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Abstract 

The use of immune checkpoint blockade (ICB) using antibodies against programmed death receptor (PD)-1, PD ligand 
(PD-L)-1, and cytotoxic T-lymphocyte antigen 4 (CTLA-4) has redefined the therapeutic landscape in solid tumors, 
including skin, lung, bladder, liver, renal, and breast tumors. However, overall response rates to ICB therapy remain 
limited in PD-L1-negative patients. Thus, rational and effective combination therapies will be needed to address ICB 
treatment resistance in these patients, as well as in PD-L1-positive patients who have progressed under ICB treatment. 
DNA damage repair inhibitors (DDRis) may activate T-cell responses and trigger inflammatory cytokines release and 
eventually immunogenic cancer cell death by amplifying DNA damage and generating immunogenic neoantigens, 
especially in DDR-defective tumors. DDRi may also lead to adaptive PD-L1 upregulation, providing a rationale for 
PD-L1/PD-1 blockade. Thus, based on preclinical evidence of efficacy and no significant overlapping toxicity, some 
ICB/DDRi combinations have rapidly progressed to clinical testing in breast and ovarian cancers. Here, we summarize 
the available clinical data on the combination of ICB with DDRi agents for treating breast and ovarian cancers and 
discuss the mechanisms of action and other lessons learned from translational studies conducted to date. We also 
review potential biomarkers to select patients most likely to respond to ICB/DDRi combination therapy.
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Background
Remarkable progress has been made in the clinical 
application of cancer immunotherapies harnessing the 
immune system to identify and eradicate breast and 
ovarian tumors. The most notable example is the emer-
gence of immune checkpoint blockade (ICB) to inhibit 
negative regulators of effector T-cell-mediated immunity. 
However, when administered alone, ICB approaches, 

such as anti-cytotoxic T-lymphocyte-associated pro-
tein 4 (CTLA-4), anti-programmed cell death protein 1 
(PD-1), and/or anti-programmed death-ligand 1 (PD-
L1) antibodies, generally elicit low objective response 
rates (ORRs), ranging from 0 to 33%, which are durable 
only in a minority of cancer patients [1–3]. For example, 
ORRs for ICB monotherapy range from 18.5 to 39.4% in 
the most frequent malignancy in women, breast cancer 
(BC) [4], and from 8% to 9.6% in ovarian cancer (OC) [5]. 
To address this unmet need, and improve the efficacy of 
ICB, multiple combinatorial strategies are currently being 
developed, some of which include DNA damage response 
(DDR) inhibitors (DDRis).
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Defects in DDR genes hold the potential to function as 
biomarkers of response to ICB across multiple types of 
tumors [6]. The rationale for combining ICB with DDRi 
is also based on several studies that have demonstrated 
the critical role of DDR in the efficacy of cancer immu-
notherapy [7]. DDR proteins protect the integrity of the 
genome following DNA damage caused by endogenous 
factors (e.g., reactive oxygen species and errors during 
DNA replication) and exogenous insults (e.g., ultraviolet 
radiation, smoking, chemical substances) [8]. Thus, the 
use of DDRi might augment the tumor mutational bur-
den (TMB), thereby increasing neoantigen production 
and anticancer T-cell activity [9], potentiating antitumor 
immunity. For example, targeting poly-ADP-ribose poly-
merase (PARP) markedly increased PD-L1 expression in 
cancer cells, augmenting the antitumor effect of PD-L1 
blockade and cytotoxic T-cell infiltration in gynecologic 
cancers [10]. Therefore, patients with tumors carry-
ing DNA mismatch repair (MMR) deficiency (MMRd), 
homologous recombination deficiency (HRD), breast 
cancer 1/2 (BRCA1/2) genetic defects, or other defects 
in DDR genes [9], who present more TMB and neoanti-
gens, can benefit from DDRi [11]. For example, MMRd 
is characterized by the loss of function of the MMR path-
way and can generate many insertion and deletion (indel) 
mutations; this indel mutational load has generated a 
substantial number of immunogenic neoantigens, poten-
tially driving immunotherapeutic responses [12]. More-
over, compared to homologous recombination repair 
(HRR), a conservative mechanism contributing to DNA 
double-strand break (DSB) repair, HRD, such as BRCA-
mutation in tumors, enhanced neoantigen burden [13].

Of note, deficiency of DDR genes occurs in a wide vari-
ety of malignancies, such as prostate, bladder, pancre-
atic, non-small cell lung cancers, and triple-negative BC 
(TNBC) [11]. HRD occurred in more than 20% of BCs, as 
well as OCs, pancreatic cancers, and gastric cancers [14] 
and in approximately 50% of epithelial OCs [15] and 69% 
of TNBC [16]. The majority of OCs and BCs are origi-
nating from epithelial cells that undergo constant divi-
sion and cyclical exposure to estrogen during the female 
hormonal cycle, making them vulnerable to DNA dam-
age [17]. According to the concept of a synthetic lethal-
ity among a functional genetic defect in an HR-related 
gene, the combination of DDRi and ICB in BCs and OCs 
with HRD is promising. For instance, DDRis, namely 
PARP inhibitors (PARPi) [18] and checkpoint kinase 1 
(CHK1) inhibitor [19], have predominantly been studied 
in patients with breast or ovarian cancers. Still, the inter-
actions between ICB and DDR pathways vary, and the 
synergy between DDRi and ICB against cancers, inde-
pendent of DDR deficiency status, needs to be further 
clarified according to the latest preclinical models and 

clinical data. For instance, in both HRD and HRR set-
tings, clinical evidence for OCs showed a synergistic anti-
tumor activity of PARPi in combination with ICBs [5].

Besides PARPi, other agents and factors targeting the 
proteins involved in the DDR pathway include ataxia 
telangiectasia-mutated (ATM), CHK1, ataxia telangiec-
tasia and Rad3-related protein (ATR), DNA-dependent 
protein kinase (DNA-PK), WEE1, classical non-homol-
ogous end joining (cNHEJ), and alternative end joining 
(Alt EJ) [9, 20]. Of the solid tumors reviewed, OCs have 
demonstrated efficacy in the treatment of DDRi. Moreo-
ver, OC is the first cause of death from and the second 
most common gynecological malignancy [21]. To date, 
three PARPi, olaparib, rucaparib, and niraparib, are 
approved by FDA for treatment of OCs. Among them, 
rucaparib [22, 23] is approved in the relapsed setting for 
OC patients with BRCA mutations, olaparib for first-line 
maintenance treatment in newly diagnosed stage III-IV 
ovarian patients who are in complete or partial syner-
gistic antitumor activity of PARP inhibitors (PARPi) in 
combination with ICBs [5]. response to first-line plati-
num-based chemotherapy or to first-line chemotherapy 
[24] plus bevacizumab combination [25], and olaparib 
[26, 27], rucaparib [28] as well as niraparib [29] for main-
tenance therapy in patients with platinum sensitive 
recurrent OCs (after ≥ 2 lines chemotherapy), regardless 
of BRCA status (Table 1).

