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Abstract Flexibility in the usage of clinical beds is con-
sidered to be a key element to efficiently organize critical
capacity. However, full flexibility can have some major
drawbacks as large systems are more difficult to man-
age, lack effective care delivery due to absence of focus
and require multi-skilled medical teams. In this paper, we
identify practical guidelines on how beds should be allo-
cated to provide both flexibility and utilize specialization.
Specifically, small scale systems can often benefit from full
flexibility. Threshold type of control is then effective to pri-
oritize patient types and to cope with patients having diverse
lengths of stay. For large scale systems, we assert that a little
flexibility is generally sufficient to take advantage of most
of the economies of scale. Bed reservation (earmarking) or,
equivalently, organizing a shared ward of overflow, then
performs well. The theoretical models and guidelines are
illustrated with numerical examples. Moreover, we address
a key question stemming from practice: how to distribute a
fixed number of hospital beds over the different units?
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1 Introduction

Inpatient beds are a critical capacity in the patient care
process within a hospital. Traditionally, the clinical orga-
nization is according to medical disciplines, resulting in
separate nursing units for, e.g., medicine, surgery, cardiol-
ogy, obstetrics, neurology, gynaelogy. Over the years other
classifications have been introduced, such as length of stay
(e.g., short and long stay, see for example [29]), level of
care (intensive, medium, special or normal care), or urgency
(elective, urgent and emergent), each having organizational
advantages. A disadvantage of a strict classification of inpa-
tient beds is that this may result in small scale hospital units.
Such small scale units suffer severely from the variabil-
ity of health care processes [7]. More generally, it is well
known that the efficiency of service systems often increases
as the system becomes larger [32]. This is referred to as
‘economies of scale’ (abbreviated as EOS). Flexibility in
bed usage is thus a key concept for an efficient management
of beds, as has been recognized in, e.g., [4, 9, 12, 18], and
is of fundamental importance for the increasing pressure to
reduce costs.

On the opposite, in manufacturing it has long been rec-
ognized that focus on a limited range of tasks improves effi-
ciency. This principle of specialization advocates to divide
capacity to patient groups with similar medical conditions,
see, e.g., [13, 27, 30] and references therein for some health
care related studies. The increasing focus on more com-
plex cases further advocates to organize specialized hospital
units, which is evidently necessary to some extent. A further
disadvantage of flexibility is that this requires the medical
staff, such as nurses, to be able to treat multiple patient
types. This may require costly additional training efforts.
Moreover, small wards guarantee personalized patient care
and may improve work satisfaction and efficiency of nurses.
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Apart from medical specializations and the potential
improvements from economies of focus, there are some
other issues with full flexibility. First, the overall perfor-
mance may improve, but that may be at the expense of
one type of patients. This may be unwanted in case that
a particular patient type should be prioritized (e.g., receive
specialized care). Related is the example in [9] of cardiac
and thoracic surgery, where cardiac patients have priority
over thoracic patients. Under their average delay constraints
and taking the priority for cardiology into account, it fol-
lows that a combined unit would actually need more beds
than two separate units. Second, the overall performance
may even decrease in case of non-identical average service
times (also referred to as average length of stay, abbrevi-
ated as ALOS). This observation goes back to [24]. In that
case, patients with prolonged hospital stay block access for
patients with high turnovers.

In this paper, we propose an intermediate organiza-
tional bed assignment that utilizes the efficiency gains of
large systems and avoids the drawbacks mentioned above.
More specifically, we consider the following bed allocation
policies:

Separate wards: Each patient type has dedicated beds.
Simple merging: All patient types share all beds.
Earmarking: Each patient type has dedicated (ear-
marked) beds, whereas all patient types share a joint
ward of overflow with fully flexible beds.

®  Threshold policy: All beds are fully flexible, but there
is a hierarchy in admission of patient types. The most
important (e.g., most urgent) patients are always admit-
ted when beds are available, but other patient types
are only admitted when the number of available beds
exceeds some (prespecified) threshold.

The advantages and disadvantages of the different bed
allocation policies are indicated in Table 1. These findings
are further supported in the rest of the paper. Specialization
refers to all benefits of having small scale units, such as spe-
cialized medical teams, single-skilled nurses and efficiency
in task performance due to routine operations. Flexibility
and EOS refer to all benefits of large systems, such as
the ability to handle peaks in demand, flexibility in allo-
cation of beds and flexibility in nurse rostering (see, e.g.,

Burke et al. [5]). Bed guarantees means that different patient
types have allocated beds, making bed management signif-
icantly easier. Prioritization and the efficiency in accom-
modating patients with severely different LOS are further
addressed in Section 4.2.

For large scale systems specialization often is a major
requirement, leading to the distribution of beds over differ-
ent medical units. The earmarking policy is then effective
(see Section 4.3). At a smaller scale, i.e., within a single
unit, further specialization might be unnecessary and the
focus is rather on efficient bed usage and accommodation of
different patient types (see Section 4.2).

Goals and contribution The issue of how to allocate par-
tially flexible capacity for clinical wards has not yet been
addressed in the literature. Therefore, our contribution is
two-fold. First, we identify which structure of the bed allo-
cation policy is appropriate for balancing between flexibility
and the issues of large scale systems. For this structure we
distinguish two cases that differ in system size, as they
require a different approach.

Bed allocation for small scale systems: at the unit level (like
an ICU), the number of beds is shared by different patient
groups. For instance, a patient group may represent a med-
ical discipline, patients with a similar diagnosis, or similar
level of urgency. As the sizes of the patient groups are small,
specialization is inefficient whereas an earmarking policy
often is less effective. In this setting, threshold policies are
effective when there is a difference in priority for patient
types, or patient types have an entirely different ALOS.
Bed distribution for large scale systems: at the hospital level,
the total number of staffed beds should be distributed over
the different (often medical) units. To allow for flexible bed
usage and avoid large-system size issues at the same time,
earmarking is an effective policy. We see that some flexibil-
ity is sufficient to accommodate most of the peaks in bed
demand. The beds at each ward are dedicated (earmarked)
that can be handled by specialized medical teams, whereas
the beds at the joint ward are flexible.

In the literature the commonly addressed question is
‘how many hospital beds?’ [4, 8]. In practice, the overall
number of beds is limited due to the building construction
and obtained licenses [12]. The typical question for hospital

Table 1 Pros and cons of

different bed allocation policies Specialization Flexibility Prioritize Accommodate Management &
& EOS pat. types diverse LOS bed guarantees
Separate wards ++ - + + ++
Simple merging - ++ - - _
Earmarking + + + + 4
Threshold - ++ ++ ++ _
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managers therefore is ‘how to distribute hospital beds?’. We
provide rules of thumb based on square-root staffing for the
distribution of the fixed number of total beds across units.
The second contribution is that we provide models to sup-
port strategic and tactical decision making regarding ward
sizes and the level of flexibility. Specifically, using these
models, the exact number of beds and its allocation for the
corresponding policy can be determined. For large scale sys-
tems, the performance of an earmarking policy can easily
be calculated due to the product-form solution. To enhance
application of threshold policies, the models are suitable for
a form of decision support as well. We like to emphasize that
well-founded hospital management of bed capacity requires
quantitative models to visualize the impact of strategic
management decisions and policies.

