Data Evaluation and Analysis (IDEA) reading center protocols.22

RNFL Map Feature Identification

Using the entire set of RNFL thickness maps extracted from all
participant SS-OCT scans, structural RNFL features were
identified using principal component analysis (PCA). PCA is a
widely used technique for dimensionality reduction that takes
advantage of correlations within image data to generate a new
set of orthogonal features that explain major modes of variation
observed within the input data. Each RNFL thickness map can
then be represented as a weighted average of these new
features with the weight magnitude indication the amount
each feature contributes to a given RNFL thickness map.
Previously, this approach has been used to identify features of
ONH structure and predict glaucomatous damage.19

Prior to application of PCA, all SS-OCT scans from left eyes
were flipped to right eye orientation. Scans were then
registered within and across eyes. Across eyes, alignment
was performed manually by a marking the location of the fovea
and ONH in the baseline image of each eye. All baseline images
were translated, rotated, and scaled so that fovea and ONH
locations were aligned to an arbitrarily selected reference scan.
Within each eye, follow-up scans were automatically aligned to
its corresponding baseline scan. Automatic image registration
was performed by applying an OpenCV implementation of the
enhanced correlation coefficient algorithm to the thickness
maps.23,24 Finally, RNFL thickness map values were standard-
ized across scans so that each pixel location had a zero mean
and unit variance across all thickness maps.

Association Testing

Evaluation of the RNFL PCA features was performed first by
testing for associations with other glaucoma-related measure-
ments. These included both quantitative and categorical
measurements collected at the baseline visit. Testing was
performed to identify significant associations between RNFL
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PCA features and demographic variables (disease status and
sex), functional measurements (SAP and FDT MD/PSD),
structural measurements (mean cpRNFLt), and other clinical
variables (IOP, CCT, visual acuity). For quantitative measure-
ments, univariate linear regression models with RNFL PCA
features as predictor variables were used. A significant
regression slope between an RNFL PCA feature and another
measurement indicated a statistically significant association.
For categorical measurements, single-factor ANOVA tests were
used to identify significant differences in RNFL PCA features
across categories. Because of the significant difference in age
between the glaucoma and healthy group (see Table 1), age
was controlled for by including it as a covariate in all models.
To determine significance, a P value threshold of 0.05 was
selected and Bonferroni correction was used to account for
multiple hypothesis testing.

Glaucoma Detection

The accuracy of RNFL PCA features in detecting glaucoma was
compared to the accuracy of standard clinical measurements.
Specifically, RNFL PCA features were used to distinguish
thickness maps of healthy eyes from those of glaucoma eyes.
A logistic regression model predicting the probability of a
thickness map coming from a glaucoma eye using the first 10
RNFL PCA features was constructed. This prediction was
compared to predictions based on mean cpRNFLt from SD-
OCT circle scans, mean deviation from 24-2 SAP (SAP MD), and
mean deviation from FDT (FDT MD) captured within 30 days of
the thickness map. Quantitative comparisons were performed
using area under receiver operating characteristic (AUC). In
building the predictive models, a participant-based ‘‘leave-one-
out’’ approach was adopted to ensure separation of the training
and test sets. Specifically, all scans from a participant were
removed from the data set before PCA features and prediction
models were trained on the rest of the data. The resulting model
was then applied to the scans from the excluded participant.
This was repeated for each participant to generate predictions
for all scans. AUC values were estimated using a bootstrapping
method that controlled for age.25

Predicting Progression

Glaucoma eyes were classified into progressing or stable based
on longitudinal measurements of mean cpRNFLt, SAP MD, and

FDT MD collected during the 2-year follow-up period. This
classification was performed based on criteria defined using a
mixed effects modeling approach described previously.26