Besides OCs, TNBC is among the most lethal diseases 
affecting women with few targeted therapies [30]. BC is a 
heterogeneous disease including more than 20 histologic 
types, among which TNBC represents the main BC type 
with BRCA1/2 mutations [31]. Success regarding DDRi in 
OC treatment has paved the way for clinical trials in BCs. 
Two PARPi, olaparib [32] and talazoparib [33], are now 
approved in HER2-negative, BRCA1/2-mutant advanced 
BCs (Table  2). Although testing of DDRi combination 
with ICBs is being pursued in a growing number of clini-
cal trials worldwide for a wide range of cancers, currently 
available data are inconsistent, even in patients with the 
same cancer type but different molecular characteristics 
[34, 35]. Here, we primarily discuss how ICB, DDRi, and 
their combination, may impact the signaling mechanisms 
and tumor immune microenvironment (TME) in breast 
and ovarian cancers with HRD, while proposing strate-
gies to optimize therapy. We also discuss both potential 
biomarkers for patient stratification and determining 
different toxicities of PARPi as well as distinct levels of 
PARP trapping [36], and outline opportunities and chal-
lenges regarding the promising combination strategies to 
overcome ICB resistance.

Reviewing these concepts and strategies is timely, 
given the expectation that an increasing number of BC 
and OC patients will be treated with DDRi, ICB, or their 
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combination. The progress in these areas has been strik-
ingly rapid, with FDA approvals of four PARPi and mul-
tiple immunotherapies in breast and ovarian cancers, 
respectively.

Mechanisms of ICB resistance in solid tumors
The major histocompatibility complex (MHC) on the cell 
surface displays peptides to the T cell receptors (TCR) 
on antigen-specific T cells to activate anti-tumor T cell 
responses [37]. Actions of immune checkpoints are 
mediated through the interactions between the ligands 
(B7 family members: B7-1, B7-2, PD-L1, B7-H2, B7-H3, 
and B7-H4) and the receptors (CD28, PD-1, and CTLA-
4) [38]. CD28 and CTLA4, the costimulatory receptors, 
compete for the same ligands, B7-1 (CD80) and B7-2 
(CD86) [39]. However, CTLA4 binds these ligands with 
higher avidity than CD28, allowing CTLA4 to compete 
with CD28 for ligand and deliver a negative regulatory 
signal to the T cell [39]. Currently, targeting PD-1, PD-L1, 
and CTLA-4 with monoclonal antibodies is the mainstay 
of ICB, with indications for their use in monotherapy or 
combination in multiple cancers [40]. Importantly, these 
approaches are markedly different in terms of mechanism 
of action. For instance, CTLA-4 inhibits T-cell activa-
tion, whereas PD-1, another key inhibitor, terminates the 
effector T-cell responses by interacting with its ligands 
PD-L1 (B7-H1) and PD-L2 (B7-DC) [41]. Compared with 
PD-L1, PD-L2 has a two- to six-fold higher affinity for 
PD-1 [42], while the PD-L1 antibodies blocking the inter-
action between PD-L1 and PD-1 do not affect PD-L2/
PD-1 interaction [43]. PD-L2 also binds repulsive guid-
ance molecule b on macrophages, dendritic cells (DCs), 
and some epithelial cell types with unknown mechanism 
[41]. Additionally, B7-H3, one of B7 family members, 
can co-stimulate proliferation of both CD4+ and CD8+ 
T cells, but the specific receptor remains unknown [38] 
(Fig.  1). Despite considerable early successes and toler-
able side effects compared to conventional treatments, 
such as surgery, chemotherapy, radiotherapy (RT), and 

targeted therapy, the overall response rates of ICB are 
generally limited [44], being approximately 5‒23% in BCs 
[45] and 6–15% in OCs [46].

The widely held view is that activation of effector 
T-cells (Teff) is the key beneficial mechanism in human 
tumors [47]. Thus, the prevailing hypothesis is that the 
efficacy of ICB is limited to patients with pre-existing 
antitumor immunity and Teff infiltration, while resist-
ance to ICB, which is observed in most cancer patients, 
is mediated by barriers that impact Teff infiltration and/
or activity. These barriers are multifactorial and the 
resistance mechanisms that can be reversed by inhibi-
tion of DDR signaling pathways [48–53]. These factors 
may include low neoantigen expression and downregu-
lation of MHC expression on the cancer cells, imbalance 
in immune checkpoint expression, increased tumor infil-
tration by suppressive immune cell populations, tissue 
hypoxia, tumor metabolic status, and immunosuppres-
sive cytokines. Here, we focus on the resistance mecha-
nisms related to DDR signaling pathways (Fig. 2).

Low neoantigen burden
Genomic analyses have revealed that mutational pro-
cesses altering DDR and repair pathways impact 
responses to ICB, thus influencing clinical outcomes 
in patients treated with ICB [6, 54]. Non-synonymous 
somatic alterations presented by tumor cells can be rec-
ognized by the immune system as non-self and neoanti-
gens, that is, tumor-associated antigens eliciting T-cell 
responses [55]. Moreover, TMB serves as a surrogate 
marker for tumor neoantigen load, representing the 
number of cancer cell mutations. Meanwhile, elevated 
TMB was proposed to increase the chances of generating 
immunogenic neoantigens and the true neoantigen bur-
den, that is, the number of alterations actually targeted by 
T-cells may have a stronger impact on ICB response than 
TMB [55]. For example, tumors with high microsatel-
lite instability (MSI-H) accumulate considerable somatic 
mutations secondary to deficits in DNA MMR. The 

Table 2 FDA-approved DDR inhibitors in breast cancers in the past 5 years (2016–2021)

PARP inhibitors Trial number Disease setting FDA approval Approved mutation 
status

Study phase Approved year

Olaparib NCT02000622 Metastatic, gBRCA1/2-
mutant, HER2-negative 
breast cancer after ≤ 2 
prior lines of chemo-
therapy

Metastatic, HER2-negative 
breast cancers

BRCA1/2 mutations III 2018

Talazoparib NCT01945775 Advanced and/or 
metastatic HER2-negative 
breast cancer with ger-
mline BRCA1/2 mutation

HER2-negative locally 
advanced or metastatic 
breast cancer

Deleterious or suspected 
deleterious germline 
BRCA  mutation

III 2018
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resultant high mutational burden renders tumors immu-
nogenic and sensitive to PD-1 ICB, while many patients 
with MMR-proficient (pMMR) tumors fail to respond to 

PD-1 blockade therapy [56]. For instance, tumors with 
MMRd show 20/20 (100%) pathological response, while 
pMMR early stage colon cancers correlate with poor 
response rates with 4/15 (27%) pathological responses 
[57]. Despite the weaker impact of homologous recombi-
nation (HR) deficiency on TMB relative to MMRd, cata-
strophic DNA damage driven by DDRi can be favorable 
to enhance ICB therapy efficiency [49].