Queueing literature We now briefly review some of the
basic queueing literature related to pooling. The term bed
pooling is also often encountered in the literature when dif-
ferent units fully share their capacity. As mentioned, Smith
and Whitt [24] seem to be the first to give counterexam-
ples to show that full flexibility or resource sharing is not
always beneficial. Another early paper supporting this from
a qualitative perspective is Rothkopf and Rech [23]. In Man-
delbaum and Reiman [20], the authors consider queueing
networks in which both servers (beds) and queues can be
pooled. They quantify the effect of pooling in terms of an
efficiency index and show that pooling always helps in light
traffic, but that pooling effects can go either way in heavy
traffic. We refer to the references in [20] for the application
of pooling in different application areas.

In the context of call centers, van Dijk and van der Sluis
[25] gave some instructive examples where pooling is not
beneficial and they proposed overflow pooling as an alter-
native. In overflow pooling the servers are dedicated to a
queue, but they can serve customers from the other queue in
case the server becomes idle. The concept of pooling is also
related to skill-based routing in call centers. For instance,
Wallace and Whitt [28] showed that “a little flexibility
goes a long way”, meaning that only a few generalists are
required to approach near optimal performance. In Cheva-
lier et al. [6], the authors find that a 80/20 rule works well for
aremarkably wide range of parameters. Here, the 80/20 rule
means that 20 % of the staffing budget should be spent on
flexible (multi-skilled) servers while 80 % should be spent
on dedicated (single-skilled) servers. This already hints that
flexibility and specialization can go hand in hand in hospital
systems.

From a different angle, van Essen et al. [26] consider
how departments should be clustered to benefit from scale
effects. The authors take into account that not all depart-
ments can be clustered and that patients should not be

spread over the hospital. Clustering is formulated as an opti-
mization problem where blocking probabilities impose con-
straints. As the optimization problem is strongly NP-hard,
the authors provide two heuristic approaches in addition to
the exact formulation.

Organization The paper is organized as follows. We intro-
duce the general model and assumptions in Section 2. The
bed allocation policies and its performance analysis are dis-
cussed in Section 3. In Section 4 we show numerical results.
The allocation of beds over different patient groups within a
unit is studied in Section 4.2. In Section 4.3 we consider the
distribution of beds over different units at the hospital level.
Section 5 concludes.

2 Model

We analyze the patient flow through the clinical wards in
the spirit of the Erlang loss model. The aim of this model
is to support managerial decision making at the strategic
and tactical level. We first introduce the main assump-
tions in Section 2.1 and then formally define the model in
Section 2.2.

2.1 Basic assumptions

The assumptions of the model are based on the data analy-
sis in [4] of 24 hospital wards of the VU medical center in
addition to our experience with other Dutch hospitals.

Arrival process The model assumes that patients arrive
according to a Poisson process. This has been widely
accepted for urgent patients, see for example [34]. Surpris-
ingly, the number of elective admissions varies significantly
as well. This variation can even be larger than the variation
in urgent admissions [4, 21]. The Poissonian assumption
therefore seems a reasonable approximation for the elective
admission process (see also [31]).

Length of stay The model assumes that the lengths of stay
(abbreviated as LOS) are independent and identically dis-
tributed for each patient type. This seems an appropriate
assumption as long as the patient mix and medical practice
do not change. In practice, deviations from this assump-
tion can occur, as the LOS may be affected by the level
of congestion and delays in the care chain. In some cases
we further assume, for mathematical convenience, exponen-
tially distributed LOS. This often slightly underestimates
the amount of variability present, but the impact on the
results is typically very small (see Section 4.1).
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Beds The capacity of a unit is based on the number of
operational beds. The number of operational beds is impor-
tant for the distribution of budgets and is generally constant
and evaluated on a yearly basis. The actual number of
staffed beds may fluctuate slightly, but this rather is at an
operational or tactical level.

Bed blocking The model assumes that patients are blocked
and lost from the system in case all appropriate beds are
occupied. For urgent patients this means ambulance diver-
sions and reallocation of patients at the Accident & Emer-
gency department (A&E). For elective patients, unavail-
ability of beds implies canceled admissions or surgeries.
Such patients are often rescheduled, but this may affect the
admissions of patients from the waiting list. As a rough
approximation, we consider the rescheduled patients as new
admissions.

In Dutch hospitals, the waiting time at A&E departments
for inpatient beds is usually short, whereas the fraction of
transfers to other hospitals due to unavailability of beds is
significant (estimated at about 10 %). In addition to our
experience with Dutch hospitals, where excessive waiting
for beds is uncommon, we chose to incorporate blocking. In
the literature, delay models for bed capacity have also been
proposed [7, 8]. Note that for the classical models, there is
a direct relation between the probability of waiting (delay
model) and the blocking probability (loss model). The delay
models typically do not take flexible bed allocations into
account. We refer to [19] where routing policies from emer-
gency departments to internal wards are addressed in an
asymptotic queueing framework.

2.2 Model and notation

We consider the allocation of beds for J types of patients.
A patient type typically refers to a medical discipline or to
a specific diagnosis group. Patients of type j are assumed
to arrive according to a Poisson process with rate A;, j =

1,...,J. Denote the overall arrival rate by A = > j Aj.
Let the LOS of type j be denoted by S; with mean ES;,
Jj =1,...,J. The traffic intensities are then p; := A;ES;.

In case the LOS of type j is exponentially distributed, we
let u ; denote the corresponding rate.

The total number of beds available is N. There is no wait-
ing room for patients. This means that when a patient arrives
and all beds are occupied, the arriving patient is refused, see
Section 2.1. However, patients can also be refused in other
situations. For instance, when each ward has its own num-
ber of beds (say N;, with Zj N; = N), patients are also
refused when the preferred ward is fully occupied.

A major performance measure for clinical wards is the
long-run fraction of refused admissions, also called loss or
blocking probability. Let b; denote the fraction of refused

@ Springer

admissions (blocked patients) of type j. The weighted
total fraction of refused admissions is given by by =
Zle()»j/)\)bj. Let aj, i = 1,...,J, be the relative
value for patients of type j. This reflects different levels
of priorities for the patient groups that might be caused by,
e.g., urgency or strategic focus of the hospital. Let ¢ =

(c1,...,cy) be fixed, where c¢; is the weight of the loss
fraction b; in the objective function. For instance, in case
¢j = ajkj/A the objective is to minimize the weighted

loss fraction that takes the relative values «; into account
(btot 1s then minimized in case o; = 1). Our objective is to
minimize a linear combination of the b;’s, i.e.,

J
minb(c),  with b(e) =Y ¢;b;. (1)
j=1

Another example is the case in which the loss fraction
for type j should be bounded by b‘j“ax, j =1...,J.
For example, b may represent the loss fraction before a
reallocation of beds. The optimization problem then reads

min b(c)

Stbjfbinax, ]:1,,.]