Mixed effects models are commonly used to help account for
a lack of independence in a dataset. This can be a result of
having repeated data points from the same individual
(longitudinal measurements) or collecting data from related
sources (measurements from both eyes of each participant). In
this analysis, a separate mixed effects model was constructed
for each measurement (mean cpRNFLt, SAP MD, FDT MD) that
included per participant and per eye effects.27 A distribution of
rates of change for each measurement was then computed
using only the longitudinal data collected from healthy eyes.
For a given measurement, the distribution of healthy rates was
used to define criteria to classify glaucoma eyes into
‘‘progressing’’ and ‘‘stable’’ groups. Specifically, for each
measurement, the rate of change of a glaucoma eye was
estimated using linear regression and if that rate was faster than
the 95th percentile of healthy eyes and significantly (P < 0.05)
different than zero, it was considered a progressing eye. If the
rate did not meet these criteria, the eye was considered stable.
This provided a ground truth set of progressing and stable
glaucoma eyes for each measurement (mean cpRNFLt, SAP MD,
and FDT MD) that was used to evaluate the ability of RNFL PCA
features to predict progression.

RNFL PCA features and standard clinical measurements
were then evaluated based on their ability to distinguish
progressing from stable glaucoma eyes. These evaluations were
performed using only baseline data. For progression defined
using each clinical measurement (mean cpRNFLt, SAP MD, and
FDT MD), the AUC of baseline measurements in predicting
progression was determined. Logistic regression models were
used to compare the predictive ability of the first 10 RNFL PCA
features and standard clinical measures to predict progression.
As in the case of glaucoma detection, comparisons were
performed using a leave-one-out strategy and age was
controlled for when computing AUC.

RESULTS

RNFL PCA Features

Longitudinal RNFL thickness maps were extracted from wide-
angle SS-OCT volumes of the 179 glaucomatous and 56 healthy

TABLE 1. Summary of Baseline Characteristics and Follow-Up Data Collected

Measurement Healthy Glaucomatous P Value

Eyes, n 56 179

Baseline age, y 47.2 (42.7 to 51.8) 69.6 (67.2 to 71.9) <0.0001

Sex, % female 67.9 48.0 0.015

SAP 24–2

Baseline MD, dB �0.3 (�0.7 to 0.3) �3.8 (�5.2 to �2.7) <0.0001

Follow-up, y 1.6 (1.4 to 1.8) 1.7 (1.6 to 1.8) 0.26

Tests, n 6.9 (6.3 to 7.5) 6.4 (6.0 to 6.8) 0.18

FDT

Baseline MD, dB 0.02 (�1.0 to 1.5) �5.5 (�7.0 to �4.2) <0.0001

Follow-up, y 1.6 (1.4 to 1.7) 1.6 (1.5 to 1.7) 0.81

Tests, n 6.5 (5.8 to 7.2) 6.1 (5.7 to 6.5) 0.30

SD-OCT circle scan

Baseline mean cpRNFLt 102.0 (97.5 to 106.4) 73.4 (69.1 to 77.3) <0.0001

Follow-up, y 1.5 (1.4 to 1.6) 1.7 (1.6 to 1.8) 0.004

Tests, n 6.7 (6.1 to 7.3) 6.8 (6.2 to 7.3) 0.94

SS-OCT

Follow-up, y 1.8 (1.7 to 2.0) 2.1 (2.0 to 2.2) 0.001

Tests, n 8.2 (7.7 to 8.7) 7.5 (7.0 to 8.1) 0.08
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eyes considered here. Figure 1 shows a set of RNFL en face and
thickness maps at one point in time after registration for an
example participant.

The entire set of registered thickness maps were used as
input to identify RNFL PCA features. These features are shown
in Figure 2 along with the amount of variance explained by
each. The choice of number of PCs to retain can be arbitrary.
Here, 10 PCs were retained and used in all further analyses
based on the amount of variance explained. These first 10
features explained ~75% of the observed variance and
additional PCs did little to increase predictive power. Each
PC after 10 explained ~1% or less of the variance in RNFL
thickness map data. To aid in qualitative assessment of these

features, Figure 3 illustrates the areas of greatest change in
RNFL thickness associated with three examples of RNFL PCA

features. RNFL PCA feature 2 shows clear change in the
superior cpRNFL and macular area. RNFL PCA feature 3 is
associated with RNFL thinning in an inferior arcuate pattern.

RNFL PCA feature 4 indicates similar RNFL thinning but in a
superior arcuate pattern.