However, MMRd-induced mutations are more likely 
to be predominantly subclonal, triggering highly hetero-
geneous tumors [58]. Mcgranahan et  al. demonstrated 
that subclonal (branch) neoepitopes is less effective than 
clonal neoantigens (trunk) in driving tumor clearance 
with ICB [59]. Moreover, among lung cancer patients 
receiving ICB treatment, tumors without certain DNA 
repair mutations exhibit a lower response rate relative to 
those with such mutational signatures [60, 61]. Collec-
tively, tumors with deficiencies in DDR pathways respond 
better to ICB due to elevated neoantigen load [48].

PD‑L1 expression level
In addition to TMB, PD-L1 expression is evaluated his-
tologically as another primary biomarker for ICB thera-
pies in cancer patients [62]. PD-L1 expression from 
both malignant and immune cells can be stimulated by 
inflammatory cytokines, such as interferons (IFNs) and 
work concretely to functionally modulate the cytotoxic 
T-cell lymphocytes (CTLs) in the TME [63]. Moreover, 

Fig. 1 Schematic illustration of tumor cells interacting with activated T cell. Inhibitory immune checkpoints, such as CTLA-4, PD-1, PD-L1 and 
B7-H3, bind with their partners to blockade T cell activity, while ICBs, such as anti-CTLA-4, anti-PD-1, anti-PD-L1 activate T cell by preventing the 
interaction cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4); major histocompatibility complex I (MHCI); T cell receptor (TCR); programmed 
death‐ligand 1 (PD‐L1); programmed death‐1(PD-1); immune checkpoint blockade (ICB)

Fig. 2 Schematic of resistant mechanisms involving DDR in response 
to immune checkpoint therapy by influencing Teff. DNA damage 
response (DDR); effector T-cells (Teff); tumor mutation burden (TMB); 
major histocompatibility complex (MHC)
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interferon regulatory factor 7 (IRF7) enhances constitu-
tive PD-L1 expression in an IFN-γ independent fash-
ion through directly inducing transcription of PD-L1 
[64]. Therefore, comprehensive and dynamic evalua-
tion of both the global PD-L1 level and IFN expression 
on T-cells and tumor cells, rather than monitoring only 
surface PD-L1 on tumor cells, should be a more effec-
tive approach for predicting responses to ICB. Addition-
ally, DNA damage, amplified by DDRi, can induce PD-L1 
expression by activating both IRF1 and IFNs, providing 
further rational for combinatorial ICB and DDRi thera-
peutic strategies [50].

T‑cell apoptosis
A vital component of T-cell-mediated antitumor immune 
responses is the strong tumor-reactive T-cell infiltration 
into tumor tissues. The International tumor-infiltrat-
ing lymphocyte (TIL) Working Group has developed a 
standardized methodology for BC TILs used in clini-
cal practice [65]. However, even for tumors with a sub-
stantial number of TILs prior to treatment, ICB can be 
rendered ineffective due to the dysfunctional T-cell phe-
notype [66].

T-cell apoptosis, a mechanism of tumor-induced T-cell 
dysfunction, can be triggered by binding of Fas, DR3, 
DR4, DR5, and TNFR1 on T-cells, with their respec-
tive ligands, thereby mediating immune evasion [67]. 
Impairing DNA repair machineries via KML001, a tel-
omere-targeting drug, also reportedly blocks cell prolif-
eration, cytokine production, and promotes apoptosis of 
T-cells via suppression of telomeric repeat binding fac-
tor 2 (TRF2), telomerase, topoisomerase I and II alpha 
(Top1/2a), and ATM kinase activities [68]. Moreover, 
KML001 triggers caspase-3-dependent T-cell apoptosis 
via telomeric DDR, while caspase-3 cleaves PARP during 
apoptosis [69]. Additionally, accelerating DNA damage 
by DDRi may serve to reprogram the TME inflammatory 
milieu [70], driving the recruitment and infiltration of 
T-cell into the tumor bed [49], thereby remodeling “cold 
tumors” to “hot tumors”, via activation of the immune 
response, as well as dysfunctional T-cell phenotypes and 
subsequent apoptosis.

Downregulated tumor MHC expression
The loss or downregulation of tumor MHC-I expres-
sion constitutes a main tumor escape mechanism from 
T-cell-mediated immune responses via influencing the 
degree and composition of the immune cellular infiltra-
tion [71]. Conway et al. showed that the loss of MHC-I/
II expression contributed to resistance to ICB [62]. How-
ever, DNA damage induced by DDRi can enhance radia-
tion-induced tumor cell MHC-I surface expression [51], 

supporting the use of DDRi for the reversal of ICI resist-
ance by increasing MHC-I expression.

Role of immunosuppressive cells and cytokines in tumors
Various immune cell subpopulations are identified as pro-
tumorigenic due to their contributions toward an immu-
nosuppressive environment, including Tregs, M2-type 
tumor-associated macrophages (TAMs), plasmacytoid 
DCs, N2-type neutrophils, and myeloid-derived suppres-
sor cells (MDSCs) that directly or indirectly inhibit CTL 
responses.

CD4+CD25+Foxp3+ Tregs exert their non-specific 
immune suppression via modulating either T-cells or 
antigen presenting cells (APCs) in a cell‐to‐cell contact-
dependent manner by producing inhibitory cytokines, 
including IL-10 and transforming growth factor beta 
(TGF-β) [72]. In fact, AZD6738, a ATR inhibitor (ATRi), 
reportedly correlates with Treg infiltration in lung cancer 
and colorectal cancer murine models [51, 73].

Macrophages are designated TAMs once they have 
migrated to tumors. M1 macrophages are the effector 
cells that participate in tumor-cell-killing role via secre-
tion of cytokines (IL-12 among others) [74]. Alterna-
tively, M2 TAMs promote tumor progression within the 
TME via hampering CD8+ T-cell responses [75]. Of 
note, SRA737, a CHK1 inhibitor, affects immunosuppres-
sive M2 TAMs as well as MDSC populations via induc-
tion of immunomodulatory factors, including type I 
IFNβ, CCL5, and CXCL10, and exerts a synergistic effect 
with anti-PD-1/PD-L1 therapy and low doses of gemcit-
abine [52]. MDSCs are a heterogeneous population of 
immature myeloid cells that expand in response to solu-
ble factors generated by tumor and stromal cells and dis-
rupt major mechanisms of antitumor immune response 
[76]. In fact, depletion of MDSCs in a murine BC model, 
following treatment with ibrutinib, an irreversible inhibi-
tor of Bruton’s tyrosine kinase, significantly improved 
the efficacy of immune-based therapies, including that of 
anti-PD-L1 therapy [76].

Taken together, immunosuppressive cells may inhibit 
the functionality of activated lymphocytes and induce 
CTL exhaustion via immunosuppressive cytokines, while 
DDRis have the potential to impact immunosuppressive 
cells.