The Lagrange relaxation of this problem is

J
minb(c) + »_yj(bj — b,
Jj=1

which is again a linear combination of b;’s; take c; + y;,
j=1,...,J,as coefficients in Eq. 1.
Our main performance measure is the loss fraction, reflect-
ing the quality of the care process. Due to PASTA!, the loss
fraction is equivalent to the fraction of time during which no
bed is available for a certain patient type (bed blocking).

Another important performance measure focusing on
efficiency is the occupancy rate. In case of only dedicated
beds, by Little’s law, the occupancy (in %) for type j is
given by

pj(1—bj)

N 100%. 2)

Since the number of shared beds can differ for different
patient types, it is not always clear how the occupancy
should be determined (i.e., what the appropriate value for
the denominator of Eq. 2 is). However, as the arrival process
is assumed to be exogenous, a decrease in the loss fraction
directly implies an increase in the average number of occu-
pied beds of the particular type (numerator of Eq. 2). For
conciseness and ease of presentation, we only give the loss
fraction throughout the paper.

IPASTA is the acronym for Poisson Arrivals See Time Averages, stat-
ing that the distribution of the number of customer seen by an arriving
customers equals the time average distribution, see [33].
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3 Bed allocations and analysis

In this section, we describe the bed allocation policies
(Section 3.1) and consider their performance analysis
(Section 3.2). Denote the number of type j patients present
at an arbitrary arrival epoch by x;, j = 1,...,J, with
x = (x1, ..., xy) the corresponding vector.

3.1 Bed allocations

The bed allocation strategies differ by the rule used for
accepting newly arriving patients.

Separate wards This policy corresponds to the situation
in which each patient type has dedicated beds, i.e. has its
own ward. Let N; be the number of beds at ward j, with
Z]J-: 1 Nj = N. An arriving patient of type j is admitted if
and only if x; < Nj.

Simple merging This corresponds to fully join the dif-
ferent wards. An arriving patient (of either type) is now
admitted in case ij'zl x;j < N and refused otherwise.

Earmarking beds This policy is useful to guarantee a cer-
tain number of beds for each type of patients in addition
to a shared ward of overflow. We assume that M; beds are
reserved for patients of type j, with > jMj = N.Incase
all beds for type j are occupied there is a ward of over-
flow that is shared by all patient types. The size of this
joint ward is Mjoiny = N — Z]J'=1 M;. In the remainder,
the earmarking policy with bed allocation My, ..., My is
denoted by (M, ..., Mj). An arriving patient of type j is
now admitted in case there is a bed available among the
allocated (earmarked) beds of type j or at the joint ward,
and refused otherwise. For this policy, the earmarked beds
should always be used as much as possible. This means that
if the ward of overflow is full, it should be checked if it is
possible to transfer a patient from the ward of overflow to
a dedicated bed (in particular when a new patient arrives).
From the above considerations, we can now state that an
arriving patient of type j is admitted if and only if

xXj < Mj + Mijoint — Z(xl' - Mp)*,

i#]
where (x)* = max(x, 0). Here, (x; — M;)" represents the
number of beds of the joint ward occupied by patients of
type i.

The earmarking policy may be considered as an interme-
diate option between separate wards and simple merging. In
case Y. jM;j = N the policy of earmarking reduces to the
situation of J separate wards, whereas in case M; = 0 this
bed allocation policy corresponds to simple merging.

Threshold policies There can be a hierarchy in the admis-
sion of patients. To reserve a number of beds for patients
with high priority we employ a threshold policy. For type j
there is a threshold value 7 that represents a maximum on
the number of occupied beds for which patients of type j
are admitted. More specifically, an arriving patient of type
J is admitted in case ), x; < T. Note that the patients of
highest priority have 7; = N. The threshold policy with
thresholds T, ..., Ty is denoted by (71, ..., Ty).

Optimal policy The main aim of the optimal policy is to
compare the performance of the other proposed policies
to best achievable values in case of fully dynamic admis-
sion control. Hence, it provides a benchmark for what is
ideally possible and allows to evaluate the relative perfor-
mance of the corresponding policy. Specifically, the optimal
admission policy minimizes the objective function b(c).
This implies that upon arrival of each type of patient, given
the number of patients of each type present x, it is decided
whether the patient is admitted or refused. Such a policy
might be difficult to implement in a hospital, unless bed
occupancy is digitally registered in real time.

3.2 Performance analysis

Roughly speaking, the performance models can be classi-
fied in three categories, as addressed below. Some structural
properties are discussed in Section 3.3.

Separate wards and simple merging For the cases of sep-
arate wards or simple merging, the performance can be
immediately obtained using the Erlang loss model. The
blocking probability or loss fraction for separate ward i
reads

P /Ni!
N; :
2o pf‘/k!

The total traffic load for the J type of patients equals p =
3 j pj- Using the Erlang loss formula again yields b; =
B(p, N) foralli € {1,..., J} in case of simple merging.

bi = B(pi, N;) =

Earmarking beds A closed-form result for the number of
patients present and the loss fraction can also be derived for
the policy of earmarking beds. Let M;,i = 1,..., J,and N
be fixed, and assume for the moment that the LOS follows
an exponential distribution, and let x(z) denote the vector
of the number of patients at time . The stochastic process
{x(¢),t = 0} then clearly is a Markov process with state
space S = {x € Z_{_ D Xj < Mj 4+ Mioine — Zi#(xi —
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M)T,j = 1,...,J}, see Remark 3.1 for an alternative
representation. The transition rates ¢ (x, x’) are given by

A, X' =x+4e, x+e €S,

!
Xipi, X' =x —e;.

q(x,x") ={

Let m(x) denote the stationary distribution of x(#), which
has the following product form:

It
(;'_1 L’

1_[ x/-!

j=1
where G = )", s ]—[jj-zl p;j /(x;!) is the normalizing con-

stant. This result can immediately be derived by verifying
that 77 (x) satisfies the detailed balance equations

w(x) =

T()A =mw(x +e)(x; + D, x,x+e €S.

To obtain the fraction of refused admissions, define the
sets Sj ={x e S:xj = Mj+Mjoim—Zl-#j(xl~—M,')+}for
j=1,...,J.Using PASTA,we have b; = ersj w(x).

Finally, we note that the product-form result is insensi-
tive to the LOS distribution, see Bonald [2] and references
therein. Hence, we only require the average length of stay to
determine the performance of the earmarking policy without
assuming exponential LOS.