Feature Associations

After Bonferroni correction, significant associations were
identified between structure (as measured by RNFL PCA
features) and a number of clinical measurements. Specifically,

FIGURE 1. Example (A) en face and (B) RNFL thickness map images extracted longitudinally from a single glaucoma eye. These thickness maps
were computed as the difference in depth between the segmented inner limiting membrane and nerve fiber layer. They served as input to the PCA-
based approach to identify RNFL structural features.

FIGURE 2. (A) Illustrations of the first 10 RNFL PCA features that were used for the analyses described here. Bright regions indicate areas where the
feature affects RNFL thickness. (B) The proportion of variance in RNFL thickness maps explained by each feature. Cumulatively, the first 10
explained 75% of the variance.
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multivariate linear regression models identified significant

associations with SAP MD (R2 ¼ 0.49, P < 0.0001) and PSD

(R2¼ 0.52, P < 0.0001), FDT MD (R2¼ 0.48, P < 0.0001) and

PSD (R2¼ 0.55, P < 0.0001), and mean cpRNFLt (R2¼ 0.58, P

< 0.0001). A multivariate logistic regression model identified

significant associations with glaucoma status (P < 0.0001)

were found. Table 2 summarizes these significant associations

by RNFL PCA feature. Table 2 summarizes the significant

associations between RNFL PCA features and clinical measure-
ments. Figure 4 illustrates in scatterplots that mean cpRNFLt,
SAP MD, and FDT MD values can be predicted from RNFL PCA
features with R

2 values of 58%, 49%, and 48%, respectively.

Glaucoma Detection

The ability of the RNFL PCA features to detect glaucoma was
compared to mean cpRNFLt, SAP MD, and FDT MD was
evaluated using AUC (Fig. 5). The RNFL PCA features achieved
the highest AUC of 0.95, followed by mean cpRNFLt (AUC ¼
0.90), SAP MD (AUC¼ 0.86), and FDT MD (AUC¼ 0.83). RNFL
PCA feature performance was significantly higher than both
SAP MD (P ¼ 0.034) and FDT MD (P ¼ 0.021). Table 3
summarizes glaucoma detection performance.

Predicting Progression

Progression was defined using a mixed-model based approach
to identify glaucoma eyes that were changing faster than the
95th percentile of healthy eyes. Mean cpRNFLt resulted in 22
out of 179 (12.3%) of glaucoma eyes defined as progressing
during the follow-up period. SAP MD resulted in detection of
16 (8.9%) progressing glaucoma eyes and FDT MD resulted in
13 (7.3%) progressing glaucoma eyes.

Clinical measurements and RNFL PCA features were
evaluated based on their ability to predict progression using
only baseline data. RNFL PCA features outperformed mean
cpRNFLt (AUC 0.74 vs. 0.55, P¼ 0.044), SAP MD (AUC 0.74 vs.
0.58, P ¼ 0.046), and FDT MD (AUC 0.71 vs. 0.52, P ¼ 0.007)

FIGURE 3. Illustration of the relationship between 3 example RNFL PCA features with (A) disease and (B) RNFL thinning. (A) Box plots showing the
distribution of RNFL PCA features for glaucoma (red) and healthy eyes (blue). (B) RNFL PCA features (top) and the areas of greatest RNFL thinning
associated with each overlaid on en face images (bottom, in red). RNFL PCA feature 2 shows a broad area of RNFL thinning that includes nasal and
superior regions surrounding the macula. RNFL PCA features 3 and 4 identify thinning of superior and superior arcuate nerve fiber bundles.

TABLE 2. Significant Associations Between Clinical Measurements and
RNFL PCA Features Tested Using Linear Regression for Quantitative
Variables and ANOVA for Disease Status

Measurement Significant RNFL PCA Feature Associations

SAP 24-2 MD 1 (P ¼ 1.6 3 10�4)

4 (P ¼ 1.2 3 10�10)

SAP 24-2 PSD 3 (P ¼ 4.8 3 10�7)

4 (P ¼ 3.9 3 10�13)

FDT MD 2 (P ¼ 7.9 3 10�7)

4 (P ¼ 1.4 3 10�6)

FDT PSD 2 (P ¼ 1.2 3 10�4)

3 (P ¼ 2.5 3 10�11)

4 (P ¼ 5.4 3 10�7)

Mean cpRNFLt 2 (P ¼ 1.6 3 10�5)

4 (P ¼ 9.0 3 10�5)

Disease status 2 (P ¼ 3.9 3 10�9)

4 (P ¼ 2.1 3 10�8)

8 (P ¼ 7.31 3 10�5)
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for predicting progression based on the baseline data. Table 4
summarizes progression prediction performance.