Others
Various signaling pathways, including MAPK, JAK-
STAT, PI3K-AKT, WNT-β-catenin, and Hippo pathways, 
highly correlate with tumor formation and evolution, 
while alterations in genes associated with these pathways 
impact the response to ICB [62, 77]. For example, phos-
phatase and tensin homolog (PTEN), a suppressive gene, 
negatively regulates PI3K/AKT signaling and suppresses 
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tumor development via dephosphorylating PIP3 [78]. 
Moreover, loss, inactivation, or attenuation of PTEN is 
the most common genomic aberration of the PI3K and 
interactive pathways in various types of malignancies, 
with PTEN loss of heterozygosity (LOH) reported in 
hepatocellular (57% of patients), colorectal (48%), gas-
tric (36%), prostate (52%), and endometrial (49%) cancers 
[79]. PTEN loss has also been linked to DSB repair by 
regulating the DDR protein RAD51, and CHK1, and has 
been identified as a predictive marker for PARP inhibi-
tors [80]. Meanwhile, the ATM inhibitor KU-60019 was 
specifically toxic in PTEN-deficient cancer cells and 
tumor xenografts compared to wild-type cells [81].

A clinical trial reported that STK11/LKB1 mutations, 
the most prevalent genomic driver of PD-1 blockade 
resistance, are negatively related to therapy in KRAS-
mutant lung adenocarcinoma [53]. Meanwhile, another 
study demonstrated that even in the setting of LKB1 
loss, KRAS-mutant lung cancers remained treatment-
refractory and resistant to ICB [82]. Mechanistically, 
LKB1 loss results in silencing of stimulator of interferon 
genes (STING) and insensitivity to cytoplasmic double-
strand DNA sensing, while promoting immune escape. 
Additionally, upon cytoplasmic DSB, STING can acti-
vate TBK1/IKKε, which subsequently stimulates release 
of cytokines/chemokines, including IL-6 and CCL5, and 
ultimately generates an immunosuppressive TME that 
impairs ICB response [82].

Taken together, increasing evidence reveals that aber-
rant pathway proteins related to DDR can contribute to 
ICB resistance in a myriad of cancers.

The potential effects of DDRi on the immune 
system
Impressive durable responses to ICI occur in a rela-
tively small fraction of cancer patients, providing an 
opportunity to test combination strategies that will have 
more wide-reaching impact. Intrinsic and acquired ICB 
resistance has directed research toward novel combi-
nation treatment strategies aimed at transforming a 
higher proportion of non-responders into responders in 
BCs and OCs [83]. Therefore, combination of ICB with 
other immune-activating strategies, such as DDRi, might 
be a promising approach to overcome ICB resistance 
in cancer patients who are PD-L1-negative or PD-L1 
positive but acquire resistance to ICB. Considering that 
DDR proteins maintain genome integrity, amplifying 
DNA damage using DDR pathway inhibitors may effec-
tively increase the TMB and neoantigen production, 
alter the inflammatory milieu of the TME, and trigger 
immunogenic cancer cell death, subsequently activat-
ing antitumor immune responses (Fig.  3). Thus, com-
bination of DDRi with ICB, such as anti-PD-1/PD-L1 

or anti-CTLA-4 ICB, may initiate antitumor immunity, 
mediating durable tumor regression (Table  3). Here, we 
mainly discuss how the efficacy of ICB in the treatment 
of TNBC and OCs is augmented by DDR inhibition.

Enhancing tumor antigen release
Inhibition of DDR in sensitive tumor cells, such as those 
with MMRd, DNA modification, and replication errors, 
or other alterations of DDR genes including BRCA2, 
PRKDC, RAD51C, LIG3, and RAD17, leads to accu-
mulation of DNA damage, genomic instability, TMB, 
mutation-associated neoantigens, and ultimately cell 
death [70, 84, 85]. Mutation-associated neoantigens can 
activate an adaptive immune response to selectively tar-
get cancer cells. An enhanced mutation and neoantigen 
load may be associated with an improved T-cell response 
against neoantigens presented by cancer cells, which can 
be strengthened by ICB [85]. For example, neoantigens 
presented by MSI-positive tumors augment the release 
of IFN-γ from TILs, particularly T-cells, thereby elevat-
ing PD-L1 levels in tumors and immune cells [86]. IFN-γ 
stimulates the STAT1/2/3/IRF1 pathway by binding to 
the IFN-γ receptor, thus triggering PD-L1 expression 
[50]. Tumors and immune cells with HRD also present 
enhanced neoantigen burden, TILs, and PD-1/PD-L1 
level in BRCA1/2-mutated OCs [87] (Fig. 3).

BCs with germline BRCA1/2 (gBRCA1/2) mutations 
account for only 5–7% BC cases [88]. By contrast, high-
grade TNBC is characterized by a high mutational rate 
[89]. Along with BRCA mutations, genomic loss of het-
erozygosity (LOH), large- scale translocations (LSTs), 
and telomeric allelic imbalance (TAI) [29], might also be 
molecular hallmarks of HRD [22]. Although both somatic 
and gBRCA1/2 aberrations, resulting in high tumor 
TMB, have been approved by the FDA to function as a 
companion diagnostic tool for only BRCA1/2-mutated 
OCs [9], the antitumor activity of PARPi in BRCA wild-
type tumors has been gaining attention, called “beyond 
BRCA” efficacy [90].

Substantial mutant neoantigens in MMRd cancers 
make them sensitive to ICB therapy in 12 different tumor 
types [91, 92], indicating a pan-tumor biomarker function 
for ICB efficiency. However, MMRd was only observed in 
around 1% of BCs, with 1.8% in TNBC [93], indicating 
that its use should be restricted to high-risk individuals. 
Low germline MMR gene mutations (2%) with low TMB 
and inconclusive evidence regarding MMRd were also 
noted in OCs, while a clinical relevance for immunogenic 
biological features and MMRd was observed among MSI 
subset of clear cell OCs [94], indicating that OCs do not 
have to be regarded as “non-immunogenic” malignancies.

In conclusion, high levels of mutations and neoanti-
gens due to DDR inhibition [95] activate the mutation/
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neoantigen/IFN-γ pathway, leading to increased PD-L1 
expression. To this end, genomic instability in HRD 
tumors potentially impacts responsiveness to DDR inhib-
itors when used in conjunction with ICB [96].