Remark 3.1 Note that the policy of earmarking can also
be interpreted as a special case of a loss network, see,
e.g., Kelly [15]. Let P(A) be the power set of A. The
loss network then consists of J routes and 27 links (the
number of elements of P({1, ..., J})). A call (patient) on
route r then uses all links for which r € P({1,...,J}).
The number of circuits on link I € P({1,..., J}) equals
3 jer Mj + Mjoin.. The state space, also giving the capac-
ity constraints, can thus be written as § = {x € Z_{_
Zje] xXj =< Zjel M + Mjoint, VI € P{L,...,JD}.

Optimal and threshold policies Contrary to the allocation
policies of separate wards, simple merging and earmark-
ing, there are no closed-form results for the performance
of the optimal and threshold policies. For the optimal pol-
icy, we use dynamic programming to find the policy that
minimizes the relative costs b(c). A similar iterative pro-
cedure, based on dynamic programming, can be used to
determine the performance of threshold policies. For these
policies, we require that the LOS follows an exponential
distribution.

First, consider the optimal policy. The state space clearly
isS = {x € ZJ]r : Zj xj < N}. We use uniformization
and first rescale time such that Zj Aj +max;{u;}N = 1.
We associate costs when an arriving patient of type j is
refused, representing the relative values in loss fractions.
More specifically, we associate costs o /A; costs then rep-
resent loss fractions in case o; equals 1. We note that the
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factor 1/A in the costs is due to the fact that the average costs
in the dynamic programming formulation represent average
costs per time unit, whereas we are interested in customer
averages instead of time averages.

The dynamic programming value function V,, at the nth
epoch can then be determined by

J
Vap1(x) = > Ajmin{V, (x + ¢), Vu(x) + e /2}
j=1

J
+wixjVa((x —e)™)

j=1

J
Z A +M]x] Vi, (x),
j=1

where we use the convention that V, (x) = oo for x ¢ S.
Here, the first term represents an arrival, the second a depar-
ture, and the third term is due to uniformization. We note
that at an arrival there is a decision to make. Either the
patient of type j is accepted and the system moves to state
x + ej, or the patient is refused and the systems stays in
state x and incurs costs «;/A. The minimal long-run aver-
age costs and the optimal policy can be found using value
iteration.

We now turn to the performance analysis of a given pol-
icy, e.g., the threshold policy. For convenience, we also
apply value iteration to determine the long-run average
costs. Let w be a deterministic policy and define 7 (j, x) to
be one in case an arriving patient of type j finding x patients
present is admitted and let 7 (j, x) be zero otherwise. The
value function V7 at the nth epoch for policy 7 can then be
determined by

J
VI @) =D 4 (G, 0 Valx +¢))
j=1
+(1 = 70, ) (Va(x) + @j /1)

J
+ ) wjxVa((x —e)h)

j=1

J
Z )L —i—/L]x] Vi(x).
j=1

We determine the value function and long-run average costs
using value iteration again.

3.3 Structural properties

In this part, we discuss a number of structural properties of
the bed allocation policies.
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(i) The optimal and threshold policies coincide in case
the ALOS of the different patient types are identical
(and the LOS is exponentially distributed), as can also
be observed from the first example in Section 4.1.
This is easy to explain by noting that the bed occu-
pancy can then be modeled as a one-dimensional
birth-and-death process. Since the ALOS are identi-
cal, the decision to accept or refuse an arriving patient
now only depends on the available number of beds,
and is independent of the type of patients present. This
results can already be found in Lippman [17].

(i) In the setting of call centers, Gurvich et al. [10] and
Kocgaga and Ward [16] have considered (partly) com-
parable control problems for Erlang C and Erlang A
models, respectively. The authors show that threshold
policies are asymptotically optimal, i.e. the limiting
control scheme is of a threshold type for a sequence
of systems with increasing arrival rates. Although the
models are slightly different and the analysis involves
an asymptotic framework, this supports the idea that
threshold policies should work well in many practical
situations.

(iii)) In some cases, the patient groups can be indexed
according to a priority list based on the values of
aju;j. In case of two patient classes and @1 > pp
and @y > a» (and thus ajpu; > apuo) it holds
that if it is optimal to accept patient type 2 in
some state, then it is also optimal to accept patient
type 1, see Altman et al. [1]. A formal proof of a
stronger result seems rather involved (see also [1]),
and the structure of the optimal policy may differ, see
[22, Example 3].

(iv) The priority list discussed above can be directly used
to determine parameter values for threshold and ear-
marking policies. Again, without loss of generality,
let oy > --- > ayuy. For threshold policies, it
can then be argued that N = T; > --- > Ty, also
see [1]. For earmarking, we can directly conclude that
Mj; = 0, as class J needs no protection from other
classes.

4 Results on bed allocations

For determining suitable bed allocation policies, we need to
consider two different cases that are related by the size of
the system under consideration. Small scale systems tend
not to suffer that severely from multi-skilled staffing issues,
and are treated in Section 4.2. Multi-skilled staffing is only
partly possible in large scale systems, thereby limiting the
type of control. Large scale systems and the distribution of
beds over the different units is discussed in Section 4.3. To
clarify drawbacks related to full flexibility (holding for both

small and large scale systems), we start with two instructive
examples in Section 4.1.

4.1 Instructive examples

We consider two cases in which differentiating between
patient types might be desirable.

Example I: Specialized care Consider two types of
patients in which one type is of specific interest, e.g., it
receives specialized care. Assume that the ALOS of both
patient types is 4 days, i.e., u1 = u2 = 0.25, which roughly
equals the ALOS at an Intensive Care (see also [4]). Let
A1 =5and Ay = 2, yielding p; = 20 and pp = 8.

Now, assume that Ny = 20 and N, = 12, such that
N = 32. In that case, the loss fraction for type 1 and 2
patients are 15.9 % and 5.1 %, respectively, with a weighted
average loss fraction of by = 12.8 %. The difference in loss
fractions may be a deliberate choice due to, for instance, the
specialized care of type 2. Motivated by economies of scale,
the bed allocation policy may be changed into simple merg-
ing. In that case, the loss fraction for both type of patients
becomes 6.6 %. Hence, the average performance improves,
but type 2 (specialized care) is negatively affected.

It is possible to prioritize type 2 patients using one of the
three alternative bed allocation policies. The relative impor-
tance of type 2 is then quantified by ¢ (or &), j = 1,2.
In general, it is not directly clear how to value this relative
importance, unless the weights are identical. Using different
weight combinations, the hospital manager obtains valuable
insights to make this trade-off.

The case in which both patient types are equally impor-
tant (¢; = o) is trivial, since the ALOS of both types are
also identical and the optimal policy is then simple merg-
ing. Consider now the situation that the hospital manager
decides that the loss fraction of type 2 should be well below
5.1 % such that type 2 also benefits from the reallocation
of beds. In case the value of type 2 patients is twice the
value of type 1, i.e. ap = 2«q, the optimal values for the
three policies can be found in the first part of Table 2, where
the parameters of the earmarking and threshold policy are
chosen such that b(c) is minimized under the correspond-
ing policy. An earmarking policy (M1, M>) denotes that M;
beds are dedicated to class i, i = 1, 2, whereas the remain-
ing beds, N — M| — M> are fully flexible. Note that b, is
still above 5.1 % for the optimal earmarking policy. To fur-
ther decrease the value of b, at least 8 or 9 beds should be
earmarked for type 2, see the second part of Table 2. The
optimal and threshold policies thus outperform earmarking.