DISCUSSION

A PCA-based approach was applied to a large SS-OCT dataset to
identify novel features of RNFL structure. This approach
identified objective, quantitative structural measurements of
the RNFL that can simultaneously capture information about
the ONH and macula regions. The resulting RNFL features
were associated with standard structural and functional
measurements as well as glaucoma. These features also
improved diagnostic accuracy for POAG and predictions of
glaucomatous progression compared to standard clinical
measurements.

Previous work has evaluated numerous summary measure-
ments derived from both SD-OCT and SS-OCT imaging for
diagnosing POAG and predicting progression. Depending on
the layer (e.g., RNFL versus GCIPL), region (e.g., macula versus
ONH), and sector (e.g., superior versus inferior), these
measurements can achieve high accuracy (AUC >0.9) in

diagnosing POAG.28 Recent work has also suggested that
measurements of different layers or regions may be most useful
for monitoring structural changes at different stages of
disease.10,29–31 One weakness of these metrics, however, is
that they each measure only a single aspect of retinal structure.
In addition, although the choice of what specific structures to
measure is inspired by anatomic knowledge and clinical
experience, the resulting set of measurements is not necessar-
ily the best set for either detecting glaucoma or predicting
disease progression. For this work, we adopted an approach
that was unbiased approach with respect to changes in RNFL
thickness—no prior information regarding areas of interest or
specific types of RNFL changes were included in the models.
Using unsupervised machine learning strategies, structural
features important in POAG were identified solely on their
ability to explain variance observed in the data. This type of
approach can help supplement work where measurements are
defined a priori by allowing the discovery of novel structural
features that contribute to disease. The use of wide-angle SS-
OCT imaging also allowed us to identify features that influence
both macula and ONH structure simultaneously.

Previous work, by our group and others, has been
successful in applying these unsupervised approaches to
identify novel features useful for predicting progression in
both structural and functional data. Unsupervised techniques
able to identify both known patterns and novel patterns of
visual field loss without knowledge of glaucoma status have
been developed.18,32 These approaches were extended to aid
in identifying progression in visual field loss and were able to
outperform standard clinical metrics.17 Christopher et al.19

applied a PCA-based approach similar to the methods
described here to structural measurements derived from stereo
fundus photos and were also able improve glaucoma predic-
tions beyond standard clinical measurements. These previous
and current results suggest that use of unbiased, data-driven
techniques may help reveal additional relationships between
structure, function, and disease progression.

FIGURE 4. Scatterplots showing values predicted using RNFL PCA features versus true measurements for (A) mean cpRNFLt, (B) SAP 24-2 MD, and
(C) FDT MD. RNFL PCA features were able to explain 58%, 49%, and 48% of the variance in these measurements, respectively. Heathy eyes are
shown in blue and glaucoma eyes in red.

FIGURE 5. Receiver operating characteristic curves comparing perfor-
mance in glaucoma detection between RNFL PCA features (AUC ¼
0.95), mean cpRNFLt (AUC¼ 0.90), SAP 24–2 MD (0.86), and FDT MD
(AUC¼ 0.83).

TABLE 3. Diagnostic Accuracy for Glaucoma Detection by RNFL PCA
Features and Clinical Measurements