PD‑L1 expression
In the TME, the signals from dying or already dead cells 
transmitted by damage-associated molecular patterns 
(DAMP) exposed to replicative stress or DNA damage 
upon DDRi not only promote immune priming, but also 
induce adaptive upregulation of PD-L1 levels in  vitro 
and in  vivo [97]. Mechanistically, PARPis contribute to 
S-phase–specific DNA damage induced by collapsed 

replication forks or under-replicated DNA, which sub-
sequently induces accumulation of mitotic chromosomal 
bridges and micronuclei formation in the G1 phase when 
cells with DSBs enter mitosis [98, 99]. Cytosolic DAMP 
is recognized by cyclic GMP‐AMP synthase (cGAS) 
via generation of the second messenger, cyclic GMP–
AMP (cGAMP), which leads to subsequent binding and 
recruitment of STING in cancers treated with PARPi, 
such as BCs [100, 101] and BRCA1-deficient OCs [102]. 
STING can then recruit and activate the cytosolic kinase 
IKK and tank-binding kinase 1 (TBK1), contributing to 
the phosphorylation of STING and activation of vari-
ous transcription factors, including NF-κB and IRF3, to 

Fig. 3 Mechanisms of DDRi and ICB affecting PD‐L1 expression and TME in tumors with DDR deficiency. DNA damage amplified by DDRi activates 
cGAS/STING, DNA damage response, and neoantigen pathway, inducing PD-L1 expression, pro-inflammatory cytokines release and CTLs infiltration 
while reducing Tregs and exhausted T cells, which combines with ICB, leading to immune activation and immunogenic cell death. Cyclic GMP‐AMP 
synthase (cGAS); stimulator of interferon genes (STING); double-strand breaks (DSB); homologous recombination (HR); microsatellite instability (MSI); 
mismatch repair deficiency (MMRd); homologous recombination deficiency (HRD); breast cancer 1/2 (BRCA1/2); DNA damage response (DDR); 
T cell receptor (TCR); programmed death‐ligand 1 (PD‐L1); programmed death‐1(PD-1); cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4); 
cytotoxic CD8+ T cells (CTLs); tumor-necrosis factorα (TNFα); interferon γ(IFN γ); interferon alpha/beta receptor (IFNAR); interferon regulatory 
factors (IRFs); regulatory T cells (Tregs); immune checkpoint blockade (ICB); granulocytic/monocytic myeloid-derived suppressor cells (g/mMDSCs); 
poly-ADP-ribose polymerase (PARP); ataxia telangiectasia and Rad3-related protein (ATR); checkpoint kinase 1 (CHK1); effector T-cells (Teff)
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induce the expression of type I IFNs (IFNα and β), as well 
as other cytokines [103, 104]. Additionally, the nuclear 
ATM/ATR/CHK1 kinase signaling pathway can modulate 
PD-L1 expression following DNA damage by phospho-
rylating STAT1/3 (in the cytoplasm) in cancer cells [50]. 
When cells enter the S/G2 phase during the progression 
of HR, ATM, a sensor of DSBs, is immediately activated 
at the DSB site and the DSBs undergo resection [105]. 
The generated ssDNA subsequently becomes coated with 
RPA and activates ATR/CHK1 at the ssDNA gaps [99]. 
Activated Chk1 is transported from the nucleus, after 
which it directly phosphorylates STAT1/3 and activates 
IRF1, which is responsible for the DSB-dependent PD-L1 
upregulation [99] (Fig. 3).

This adaptive upregulation of PD-L1 can exert an 
immunosuppressive effect, likely blocking the PARPi–
mediated immune activation [97]. This effect can be 
overcome by combining PD-1/L1 blockade with PARPi in 
both BCs [97] and OCs [106]. In fact, these in vitro and 
in vivo studies revealed that adding DDRi to ICB restores 
the cytotoxic CD8+ T-cells [97] and establishes immune 
memory [107], thereby potentiating therapeutic efficacy.

Alternatively, ATR kinase inhibitors (AZD6738 and 
VE-821) sensitize cancer cells to T-cell killing by down-
regulating the cell surface expression of PD-L1 in a pro-
teasome-dependent manner to attenuate the PD-L1/
PD-1 interaction in MDA-MB-231 BC cells [108]. Mean-
while, in an HPV-driven malignancy model, ATRi and 
ATRi-RT therapy could drive PD-L1 mRNA expression 
primarily in CD45+ CD3− cells, with a relatively minor 
contribution in tumor cells [51]. The cause for PD-L1 
upregulation by PARPi and its downregulation by ATRi 
may be the different mechanisms employed to acti-
vate PD-L1, as described above. Moreover, the variable 
PD-L1 expression upon ATRi may be due to the varying 
responses to DNA damage and immunogenicity in differ-
ent tumor models, as well as the distinct time points cho-
sen for analysis. However, the common feature between 
these two treatment strategies is their mutual ability to 
potentiate DNA damage, thereby enhancing antitumor 
immune responses.

A preclinical study in BR5 mouse OCs harboring defi-
cient BRCA1 revealed that the CTLA-4 antibody, and 
not PD-1/PD-L1 blockade, together with the PARPi, 
veliparib, resulted in immune-mediated tumor remis-
sion and long-term survival (p < 0.0001) by increasing 
CTLs with an effector/memory phenotype and inducing 
IFN-γ and TNFα expression by promoting the Th1 effec-
tor phenotype among T-cells [109]. One reason for these 
contradictory findings is the use of distinct models, with 
differences in their TME. Another explanation for the 
selective efficacy of CTLA-4 blockade is that the activa-
tion of new lymphocyte clones, instead of the reversal 

of T-cell exhaustion, contributes to immune-mediated 
antitumor responses in the BRCA1 model compared to 
PD-1 blockade [110]. This difference may also result from 
using different PARPi in terms of the catalytic inhibition 
and PARP trapping potencies, with veliparib displaying 
a weaker efficacy in HRD and HR-proficient (HRR) cell 
lines compared with olaparib, talazoparib, or rucaparib 
[111, 112].

Reprogramming the TME
CTLs are the key mediators of antitumor immunity [85]. 
DDRi could have immunosuppressive effects or improve 
the antitumor response by influencing CTLs [97]. T-cell 
priming might rely on IFN-β activation via the STING 
protein complex to generate an antitumor immune 
response [85]. For example, olaparib elicits an antitu-
mor immune response by inducing both intra-tumoral 
and peripheral effector CD4+ and CD8+ T-cells. Upon 
PARP inhibition, APCs, such as DCs, stimulate a STING-
dependent type I IFN signal (IFN-β) and CXCL10 secre-
tion, which are partially responsible for the treatment 
efficacy of PARPi in a co-culture system of BRCA1-
deficient OCs [102]. Besides, olaparib promoted CD8+ 
T-cell recruitment via activating cGAS/STING signal-
ing in tumor cells with paracrine activation of DCs; this 
was more obvious in HR-deficient than in HRR TNBC 
cells and in  vivo mouse models [100]. An ATR inhibi-
tor, BAY1895344, enhances antitumor efficacy follow-
ing PD-1/L1 treatment relying on CD8+ T-cells [113]. 
Notably, the augmented antitumor efficacy is sequence-
dependent and has only been achieved post-application 
of PD-1/PD-L1 blockade, followed by BAY 1895344 
treatment (Fig. 3).