Consider the case that (0, 9) is a preferable earmarking
allocation (e.g., it is optimal for oy = 4ay). In that case,
only 9 beds require single-skilled staff and 23 beds require
multi-skilled staff. The limited number of multi-skilled staff
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Table 2 Loss fractions in %
for case [; first part corresponds
to optimal values in case

ar = 2«7, the second part to
some earmarking policies

by by brot b(c)
Separate wards (20, 12) 15.89 5.14 12.82 14.29
Simple merging 6.65 6.65 6.65 8.55
Earmarking (0, 3) 6.66 6.64 6.65 8.55
Threshold (31, 32) 9.97 1.99 7.69 8.26
Optimal 9.97 1.99 7.69 8.26
Earmarking (0, 8) 8.42 5.12 7.48 8.94
Earmarking (16, 8) 8.40 5.20 7.49 8.97
Earmarking (0, 9) 9.70 4.29 8.15 9.38
Earmarking (16, 9) 9.68 4.37 8.16 9.41

(one of the main advantages) can then be exploited by
choosing a much larger value for M; with only a minor loss
in performance. For instance, in the second part of Table 2
can be found that the difference in performance of (0, 8) and
(16, 8) and (0, 9) and (16, 9) is negligible.

Alternatively, the possible optimal combinations of loss
fractions for the three policies can be depicted by the effi-
ciency frontier, see Fig. 1. The values on this line give
combinations of b and b, that are optimal for the consid-
ered policy class. From Fig. 1, it follows that the threshold
and optimal policy coincide (see also Section 3.3) and that
they (slightly) outperform earmarking especially for highly
unbalanced loss fractions. In turn, earmarking outperforms
separate wards, in particular for non-extreme blocking prob-
abilities. Note that given the practical disadvantages of the
threshold and optimal policy, it may be preferable to apply
earmarking in some practical scenario’s.

Example II: Patient types with different ALOS Consider
two types of patients with a large difference in ALOS. As
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Fig. 1 Efficiency frontier in case of specialized care at one ward
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an illustration, assume that the ALOS of type 2 patients is
10 times as large as the ALOS of type 1 patients; we take
u1 = 1and uy = 0.1. Let Ay = 20 and A, = 2 such that
the traffic loads are identical, i.e., p; = po = 20.

The current bed allocation is often determined based on
historically acquired privileges. For instance, assume that
N; = 27 and N = 17, such that N = 44. In that case, the
loss fraction for type 1 and 2 patients are 2.7 % and 25.6 %,
respectively. This yields an average loss fraction of by =
4.8 %. Motivated by economies of scale, the bed allocation
policy may be changed into simple merging. However, using
the Erlang loss model, the loss fraction then turns out to
increase to 6.5 %. Similar results in a different setting can
be found in [25], indicating that simple merging does not
necessarily work well in case of patient groups with a large
difference in ALOS.

Remark 4.1 Since the load is identical for both types of
patients it could be suggested to equally divide the number
of beds over the two wards, that is Ny = Ny = 22. In that
case, the loss fraction is 10.7 % for both patient types, which
is much higher than the average of 4.8 % in case of alloca-
tion policy (27, 17). We note that the optimal bed allocation
for separate wards in terms of minimal weighted average
loss fraction is (30, 14) yielding an average loss fraction of
4.1 %.

For the moment, let us assume that both patient types are
of equal importance, i.e., ;1 = «2. The loss fractions (in
%) for the different bed allocation policies can be found in
Table 3. Note that the loss fraction of type 2 is well above
25 % for all optimal policies (except simple merging). This
evidently follows from the large ALOS of type 2 and the
fact that type 1 and 2 are of equal relative importance.

The impact of changing the relative importance (i.e. c;,
j = 1,2) can be seen using the efficiency frontier, see
Fig. 2. In this example, both threshold policies and ear-
marking perform nearly as well as the optimal policy. It can
also be observed that both type 1 and 2 may benefit from
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Table 3 Loss fractions in % for various policies in case II

by by biot
Separate wards (27, 17) 2.68 25.57 476
Simple merging 6.46 6.46 6.46
Earmarking (28, 0) 1.10 29.30 3.66
Threshold (44, 38) 1.22 26.67 3.53
Optimal 0.97 27.97 343

a different bed allocation compared to separate wards if the
blocking probability of type 2 is not too large.

LOS distribution For the analysis of the threshold and
optimal policy, we assumed that the LOS is exponentially
distributed. In practice we sometimes observe that the log-
normal distribution gives a better fit for the length of stay. To
investigate the sensitivity of our approach to the lognormal
LOS distribution we have run several simulation experi-
ments. The average blocking probability for lognormally
distributed LOS is obtained using 100M events divided
among 25 sub runs so that a confidence interval for the aver-
age blocking probability can be obtained using the student’s
t distribution. The confidence was found to be such that
the obtained blocking probabilities are accurate up to two
decimal places.

The parameters of the lognormal distribution, denoted by
w and o2, are chosen such that the ALOS remains the same,
whereas we varied the coefficient of variation. Specifically,
the expectation and the variance of a lognormal random
variable X are

E(X) = "2 Var(X) = (% — 1)e?+o’,

. . . e . 2
Hence, the squared coefficient of variation is cg( =e% —

1. Now, we vary o2 (or cg() and take ;. = In(ALOS) —02/2.

Efficiency frontier
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proportion of blocked type 1 patients

Fig. 2 Efficiency frontier for two wards with different ALOS

As mentioned, there is no difference in results between
exponentially and lognormally distributed LOS for the
policies of separate wards, simple merging and earmark-
ing. The impact only becomes visible for the threshold
and optimal policy. We have run experiments for the set-
tings as in Examples I and II. The results are shown in
Table 4.

We conclude from the simulation experiments that there
is no significant difference in results between exponential
and lognormal LOS for Example I. This can be explained
by the structure of the threshold and optimal policy. Both
admit arriving patients if beds are available, except for a
type 1 patient if there is only 1 bed available, and is therefore
similar to an Erlang loss model. Example II shows some dif-
ference between the exponential LOS and lognormal LOS.
However, the difference is very small and only becomes
apparent to some extent for very small or relatively large
values of o2

4.2 Small scale systems: bed allocation

At the level of a single unit, the patient population is often
diverse. This diversity may be related to medical diag-
nosis, clinical pathway, urgency, or medical discipline for
combined units (such as at an IC that is used by differ-
ent disciplines). Since diseconomies of scale are large for
small unit sizes, organizing dedicated beds for small patient
groups should be avoided. Moreover, the medical staff in
general can treat all patient types visiting the unit so disad-
vantages related to multi-skill workers are of minor concern.
In terms of our bed allocation policies, a unit usually acts in
practice as ‘simple merging’.

