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ABSTRACT Aquatic fishes face osmotic stress continuously, and the gill is the first
tissue that senses and responds to the external osmotic challenges. However, the
understandings of how the gill microbiota could respond to osmotic stress and their
potential host-bacterium relationships are limited. The objectives of the current
study are to identify the hypotonic responsive genes in the gill cells and profile the
gill microbiota communities after fresh water transfer experiment via transcriptome
sequencing and 16S rRNA gene sequencing. Transcriptome sequencing identified
1,034 differentially expressed genes (DEGs), such as aquaporin and sodium potassium
chloride cotransporter, after the fresh water transfer. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis further highlighted the steroid bio-
synthesis and glycosaminoglycan biosynthesis pathways in the gill. Moreover, the 16S
rRNA gene sequencing identified Vibrio as the dominant bacterium in the seawater,
which changed to Pseudomonas and Cetobacterium after the fresh water transfer. The
alpha diversity analysis suggested that the gill bacterial diversity was lower in the fresh
water transferred group. The KEGG and MetaCyc analysis further predicted the alteration
of the glycosaminoglycan and chitin metabolisms in the gill bacteria. Collectively, the
common glycosaminoglycan and chitin pathways in both the gill cells and gill microbiota
suggest the host-bacterium interaction in gill facilitates the fresh water acclimation.

IMPORTANCE This is the first study using the transcriptome and 16S rRNA gene sequenc-
ing to report the hypotonic responsive genes in gill cells and the compositions of gill
microbiota in marine medaka. The overlapped glycosaminoglycan- and chitin-related
pathways suggest host-bacterium interaction in fish gill during osmotic stress.

KEYWORDS gill, medaka, hypotonic stress, osmosensing, osmotic stress, RNA
sequencingmetagenomics, osmoregulation

Ion and water osmoregulation is critical for the maintenance of tissue and cellular func-
tions. It is important to define cell shape, intracellular osmolality, and various cellular

functions (1). Fishes have an osmoregulatory mechanism to regulate fluid and ion homeo-
stasis to maintain a constant body osmolality during osmotic stress. The gill is the major
tissue for the osmoregulatory processes. Early studies using electron microscopic analysis
reported remodeling of gill cells in different salinities (2, 3). In previous decades, general
characterizations of selected ion transporters and hormonal receptors, such as localization,
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and mRNA/protein expression levels were studied. Recent omics approaches have gained
insights on the genomic or proteomic responses in different fish models (4–8). Medaka
(Oryzias spp.) inhabit diverse osmotic environments worldwide (9). Due to their salinity
adaptability, medaka species have been utilized in research to understand the osmoregu-
latory mechanisms involved in fresh water or seawater acclimation (10, 11). Marine med-
aka (Oryzias melastigma) is native to coastal waters. It can be found in mangroves and has
the ability to adapt and spawn in freshwater (12). In the last few years, marine medaka has
been used to study the environmental marine pollution (13, 14) due to its seawater habi-
tat and well-known genome (15, 16). However, most of the salinity works in medaka spe-
cies were performed in the Japanese medaka (Oryzias latipes) (10, 17–20), which lives in
fresh water. The current study applied RNA sequencing to provide an overview of the hy-
potonic osmoregulatory mechanism in gill of marine medaka.

On the other hand, our understandings of the osmoregulatory mechanism have
mainly focused on the fish itself. The effects of osmotic stress on gill bacteria are not
known. Recent studies have shown the changes of taxonomic microbial compositions
in gut across environmental salinity (21). The gut bacteria are suggested to play roles
in nutrient absorption and immune response for host survival (22, 23). Regarding the
marine medaka, a current report has demonstrated the shift of the gut bacterial com-
munities after the seawater-to-fresh-water transfer experiment (24). Since the gill is
continuously exposed to the external media, the gill bacteria must develop a mecha-
nism to compensate for the osmotic stress. To summarize, this is the first study to inte-
grate the transcriptomics and metagenomics approaches to understand the responses
of gill and the microbiota under the hypotonic stress.

RESULTS

This study used marine medaka (Oryzias melastigma) to study the genome-wide
changes of gene expression in gill and gill microbiota communities upon hypotonic
stress. For the first part of the study, we conducted transcriptomic analysis to identify
differentially expressed genes (DEGs) and the genome-wide molecular regulatory net-
works after fresh water transfer in marine medaka.

General sequencing information of the transcriptome. Sequencing libraries were
prepared from extracted gills of SW and FW and run in the BGISEQ-500 platform. The
general sequencing information about the clean read quality is summarized in
Table S1 in the supplemental material. Briefly, 24.96 million reads per sample, with an
average mapping ratio with reference genome of 92.52% and 72.59% of the average
mapping ratio with genes, were observed. Venn diagrams showed 25,903 identified
transcripts, in which 24,704 transcripts were found commonly in both the control sea-
water (SW) and fresh water transferred (FW) samples (Fig. 1A). The DEGs with signifi-
cant differences were used for the downstream bioinformatics analysis.