Measurement AUC* (95% CI) P Value

RNFL PCA Features 0.95 (0.92–0.98) –

Mean cpRNFLt 0.90 (0.84–0.96) 0.09

SAP 24-2 MD 0.86 (0.79–0.94) 0.034*

FDT MD 0.83 (0.74–0.93) 0.021*

CI, confidence interval.
* AUC significantly lower (P < 0.05) than AUC of RNFL PCA

features.
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Identifying the areas of greatest change in RNFL thickness
associated with each RNFL PCA feature can help evaluate the
features qualitatively. The three features highlighted in Figure
3, for example, largely capture structural changes that could be
relevant to the development and progression of POAG. RNFL
PCA feature 2 is associated with a broad area of RNFL thinning
that includes nasal and superior regions surrounding the
macula. RNLF thinning in these regions has been shown to be
predictive of POAG development.11,33,34 RNFL PCA feature 3
and 4 seem to measure thinning of inferior and superior
arcuate nerve fiber bundles, respectively. Arcuate RNFL
thinning in both sectors has been previously associated with
POAG damage.35,36 These patterns also correspond to regions
described by Hood et al.37,38 including inferior and superior
arcuate loss (RNFL PCA features 3 and 4) as well as the region
that covers the superior macula and temporal disc (RNFL PCA
feature 2). In the current results, RNFL PCA feature 4 (superior
arcuate thinning) is also strongly associated with visual field
damage, cpRNFLt loss, and POAG (Table 2). The methods
presented here were able to discover structural features that
have been previously associated with POAG as well as identify
new structural features that may help identify as-yet-unknown
structural relationships.

The approaches and features described here may prove to
be useful clinical tools, given the importance of early detection
and early identification of progression in POAG. Failure to
detect POAG or POAG progression is serious problem for
clinicians and can lead to irreversible vison loss.39,40 RNFL PCA
features increase diagnostic accuracy beyond that of standard
clinical measurements suggesting a use in POAG screening or
other early detection programs. With respect to POAG
management, these features improve the ability to predict
future functional and structural changes and could help guide
care to prevent this progression. Qualitative assessment of
these features also suggests that they represent distinct types
RNFL loss and progression. Individual features may be useful in
identifying patients with specific types of progression (e.g.,
RNFL PCA feature 4 measures superior arcuate loss, feature 2
measures diffuse thinning in superior macula and disc regions).
Additional work with these features may help to identify
different progression trajectories and aid clinicians in tailoring
patient care.

There are a few limitations to the work presented here.
First, there is a large difference in age between the healthy and
glaucoma groups. Because retinal structure changes during
aging, this difference could serve as a confounder for the
analyses. This limitation was addressed by attempting to
control for age by adding it as a covariate when appropriate.
An additional issue with the cohort is the ratio of glaucoma to
healthy participants in the sample under consideration here.
Approximately three-quarters of the SS-OCT imaging data used
to identify RNFL PCA features was collected from glaucoma
participants. This is much a greater glaucoma proportion than
general and at-risk populations and could limit the usefulness
of features identified here. We addressed this issue by
evaluating the glaucoma detection of RNFL PCA features on
data that had been randomly resampled with at varying

proportions of glaucoma. Using glaucoma proportions of 1%,
5%, 10%, and 25%, the glaucoma detection AUC of the features
was evaluated as described in the methods. The AUC varied
between 0.95 and 0.97 and similar to the AUC of 0.95,
achieved on the nonresampled dataset. Another limitation is
that only RNFL thickness was considered here. While the RNFL
is an important structure in detecting and monitoring POAG,
more recent work has shown that measurements of ganglion
cell and inner plexiform layer (GCIPL) thickness could have
comparable diagnostic accuracy and GCIPL thickness may be
especially important in the macula.11,41,42 Because the SS-OCT
imaging performed here included the macula as well as the
ONH, including GCIPL thickness maps in future work may
help improve predictive accuracy. Finally, while the PCA-based
model used here is unbiased and relatively simple, it does not
incorporate information about POAG status or functional
measurements. This may limit its power to identify relation-
ships between structure, function, and outcomes. Building
models that explicitly maximize the ability of structural
measures (e.g., thickness maps) to explain function and POAG
status may reveal additional latent relationships and further
improve predictions.

In summary, the work presented here applied unsupervised
data-driven techniques to a large SS-OCT dataset to identify
novel features of retinal structure that had better diagnostic
accuracy than standard structural and functional measure-
ments. These features were used as objective, quantitative
measurements of RNFL structure covering a large region
encompassing both the macula and ONH. They also improved
accuracy in POAG diagnosis and predicting progression.
Applied to additional datasets, this unbiased approach may
help uncover other unknown structural relationships in
glaucoma.
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