From the examples in Section 4.1, it follows that such a
policy may not always deal well with different patient types
in terms of prioritization and ALOS. To determine effective
allocation policies, we now study the performance of bed
allocations for a set of different problem instances. Since the
optimal policy is hard to implement in practice, we compare
it with the performance of simple merging, earmarking and
the threshold policy. To this end, we generate 50 problem
instances at random with the following specifications

2 types of patient classes;
the number of beds N; is uniformly distributed on
[6, 36];

e the average length of stay B; is uniformly distributed on
(1, 14];

e the importance of a patient class «; is uniformly dis-
tributed on [1, 10]; thus, «; /a; is the relative impor-
tance of class i compared to class j;

e the arrival rate of patients A; is such that the relative
offered load (i.e., A; B;/N;) is uniformly distributed on
[0.5, 1.3].
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Table 4 Loss fractions of
types 1 and 2 in % for the

Example I

Example 11

threshold and optimal policy

for lognormal LOS LOS distr. threshold (31, 32) optimal threshold (44, 38) optimal
Exp. 9.97,1.99) 9.97, 1.99) (1.22,26.67) (0.97,27.97)
LogN(u, 0.05) (9.96, 1.99) 9.97, 1.99) (1.38,26.85) (1.09, 28.14)
LogN(u, 0.1) (9.98, 1.99) 9.97,1.99) (1.36,26.81) (1.07,28.11)
LogN(u, 0.2) 9.97,1.99) (9.98, 2.00) (1.34,26.79) (1.06, 28.04)
LogN(u, 0.4) (9.99, 2.00) 9.97, 1.99) (1.31,26.73) (1.03, 28.05)
LogN(u, In(2)) 9.97,1.99) (9.97, 2.00) (1.23, 26.66) (0.99, 28.00)
LogN(u, 0.8) (9.98, 1.99) (9.98, 1.99) (1.22,26.61) (0.97,27.92)
LogN(u, 1.0) (10.00, 1.99) (9.97, 1.98) (1.17,26.57) (0.94, 27.88)
LogN(u, 1.2) (10.00, 1.99) (9.99, 2.00) (1.14,26.54) (0.92, 27.87)

The performance is measured by comparing the costs of
each policy to the optimal policy. Denote by ¢* the optimal
costs, and let ¢, ¢© and ¢ denote the costs associ-
ated with simple merging, earmarking, and the threshold
policy, respectively. The performance is then calculated as
() — ¢*)/c*. Figure 3 shows boxplots of the 50 problem
instances for the three policies. The boxes in the plots are
bounded by the 25th and 75th percentiles, while the central
mark is the median. The whiskers are the lower and upper
adjacent values, respectively, that are within 1.5 times the
interquartile range.

The results show that the threshold policy performs
almost optimally. The maximum relative difference for the
threshold policy is below 3.5 % compared to the optimal
policy, and the average relative difference for all 50 prob-
lem instances is approximately 0.3 %. Simple merging is

Simple merging policy

Earmarking policy

the worst among all studied policies with an average rela-
tive difference that equals 27 %. A huge benefit is obtained
when we switch from simple merging to earmarking, with
an average of the relative difference that is approximately
9 %. We note that the difference between simple merging
and earmarking becomes larger when the load is larger. For
instance, in case we take A; such that the relative offered
load is uniformly distributed on [0.8, 1.3] the average rel-
ative differences are 0.4 %, 9 %, and 49 % for threshold
policies, earmarking, and simple merging, respectively.

It is hard to say something about the situations in which
a certain kind of policy performs well. From our numerical
results, we have seen that the simple merging policy devi-
ates more from the optimal policy as the difference between
p1 and p; increases. The same holds for the threshold pol-
icy. For the earmarking policy it turns out that the higher

Threshold policy
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Fig. 3 Relative difference in average costs for simple merging (a), earmarking policy (b) and threshold policy (¢) compared to the average costs

for the optimal policy
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the difference between «; and o, the bigger the difference
compared with the optimal policy.

Conclusion for practice Threshold policies turn out to be
effective for distinguishing between patient types. More-
over, the rules for admitting patients is relatively simple as it
is based only on the number of available beds present at the
unit. We therefore advocate to use policies of the threshold
type. Our experience in practice is that doctors find it hard
to reject patients when beds are still available. An exception
might be the distinction between urgency classes, which is
supported by medical staff.

4.3 Large scale systems: bed distribution

The distribution of beds among different medical disciplines
usually involves tens or hundreds of beds. The scenario of
simple merging will then be infeasible in practice, as this
would require all medical staff to be trained to treat all
patient types. The threshold and optimal policy suffer from
the same multi-skill problem. So, on a large scale separate
beds for each patient class or earmarking allocations are the
only feasible alternatives.

For the earmarking policy, the shared or flexible beds
may provide sufficient flexibility to utilize scale effects to
a large extent. The lower part of Table 2 already suggested
that some flexibility is sufficient for an efficient bed usage.
As an illustrative example, consider the case of five sym-
metrical wards, each having a load of 20. Note that for
the performance of any earmarking policy, only the load is
required and not the specific arrival rate and ALOS. The
total number of beds available for the five wards is 115.
In Fig. 4 the blocking probability is displayed against the
number of flexible beds (on the horizontal axis). If all beds
are dedicated, then each ward gets 23 beds and the block-
ing probability is 8.49 %. When each ward allows only one
bed to be flexible, resulting in 5 flexible beds overall, the
blocking probability decreases to 4.89 %. Full flexibility, i.e.
letting all 115 beds be flexible, results in 1.36 % blocking
probability. As can be seen from Fig. 4, blocking probabil-
ities below 2 % are already attained with 20 flexible beds.
This illustration shows that a little flexibility is often suf-
ficient to benefit from economies of scale. In particular,
the blocking probability decreases as the number of flexible
beds increases, but this happens in a convex way.

The illustration above indicates how many beds should
be flexible. Another prime practical question is how to dis-
tribute beds across all units. This often is the most relevant
issue as the total number of beds in the hospital is fixed, or
changes in bed allocation should be such that the total num-
ber of beds remain fixed. Such questions can be explored by
trying all combinations of bed allocations, but this number
increases exponentially fast with the number of units in the

Blocking probability
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Fig. 4 Blocking probability as a function of the number of flexible
beds

hospital. Below, we identify guidelines for how many beds
should be allocated to each unit. This allocation generally is
a good starting point, but it may be tuned as there often are
issues that are specific to local conditions. Examples of such
conditions are construction of the building, nurse-to-patient
ratios making it effective to be the number of beds being a
multiple of some integer, historically obtained rights, policy
considerations, etc.