PARPis also reportedly decrease the tumor-infiltrat-
ing cytotoxic CD8+ T-cell population, while addition 
of PD-L1 blockade increases the cytotoxic CD8+ T-cell 
population, thereby re-sensitizing PARPi-treated tumor 
cells to T-cell killing in TNBC [97]. Mechanistically, 
PARPis enhance the level of PD-L1 expression on EMT6 
tumor cells, a TNBC cell line, by inactivating the GSK3β 
pathway in vitro and in vivo, when inoculated into a syn-
geneic mouse model. This upregulation induces a decline 
in the tumor-infiltrating cytotoxic CD8+ T-cell popula-
tion, as determined by quantifying the level of IFN-γ. 
Hence, neoantigen-specific tumor-infiltrating T-cells 
become subjected to ICB modulations and are highly 
heterogeneous [114].

DDRi are also capable of transforming chronic, weak 
DNA damage, to a more robust level of damage by reset-
ting the inflammatory microenvironment of tumors 
(Fig.  3). ATR inhibition enhances radiation-induced 
inflammatory IFN response and cytokine gene expres-
sion, either in  vivo (particularly CCL2, CCL5, and 
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CXCL10) or in  vitro (CCL3, CCL5, and CXCL10) [51]. 
Inflammatory cytokines increase over days, are driven 
by DSB formation, and modify the TME by recruit-
ing immune cells and are proven to be key to both local 
and systemic (abscopal) tumor responses [115]. Mean-
while, micronuclei with cGAS accumulation may initiate 
inflammatory signaling after RT [115].

Cytokine secretion into the extracellular space exerts 
a bystander effect on neighboring cells, contributing 
to an immunogenic TME. For instance, BC cells with 
DDR deficiency have been linked to increased produc-
tion of CXCL10 and CCL5, compared to DDR-proficient 
cells, both of which are important for the chemotaxis of 
peripheral blood mononuclear cells [101]. HRD and/or 
DDRi might promote immunological vulnerabilities in 
tumors, while simultaneously inducing immunosuppres-
sive pathways, providing a rationale for combination with 
ICB therapy.

Taken together, DNA damage enhanced via DDRi 
yields greater mutational burden, increases neoantigen 
expression, triggers the release of pro- inflammatory 
mediators, and leads to greater immune recognition 
of the tumor, thus increasing the level of inflammatory 
cytokines and TILs.

Biological role of DNA damage amplified by DDRi 
in cancer cells
Mutation of genes involved in the DNA MMR path-
way, as well as in other DNA damage repair pathways, 
is reportedly enriched in patients who exhibit dura-
ble clinical benefit from ICBs [9]. Thus, using targeted 
agents for DDR pathways, including inhibitors of ATR/
CHK1 [116], PARP [117], ATM, cyclin-dependent kinase 
4/6 (CDK4/6), DNA-PK, WEE1, and aurora kinase B 
(AURKB) [9] opens new exciting avenues for clinical 
development of ICB for cancer treatment.

DDR is a complex network of signaling pathways 
involving DNA damage repair, cell cycle checkpoints, and 
apoptosis [118] that is key to ensuring overall genomic 
stability and cell viability, and is responsible for repair-
ing the two primary forms of DNA damage: single-strand 
breaks (SSB) and DSB.

In response to DSB, the Mre11–Rad50–Nbs1 com-
plex stimulates the ATM-CHK2 pathway, stabilizing 
p53 via phosphorylation, and causing G1 arrest in nor-
mal cells [116]. However, due to frequent inactivation of 
p53 or retinoblastoma (RB) proteins, most cancer cells 
exhibit dysregulated G1 checkpoints with insufficient 
time for DDR to occur prior to DNA replication, caus-
ing cells to rely exclusively on intra S and G2/M check-
points activated by the ATR-CHK1 pathway upon stalled 
replication forks [99]. Hence, therapeutic inhibition tar-
geting ATR has been shown to increase selective killing 

of tumor cells [116]. Cancer cells may reportedly depend 
on the ATR-CHK1 signaling pathway and intact S/G2-M 
checkpoints for repairing DNA damage [116], and thus, 
ATR inhibition may result in selective cytotoxic DNA 
damage and detrimental mitotic catastrophe to tumor 
cells, while normal cells with a functional G1 checkpoint 
will be unaffected. This also partially explains the essen-
tial nature of ATR and/or CHK1 protein kinase for regu-
lating replication stress and ensuring genome integrity 
and cell survival [119, 120].

Moreover, WEE1 activates the G2/M cell cycle check-
point by suppressing CDK1/2, while WEE1 inhibition 
abrogates the G2 checkpoint, resulting in unscheduled 
entry into mitosis, elevated replication stress, and subse-
quent nucleotide starvation and genomic defects [9].

Following SSB, PARP enzymes, key eukaryotic stress 
sensors, can activate various downstream proteins that 
participate in SSB repair or base excision repair [9]. 
Hence, PARP inhibition generates persistent SSB, which 
ultimately leads to DSB, thereby accelerating replication 
progression and limiting the ability of the cell to stall 
DNA replication and repair. This effect is particularly 
pronounced in cells harboring BRCA1/2 mutations, in 
which HR is defective, while in cells without defective 
HR, accumulated DSBs can be repaired by HR or NHEJ 
[11]. Notably, the antitumor effects of different PARPi 
varied due to altered PARP trapping activity, that is, the 
ability of PARPi to trap PARP-1 on DNA to enhance the 
stability of PARP-DNA complexes [36].

DNA-PK, another sensor of DNA damage, is also a 
critical enzyme for DNA repair via NHEJ [9]. Therefore, 
disrupting PARP, ATM, ATR/CHK1, WEE1, or DNA-
PK activity may selectively contribute to accumulation 
of DNA damage in tumors, sensitize cancer cells to kill-
ing, and ultimately induce cell death. Importantly, DNA 
repair defects are more abundant and specific in malig-
nant tissues than in normal tissues [35, 121]. Moreover, 
DNA damage proteins and cancer cells have specific 
properties, including cancer-specific DDR defects and 
lack of G1 checkpoint control, that may highlight particu-
lar vulnerabilities of the cancer [122], supporting PARP, 
ATR, ATM, CHK1/2, and WEE1 as therapeutic targets.