DEG and enriched KEGG in freshwater transferred gill. After the seawater-to-
fresh-water transfer, 1,034 DEGs (up, 568; down, 466) were identified (Fig. 1B). The selected
well-known seawater or fresh water transporters’ mRNA expression levels are shown in
Fig. 1C. For example, seawater transporters, such as cftr, nkcc1, and nkcc2 (5, 25), were sup-
pressed after the fresh water transfer. On the other hand, the fresh water transporters like
aqp3, nhe1, and clcn2 (5, 26, 27) were upregulated. The full list of the DEGs is in Table S2.
All the DEGs then underwent the GO analysis. The top enriched GO terms in biological
process (BP), cellular component (CC), and molecular functions (MF) are shown in Fig. 2A.
For BP, metabolic process, response to stimulus, and biological adhesion were found.
Osmotic stress stimulated the cell and triggered the modifications of the adhesion pro-
teins for osmoregulatory mechanisms. Cell migration is a suggested phenotype during
the osmoregulatory progresses (28). Cells have to modulate cell–cell adhesion and gain
motility to move (29, 30). Epithelial-mesenchymal transition (EMT) is a critical process to
change cell adhesion and polarity (31–33). Such progress involves the increase of mesen-
chymal markers but decrease of epithelial markers (34, 35) that could explain the reason
for identifying similar gene enrichment counts on biological adhesion in this study. For
the CC and MF, membrane and transporter activity were ranked as one of the top
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FIG 1 (A) Venn diagram showing the expressed gene between the seawater control and fresh water
transferred gill samples. A total 25,903 transcripts were identified in which 24,704 transcripts were found in

(Continued on next page)
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enrichment terms that reflected the importance of the modification of gill ion transporters
that were located in the cell membrane. The full list of the enriched GO terms is shown in
Table S3. When we presented the BP category data as a directed acyclic graph (DAG), the
chitin metabolic process was significantly enriched via amino sugar metabolism and ami-
noglycan metabolism (Fig. 2B). The details of the DAG are in Fig. S1.

KEGG pathway analysis was performed to show the functional enrichment from the
DEGs. The full lists of the enriched terms (level 2) are shown in Table S4. Pathways such
as fatty acid metabolism, glycosphingolipid biosynthesis, glycosaminoglycan biosyn-
thesis, and steroid biosynthesis were enriched (Fig. 2C). The KEGG-DEG relationship
network was drafted to have a more detailed understanding of the whole regulatory
system in both groups. The network clearly showed that the metabolic pathway was
linked with the mentioned glycosphingolipid and steroid biosynthesis. Readers can
refer to the PDF file (Fig. S2).

Hypotonic stress alters the gill microbial diversity in marine medaka. The 16S
rRNA gene sequencing in gill of marine medaka was performed. A total of 399 sequen-
ces (246 in SW, 196 in FW) were identified by the amplicon sequence variant (ASV)
method. Among them, 43 sequences showed overlap between SW and FW (Fig. 3A).
Alpha diversity was used to analyze the complexity of species diversity in the medaka
fish gill (36). Various indexes are shown in Fig. 3B. For example, the Shannon index
reflects species diversity of the community, which is affected by both species richness
and evenness. Our results showed that FW could lead to a significant reduction of gill
microbial diversity compared to SW (Fig. 3B). Moreover, the calypso analysis was per-
formed to obtain a higher-level analysis of microbial community composition (37). The
network relation is shown in Fig. 3C. The control SW is shown in red, while the FW data
are shown in blue. The result demonstrated that the microbiota communities were
changed after the transfer, in which Vibrio was spotted in SW and Pseudomonas in FW.
Cetobacterium was found in both SW and FW. Phylogenetic tree diagram showed that
certain microbiotas in FW overlapped with SW (Fig. 3C, right bottom).

Osmotic stress triggers changes in the fish gill microbial taxonomic composition.
Distinct diversity patterns between the control marine medaka (SW, red spot), and the
fresh water transferred medaka (FW, blue spot) can be seen after the canonical corre-
spondence analysis (CCA) (Fig. 4A). At the phylum level, the control marine medaka
contained Proteobacteria and Fusobacteriota. After the fresh water transfer, these two
bacteria could still be identified in the samples (Fig. 4B). At the genus level, Vibrio (pink
spot) was the dominant bacteria in the control seawater gill, and the Pseudomonas
(blue spot) was found mainly in the FW gill. Cetobacterium (light green spot) could be
found in both SW and FW (Fig. 4C). Regarding the abundances, Vibrio (;55%) was the
dominant bacteria at the genus level in the control seawater gill. When the fish was
transferred to fresh water, Vibrio was reduced to about 5%, and Pseudomonas was
increased to 17% in FW. Cetobacterium maintained its abundance at around 24% in SW
and 37% in FW (Fig. 4D). The raw data of the samples can be found in Table S5. To
understand the origins of rising FW bacteria during the transfer, we collected the rear-
ing water samples that underwent the sequencing. The principal coordinate analysis
(PCoA) result indicated that the SW gill microbiota (orange) and FW gill (green) were
located apart from the seawater (yellow) and the fresh water (purple) (Fig. 4E and
Fig. S3). Such result suggested that the changes of external aquatic microbiota compo-
sition were not the major factor contributing to the shift of gill bacteria. Such a result
matched the notion that the new external aquatic microbiotas were not able to com-
plete with the well-established microbes (38). Lastly, volcano plots were further used
to show the microbiota composition differences between SW and FW. At genus level,