The principle we propose for the distribution of beds
is based on square-root staffing. Recalling that p; is the
offered load for unit i, the capacity should roughly be

si = pi + Biv/pi, 3)

for some B; € R. For actual staffing the s; need to be
rounded. The first term p; reflects that each unit should
be able to handle the average offered load. The second
term B;./p; represents the safety capacity, where §; is the
service level for unit i. Square-root staffing principles orig-
inate from heavy-traffic scenarios, but have turned out to be
robust for smaller system sizes as well. We refer to, e.g., [3,
10, 11, 14, 32] for a more elaborate discussion. We now dis-
tinguish the cases with and without flexible beds; the bed
allocation relies on square-root staffing for both cases.

Bed allocation without flexible beds In the current situa-
tion, hospitals generally organize the clinic using separate
wards. Admission of patients at other wards do occur,
but this is commonly not organized on a structural basis.
In Dutch hospitals it is common that admissions at non-
preferred wards happen after rather exhaustive personal
communications between medical supervisors of differ-
ent medical units. As such, distribution of beds without
organized flexibility is a prominent practical issue at the
moment.
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Using staffing rule (3), the blocking probability for unit i
may be approximated by [14]
¢ (Bi)

bj = B(pi + Bi/pi> pi) X —————,

l i+ b b (Bi)/Pi
where ¢ () and ® () are the density and cumulative distribu-
tion function of the standard normal distribution. The beds
should now be allocated such that the sum of the capacities
is N (see Eq. 4) and that the blocking probabilities satisfy
the relative priorities (see Eq. 5). This yields the following
system of J non-linear equations with as many unknowns
,Bi,i = 1,...,]2

J
p+Y Biyoj =N )

j=1
o B 9B i
AN YW "

In extreme cases, this system of equations may be infea-
sible, for instance when blocking probabilities above 1 are
required to satisfy relative patient values. In that case, it
is recommended to carefully consider the specifications as
such situations reflect unusual behavior in hospital opera-
tions. Otherwise, we opt to minimize the squared difference
between the lhs and rhs of (5) constrained by (4).

As an illustration, we apply the concept above to a spe-
cific example. Consider 5 units representing, for instance,
the different surgical disciplines. Let the load p; and relative
value «; for each discipline be as given in Table 5. Hence,
unit 5 is large, whereas units 2 and 4 have some preference
over the other units. We note that blocking probabilities b;
are calculated using the continuous extension of the Erlang
loss model, such that non-integral values of s; can be taken
into account.

From Table 5 can be observed that the solution to the
system of Egs. 4 and 5 provides satisfying results and yields
a good starting point to determine the final allocation. For
the latter, we need at least rounding of s;.

Ldo )

Bed allocation with flexible beds We assume that the
number of flexible beds Mjoinc is given, and is not part of
the allocation (otherwise, it could be beneficial to make
almost all beds flexible as we did not consider costs for

multi-skilled staff explicitly). This seems reasonable, as the
decision on Mjeiy; is typically influenced by many factors
that are difficult to quantify. We note that the example above
(Figure 4) provides a good intuition for appropriate choices
of Mjoint~

Since there are now closed-form approximations for
the blocking probability, we propose to use the following
approximation scheme. Suppose that the flexible capacity is
infinite. The number of type i patients in the system then has
a Poisson distribution with mean p;, which is approximately
normally distributed for p; not too small. The probability
that an arriving patient needs a flexible bed is then P(X; >
si) ~ 1 — ®(B;), with X; the number of type i patients
at an arbitrary arrival instant. The fraction of time that type
i needs flexible beds should respect the relative value «;
between the different patient types. This is not precisely the
same as the ratio between blocking probabilities, but the
relative difference is typically small (unless the blocking
probabilities are large).

The reasoning above leads to another set of J non-linear
equations with as many unknowns 8;,i = 1,...,J (see
above in case this system of equations is infeasible). Again,
the beds should be allocated such that the sum of the capac-
ities is NV (see Eq. 6) and that the fraction of time flexible
beds are needed satisfy the relative priorities (see Eq. 7):

J
P+ Y Bipj + Mioiny = N (6)
Jj=1
ai(1=®(B) =i (1= (B;), i=2,....J.(7)

Consider the example above from Table 5, but now
assume that it has been decided that 15 beds are flexible.
The allocation of beds and the corresponding blocking prob-
abilities b; can be found in Table 6. Note that the blocking
probabilities have decreased significantly compared to the
situation without flexible beds. Units 1, 3, and 5 now have
slightly less beds than their offered load.

Conclusion for practice Having some flexibility in bed
usage is generally sufficient to cope with peaks in demand.
As such, earmarking allocations are effective. Moreover,
appropriate bed allocations can easily be supported with
quantitative models. Our experience is that having fully flex-
ible beds that are shared by all disciplines in hospitals are

Table 5 Bed allocation

without flexibility load (p;) rel. value (o;) Bi Si loss fraction (b;)
Unit 1 20 1 0.46 22.06 10.5 %
Unit 2 20 2 1.06 24.76 5.4 %
Unit 3 10 1 0.78 12.48 10.2 %
Unit 4 8 5 1.90 13.39 2.5 %
Unit 5 42 1 0.05 42.32 10.9 %
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Table 6 Bed allocation with

15 flexible beds load (p;) rel. value (o;) Bi S N; loss fraction (b;)
Unit 1 20 1 —0.37 18.33 18 3.46 %
Unit 2 20 2 0.46 22.06 22 1.84 %
Unit 3 10 1 —0.37 8.82 9 3.14 %
Unit 4 8 5 1.13 11.20 11 0.88 %
Unit 5 42 1 -0.37 39.58 40 3.58 %

scarce (except for ICs or acute admission units). The same
concept can also be carried out on a slightly smaller scale:
related medical disciplines can partly share their beds accor-
ding to an earmarking allocation. When the scale is large
enough, such a cooperation is expected to perform well.

5 Conclusion and discussion

In this paper we considered different practical alternatives
to full flexibility of clinical beds or simple merging. The
benefit of full flexibility can be easily explained by the
economies of scale. However, full flexibility can be difficult
to manage and may suffer from limited options of special-
ization in addition to issues in training many multi-skilled
medical teams.

Our first contribution is that we propose structural and
practically achievable bed allocation policies that perform
well. For small scale systems, e.g., different patient groups
at a medical unit, the benefits of a larger scale outweighs the
drawbacks. To accommodate priorities of patient types and
differences in lengths of stay, a threshold type of control is
effective. In our numerical experiments we have seen that
the threshold policy is nearly optimal, and in special cases
coincides with the optimal policy.

For large scale systems, e.g., different medical disci-
plines, full flexibility is usually not desirable. However, a
little flexibility is generally sufficient to benefit from most
of the scale advantages. This can be implemented using
an earmarking policy. Only a few members of the medical
team need to be multi-skilled for little flexibility and yet the
advantages are significant. In addition, we have addressed
a prominent practical question of ‘how to distribute a fixed
number of beds over different units?’. Using a square-root
staffing principle, this can be efficiently determined by
solving a set of equations.