Inhibition of specific DDR proteins, which normally 
halt the cell cycle in DNA damage repair pathways, 
may play various roles in different physiological and/
or pathological events, particularly during neoplasia. 
For example, PARPi inhibit metastatic action and tumor 
recurrence via modulating the hypoxic response and sup-
pressing proliferation, epithelial–mesenchymal transition 
(EMT), angiogenesis, and cancer stem like cells across 
different tumor settings [123]. Moreover, inhibition of 
the ATR/CHK1 signaling pathway blocks EMT, cell pro-
liferation, invasion, migration, tumorigenicity, and lymph 
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node metastasis, while inducing apoptosis in cervi-
cal cancer [124]. Certain DNA damage sensors, such as 
ATM, ATR, FOXO3a and p53, function as critical regula-
tors of autophagy and are critical to the maintenance of 
cell cycle arrest and DNA repair activities in histiocytic 
lymphoma cells [125]. Conversely, in most malignancies, 
autophagy can support DNA synthesis, thereby confer-
ring survival to tumor cells under replication stress [126], 
whereas autophagy inhibition with niraparib treatment, a 
PARPi, accelerates DNA damage and cell death in laryn-
geal squamous cell carcinoma [127]. Moreover, DNA 
damage-induced senescence physiologically and patho-
logically correlates with aging and age-related diseases 
in vivo [128]. For instance, PARPi can induce senescence 
in BC and high-grade serous epithelial OC cells [129]. 
Additionally, AURKB inhibitors trigger senescence in 
non-small cell lung cancer cells with acquired mutations 
via the ATM/Chk2 DDR [130]. Nevertheless, in patients 
with breast tumors, low expression of XRCC1, ATM, 
and BRCA1 correlates with high proliferation indexes, 
higher tumor grade, and the presence of dedifferenti-
ated cells [131]. Taken together, DDRi suppress adhesion, 
proliferation, migration, invasion, EMT, formation of 
autophagosome, and angiogenesis [132], while stimulat-
ing apoptosis and senescence by directly targeting DNA 
damage repair processes and augmenting DNA damage 
in cancer cells. Moreover, DNA damage, while tumor-
suppressive, promotes pro-carcinogenic effects mediated 
by the TME (Fig. 4).

Clinical translation of DDRi plus ICB as a strategy 
to overcome immunotherapy resistance
Based on these promising data on the combination of 
DDRi with ICB therapy in preclinical and translational 
settings, multiple clinical trials are currently ongo-
ing (Additional file  1: Table  S1), with results for certain 
DDRi/ICB combinations having already been reported, 
including olaparib/durvalumab [133–135], niraparib/
pembrolizumab [136], pembrolizumab/olaparib [137], 
BGB-A317/BGB-290 [138], and AZD6738/durvalumab 
[139].

The first clinical trial reporting durvalumab plus olapa-
rib demonstrated that the combination therapy had no 
overlapping toxicity, and the efficiency was established 
in two patients with a partial response (PR) and eight 
with stable disease (SD), yielding an ORR of 14% in 35 
patients and a disease control rate of 83% in 12 patients 
harboring advanced-stage BCs [134]. Among them, only 
a small population achieved a durable response, with a 
clinical benefit rate (PR + SD ⩾  6  months) of 34%. The 
TOPACIO/KEYNOTE-162 trial showed that the com-
bination of niraparib with pembrolizumab exhibited a 
good tolerability profile, with the ORR (47% vs. 11%) 

and progression-free survival (PFS) (8.3  months vs. 
2.1  months) being higher in BRCA1/2 mutant TNBC 
patients than in non-mutant ones [140]. Likewise, the 
MEDIOLA trial showed that in one of the four cohorts 
(NCT02734004), olaparib plus durvalumab achieved an 
impressive DCR of 80% and an ORR (all PRs) of 52% for 
patients with advanced-stage gBRCA1/2-mutant BCs, 
with no obvious overlapping toxicities [141].

In the MEDIOLA trial of a gBRCA1/2-mutated plati-
num-sensitive relapsed OC cohort, combination of dur-
valumab with olaparib also exhibited no overlapping 
toxicity, with ORR of 71.9%, median PFS of 11.1 months, 
and 28-week DCR of 65.9% [142]. Meanwhile, in the 
TOPACIO/KEYNOTE-162 trial of an advanced plati-
num-resistant OC cohort, niraparib plus pembrolizumab 
achieved a DCR of 68% in the general study population, 
similar to the 73% DCR in patients with BRCA1/2 muta-
tions [140], indicating that PARPi plus ICB exhibits anti-
tumor activity, regardless of HR or BRCA status. The 
combination in both trials was safe with the most com-
mon grade 3 or greater AEs being anemia (21% TOPA-
CIO; 9% MEDIOLA) [5]. Notably, a phase I/II trial 
(NCT02953457) is testing dual blockade of the immune 
checkpoint using anti-PA-L1 and anti-CTLA4 (dur-
valumab and tremelimumab) plus PARPi (olaparib) in 
recurrent or refractory BRCA1/BRAC2-mutated epithe-
lial OCs.

Combination of ICB and DDR inhibitors with other 
agents, including RT, chemotherapy, anti-angiogenic or 
epigenetic drugs, is emerging in preclinical and clini-
cal studies based on the good tolerability of the DDRi/
ICB combination. RT can kill cancer cells, while simul-
taneously inducing the release of pro-inflammatory 
mediators, increasing infiltration of immune cells, and 
promoting the expression of neoantigens [84]. Mean-
while, DDRi can further enhance the immunogenic 
effects of RT through augmenting CTL infiltration into 
the tumor bed, as well as the expression and secre-
tion of chemokines [109], while also promoting PD-1/
PD-L1 expression. Therefore, adding ICB to this combi-
nation could counterbalance such immunosuppressive 
effects [143, 144], providing a preclinical rationale for 
triple combination therapy to improve treatment effi-
ciency of PD-axis ICB in clinical trials. A phase II study 
(NCT04690855) combining talazoparib (PARPi), RT, and 
atezolizumab (anti-PD-L1) is currently recruiting gBRCA 
1/2 negative patients with PD-L1+ metastatic TNBC. 
Additionally, more detailed studies on the clinical com-
binations of RT, DDRi, and ICB are warranted to address 
concerns regarding subclonal neoantigen generation [84].

Addition of epigenetic drugs to PARPi/anti-PD1/
PD-L1 is a latently synergistic strategy for potentiat-
ing immunogenic cell death and overcoming resistance 
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due to the additional suppression of cancer stem cells 
in TNBC [145]. The I-SPY2 trial reported a significantly 
enhanced pathologic complete response when dur-
valumab and olaparib were combined with paclitaxel in 
comparison with chemotherapy alone among women 
with stage II/III high-risk, HER2-negative BC; improve-
ment was observed in both the HR+ and TNBC subsets 
[146]. Moreover, clinical trials of evaluating addition of 
bevacizumab (anti-VEGF humanized monoclonal anti-
body) to nivolumab plus rucaparib (NCT02873962) or 
to olaparib plus durvalumab (NCT02734004), niraparib 
plus dostarlimab (TSR-042, anti-PD1) (NCT03574779 

and NCT03806049) are recruiting patients with 
relapsed or advanced OCs.

Other clinical trials are currently ongoing to inves-
tigate the combination of ICB with DDRis, such as 
durvalumab plus olaparib, AZD6738, or AZD1775, 
tremelimumab plus olaparib, pembrolizumab plus 
olaparib, or niraparib, nivolumab plus niraparib, or 
veliparib, atezolizumab plus olaparib, niraparib, ipili-
mumab plus niraparib, and BGB-A317 plus BGB-290. 
Taken together, the effects of these combinations are 
being evaluated and results are eagerly awaited.