The second contribution is that we provide models to
support strategic and tactical decision making about the
number of hospital beds. The performance analysis for
earmarking is being implemented in a decision support
system, exploiting the product-form solution, to facilitate
hospital management in well-founded decisions about bed
management.

From a practical point of view, we envisage that imple-
mentation of fair and flexible allocations is involved due
to historically obtained privileges. Moreover, some specific
characteristics of patient flows may be further explored to
improve the accuracy of the model. For instance, in some
situations, a delay model could be more appropriate than a
loss model. Nonetheless, with the current models we display
some key organizational concepts that are valid in a broader
setting.

From a scientific standpoint, it is of future interest to
find optimal bed allocations when costs are involved for
single-skilled and multi-skilled medical teams (although it
is not straightforward to quantify this in practice). Asymp-
totic regimes may give further theoretical support for the
different bed allocations. Finally, extending the assumptions
of the model could strengthen the conclusion.

Open Access This article is distributed under the terms of the
Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided you give
appropriate credit to the original author(s) and the source, provide a
link to the Creative Commons license, and indicate if changes were
made.

References

1. Altman E, Jiminez T, Koole GM (2001) On optimal call admis-
sion control in a resource-sharing system. IEEE Trans Commun
49:1659-1668

2. Bonald T (2006) Insensitive Queueing models for communication
networks (2006). In: Proceedings of the Valuetools

3. Borst SC, Mandelbaum A, Reiman MI (2004) Dimensioning large
call centers. Oper Res 52:17-34

4. de Bruin AM, Bekker R, van Zanten L, Koole GM (2010) Dimen-
sioning clinical wards using the Erlang loss model. Ann Oper Res
178:23-43

5. Burke EK, de Causmaecker P, Berghe GV, van Landeghem H
(2004) The state of the art of nurse rostering. J Sched 7:441-499

6. Chevalier P, Shumsky RA, Tabordon N (2004) Routing and
Staffing in Large Call Centers with Specialized and Fully Flexible
Servers. Working paper, Simon School, University of Rochester,
Rochester

7. Green LV, Nguyen V (2001) Strategies for cutting hospital beds:
The impact on patient service. Health Service Research 36:421—
442

8. Green LV (2002) How many hospital beds? Inquiry 39:400-412

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

466

R. Bekker et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

. Green LV (2005) Capacity planning and management in hospi-

tals. In: Brandeau ML, Sainfort F, Pierskalla WP (eds) Operations
research and health care, pp 15-41

Gurvich I, Armony M, Mandelbaum A (2008) Service-level dif-
ferentiation in call centers with fully flexible servers. Manag Sci
54:279-294

Gurvich I, Huang J, Mandelbaum A (2013) Excursion-based uni-
versal approximations for the Erlang-A queue in steady-state.
Math Oper Res 39:325-373

Hall R (2012) Bed assignment and bed management. In: Hall
R (ed) Handbook of healthcare system scheduling, pp 177-200
Huckman RS, Zinner DE (2008) Does focus improve operational
performance? Lessons from the management of clinical trials.
Strat Manag J 29:173-193

Janssen AJEM, van Leeuwaarden JSH, Zwart AP (2008) Gaussian
expansions and bounds for the Poisson distribution applied to the
Erlang B formula. Adv Appl Probab 40:122-143

Kelly FP (1991) Loss networks. Ann Appl Probab 1:319-378
Kocaga YL, Ward AR (2010) Admission control for a multi-server
queue with abandonment. Queueing Systems 65:275-323
Lippman SA (1975) Applying a new device in the optimization of
exponential queueing systems. Oper Res 23:687-710

Lynck WIJ (1995) The creation of economic efficiencies in hospital
mergers. J Health Econ 14:507-530

Mandelbaum A, Momcilovic P, Tseytlin Y (2012) On fair routing
from emergency departments to hospital wards: QED queues with
heterogeneous servers. Manag Sci 58:1273-1291

Mandelbaum A, Reiman MI (1998) On pooling in queueing
networks. Manag Sci 44:971-981

McManus ML, Long MC, Copper A, Mandell J, Berwick DM,
Pagano M, Litvak E (2003) Variability in surgical caseload and
access to Intensive Care services. Anesthesiology 98:1491-1496

@ Springer

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Ormeci EL, Burnetas A, van der Wal J (2001) Admission policies
for a two class loss system. Stoch Model 17:513-539

Rothkopf MH, Rech P (1987) Perspectives on queues: combining
queues is not always beneficial. Oper Res 35:906-909

Smith DR, Whitt W (1981) Resource sharing for efficiency in
traffic systems. Bell System Tech J 60:39-55

van Dijk NM, van der Sluis E (2004) To pool or not to pool in call
centers. Prod Oper Manag 17:296-305

van Essen JT, van Houdenhoven M, Hurink JL (2014) Clustering
clinical departments for wards to achieve a prespecified blocking
probability. OR Spectrum, appeared online

Vanberkel PT, Boucherie RJ, Hans EW, Hurink JL, Litvak N
(2012) Efficiency evaluation for pooling resources in health care.
OR Spectrum 34:371-390

Wallace RB, Whitt W (2005) A staffing algorithm for call centers
with skill-based routing. Manufacturing and Service Operations
Management 7:276-294

Walley P, Silvester K, Steyn R (2006) Managing variation in
demand: lessons from the UK National Health Service. J Healthc
Manag 51:309-322

Wolstenholme E (1999) A patient flow perspective of UK health
services: exploring the case for the new “intermediate care”
initiatives. Syst Dyn Rev 15:253-271

Worthington DJ (1987) Queueing models for hospital waiting lists.
J Oper Res Soc 38:413-422

Whitt W (1992) Understanding the efficiency of multi-server
service systems. Manag Sci 38:708-723

Wolff RW (1982) Poisson arrivals see time averages. Oper Res
30:223-231

Young JP (1965) Stabilization of inpatient bed occupancy through
control of admissions. Journal of the American Hospital Associa-
tion 39:41-48



	Flexible bed allocations for hospital wards
	Abstract
	Introduction
	Goals and contribution
	Queueing literature
	Organization



	Model
	Basic assumptions
	Arrival process
	Length of stay
	Beds
	Bed blocking


	Model and notation

	Bed allocations and analysis
	Bed allocations
	Separate wards
	Simple merging
	Earmarking beds
	Threshold policies
	Optimal policy


	Performance analysis
	Separate wards and simple merging
	Earmarking beds
	Optimal and threshold policies


	Structural properties

	Results on bed allocations
	Instructive examples
	Example I: Specialized care
	Example II: Patient types with different ALOS
	LOS distribution


	Small scale systems: bed allocation
	Conclusion for practice

	Large scale systems: bed distribution
	Bed allocation without flexible beds
	Bed allocation with flexible beds
	Conclusion for practice



	Conclusion and discussion
	Open Access
	References