Fig. 4 Biological role of targeting DDR protein upon DNA damage in cancer cells. Upon DSB and replication stress, ATM, ATR, and DNA-PKcs are 
recruited to DNA damage sites, and ATM/CHK2 and ATR/CHK1 pathways are activated. In normal cells, ATM activates p53 by phosphorylation, 
leading to G1-phase arrest, senescence and apoptosis. However, in tumor cells, p53 is inactivated frequently, disrupting the G1-S cell cycle 
checkpoint, and making the cells dependent on G2-M cell cycle checkpoint for arrest upon DNA damage. The phosphorylation of WEE1 abolishes 
the activation of CDK1/2, inducing G2/M cell cycle arrest. PARP enzymes are primary proteins involved in SSB repair or base-excision repair (BER). 
Single-strand break (SSB); base excision repair (BER); double-strand breaks (DSB); non‐homologous end joining (NHEJ); homologous recombination 
(HR); ataxia telangiectasia mutated protein (ATM); poly-ADP-ribose polymerase (PARP); ataxia telangiectasia and Rad3-related protein (ATR); 
DNA-dependent protein kinase (DNA-PK); checkpoint kinase 1/2 (CHK1/2); cancer stem cells (CSCs); epithelial–mesenchymal transition (EMT)
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Biomarkers for predicting clinical benefits 
of combination DDRi and ICB
Biomarkers for BC and OC treatment response to DDRi 
plus ICB are limited. In HER2-negative stage II/III BC 
patients treated with triple combination (durvalumab, 
olaparib, and chemotherapy) compared with chemo-
therapy alone, a higher expression of immune gene sig-
natures and PD-L1 mRNA expression was associated 
with higher pathologic complete response rates [146]. 
Meanwhile, mutational signature 3, reflecting HRD, and 
positive immune score, serving as a substitute of inter-
feron-primed CD8-exhausted effector T-cells detected 
by targeted gene panel sequencing, function as a positive 
predictive or prognostic marker for platinum-resistant 
OCs when combining niraparib with pembrolizumab 
[147]. Further, enhanced systemic IFNγ linked to higher 
PFS (HR 0.37, p = 0.023) and high post-treatment levels 
of VEGF3R3 correlated with worse PFS in epithelial OC 
patients treated with olaparib plus durvalumab [10]. In 
other solid cancer types, there are some predictive and 
prognostic markers overlapping with biomarkers for ICB 
and DDRi monotherapy (Table 4).

As 15% of unselected TNBC [148] and 17% of high-
grade serous OC [90] patients harbor gBRCA mutations, 

BRCA1/2 alterations resulting in HRD can function as a 
promising biomarker for DDRi use in both OCs and BCs 
[149]. However, the use of these genomic aberrations as 
biomarkers to identify patients who are more likely to 
benefit from the combination therapy will require exten-
sive validation in large and well-designed clinical trials. 
Ideally, future studies should integrate the complexity 
of the biology of both the tumor and its TME (such as 
PD-L1 level, CD8 T-cell infiltration, and other immune 
infiltrates) or gene expression profiling of genomic 
alterations using NGS platforms to establish a deeper 
understanding of the DNA damage and immune-related 
biomarker groups, and thus help to precisely guide the 
clinical development of this new strategy.

Conclusions and future perspectives
DDRi might generate immunological vulnerabilities in 
tumors, while concurrently stimulating immunosuppres-
sive signaling, such as PD-1/PD-L1 signaling. Therefore, 
the combination of ICB with DDRi might overcome ICB 
resistance, inducing robust antitumor immune responses 
and immunogenic cell death of cancer cells, resulting in a 
potential cure, especially in cancers with high incidence 
of HRD, such as BRCA-mutant BCs and OCs. Moreover, 

Table 4 Biomarkers that predict response to DDR-targeted therapies in combination with ICB

Factor Agents Incidence (%) Validated in 
clinical trial?

Association 
with 
favorable 
clinical 
outcome

Predictive 
versus 
prognostic

Cancer type Tissue 
type for 
biomarker 
assessment

Possible 
assay type 
for biomarker 
assessment

Mutational 
signature 3 
reflecting 
HRD, IS

Niraparib, 
pembroli-
zumab

51% I/II 
(NCT02657889)

Positive Prognostic, 
predictive, or 
both

Ovarian 
cancer

Tumor tissue Targeted gene 
panel sequenc-
ing

Pre-existing 
CD8+ T-cell 
infiltrates

Durvalumab, 
olaparib

NR II 
(NCT02484404)

Positive Predictive Relapsed SCLC Tumor tissue Immunohisto-
chemistry

MDSCs (≤ the 
median)

Durvalumab, 
olaparib

NR I/II 
(NCT02484404)

Negative Prognostic MCRPC Blood Multiparametric 
flow cytometry

CTC Durvalumab, 
olaparib

NR I/II 
(NCT02484404)

Positive Prognostic MCRPC Blood Multiparametric 
flow cytometry

CD83 
expression 
on CD141+ 
mDCs, 
> median 
percentage of 
Ki67 + PD-1+ 
cells among 
total CD8+/
CD4+ T 
cells, > median 
percentage of 
Ki67+ HLA-DR 
CD8+ and 
CD4+ T cells

Durvalumab, 
olaparib

NR I/II 
(NCT02484404)

Positive Prognostic mCRPC Blood Multiparametric 
flow cytometry
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DDRi plus ICBs demonstrated enhanced treatment effi-
ciency in BC and OC patients compared with mono-
therapy in both first-line and recurrent settings, which 
primarily depended on early endpoints, such as ORR, 
making it suitable for patients with limited responsive-
ness rather than those with high response rate. Therefore, 
it might be more reasonable to assess clinical benefit in 
terms of long-term benefits, such as duration of response 
or OS.

Clinical trials exploring the dual combination in the 
neoadjuvant setting of BCs have already begun. A phase 
II trial (NCT04584255) is trying to investigate the syn-
ergistic efficacy of niraparib plus dostarlimab in BRCA-
mutated BCs and TNBC. However, more effective 
therapies are still required for BRCA-negative and PDL-
L1 negative BCs, as well as non-TNBC subtypes and in 
the neoadjuvant setting.

In OC patients with both repair-deficient and 
-proficient status, ongoing phase III studies are try-
ing to explore rucaparib plus nivolumab (ATHENA, 
NCT03522246), atezolizumab plus niraparib (ANITA, 
NCT03598270), avelumab plus talazoparib (JAVELIN, 
NCT03642132), and niraparib plus dostarlimab (anti-
PD1) (NCT03602859) in both the frontline treatment 
and the maintenance setting following platinum-based 
chemotherapy. These trials may further help answer 
the question of whether the combinational treatment is 
confined to HR-deficient or can be extended to the HRR 
phenotype.

Overall, the combination of DDRi with ICB is prom-
ising due to their distinct, mostly non-overlapping tox-
icities, particularly in BC and OC patients with HRD. 
However, greater clarity is needed via basic and trans-
lational studies to elucidate the mechanism of action of 
both DDRi and ICB as monotherapies, and in combina-
tion. Besides evaluating safety and efficacy in clinical 
research, validating predictive biomarkers to identify 
sensitive patients should become a priority.
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