FIG 1 Legend (Continued)
both groups. (B) Volcano plots of DEGs. DEGs identified in SW/FW; 568 upregulated DEGs and 466
downregulated DEGs were identified in the SW/FW group. Red points indicate the upregulated genes, while
blue represents the downregulated genes. Nonsignificant transcripts were marked gray. (C) Significant DEGs
in FW gill. Selected transporters are shown. The y axis presents the log2 fold change value.
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FIG 2 (A) GO classification of DEGs between groups. GO terms identified in SW/FW group. y axis shows the number of DEGs, and the x axis
indicates the GO terms that were classified into biological process, cellular component, and molecular function. Red bars indicate the upregulated
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14 bacteria had significant differences (Fig. 5A). The hypotonic stress resulted in the
decrease of Vibrio (red underlined) and increase of Pseudomonas (blue underlined)
abundances (Fig. 5B). The full list and statistical data can be referred to (Table S6).
Lastly, the KEGG and MetaCyc analyses were performed to identify the possible func-
tional differences between microbiota in SW and FW. In the KEGG analysis, only the
glycosaminoglycan degradation was identified in the SW/FW group (Fig. 5C). It should
be noted that all the enriched pathways were identified in the SW group, which indi-
cated the gill microbiota after hypotonic stress have relatively lower metabolic activ-
ities. Pathways such as chitin derivative degradation and methionine biosynthesis
were found (Fig. 5D). The full list with static data can be referred to (Table S7).

DISCUSSION

Fish gill is the first and major tissue that contributes to osmoregulation. Marine
medaka has the ability to acclimate in both seawater and fresh water, which indicates
its gill undergoes rapid osmoregulatory mechanisms to control ion loss and water gain
during hypotonic stress.

Modification of selected ion transporters/water channel mRNA expression level
upon hypotonic stress. Numerous genes were changed upon the hypotonic stress in
gills. Our data clearly showed that the two well-known fresh water channels, chloride
channel (clcn2) and water channel (aqp3), were significantly induced in FW gill. It is
known that there are two major gill cells in fishes, which are the pavement cells and
the mitochondrion-rich cells (ionocytes) (39). Ionocyctes are believed to play major ion
regulatory roles during osmoregulation (40). Fresh water acclimation requires the acti-
vation of sodium uptake and acid excretion, chloride uptake, and base secretion (1, 17,
40, 41). Clcn2 belongs to the CLC family of chloride channel/transport proteins. It
involves the chloride efflux pathway and takes part in chloride uptake (42), and clcn2
in eel ionocytes has a higher mRNA expression in fresh water (17, 40). Aqp3 is the
water channel and was found to be induced in eel gill after fresh water transfer (25).
Moreover, sodium hydrogen exchanger 1 (nhe1) was also upregulated in FW, which is
involved in sodium ion and proton regulation, known to be highly expressed in fresh
water environments (25, 27). In addition, it plays important roles in gaseous exchanges
and the acid-base balance in fishes (43–46). On the other hand, seawater transporters
like sodium potassium chloride cotransporter, nkcc1 (slc12a2), and nkcc2 (slc12a1)
decreased their expression about 2- and 4-fold in FW, respectively. In the seawater
environment, nkcc1 and cftr were highly expressed in the seawater-type ionocytes (1,
17, 40, 41, 47). In eel gill, nkcc1 was found upregulated after seawater transfer (25, 27),
while nkcc2 was suggested to play a transition role in hyperosmotic transfer in red
drum (48). Furthermore, cftr decreased its mRNA expression in FW and matched other
publications on fishes (5, 14, 25). Collectively, our findings in whole gill matched those
of other publications on fishes and confirmed the reliability of our sequencing data.

Enriched hormonal and metabolic pathways upon hypotonic stress. Steroid bio-
synthesis and glycosphingolipid biosynthesis were highly enriched after fresh water trans-
fer, indicating their possible chronic roles in fresh water environments. A study in Pacific
white shrimp also identified these two pathways upon chronic low-salinity stress (49).
Steroid hormones are involved in various cellular functions, such as control metabolism,
inflammation, immune functions, and salt and water balance (50). For example, season-
dependent changes in immune status and activities of immune cells in fishes were sug-
gested to correlate with changes in the levels of circulating sex hormones (51, 52).
Enrichment of steroid hormone biosynthesis pathways during osmoregulation was found

FIG 2 Legend (Continued)
genes, while blue indicates the downregulated genes. (B) Directed acyclic graph (DAG) of the selected enriched BP terms. Chitin metabolic process
was significantly enriched after fresh water transfer via amino sugar metabolism and aminoglycan metabolism. (C) Pathway functional enrichment
of DEGs in SW/FW group. x axis represents the enrichment factor, while y axis indicates the enriched pathways. The color indicates the q value: the
blue color represents the lower value, while the white color indicates the higher value. In addition, the point size indicates the number of DEGs.
The greater the rich factor, the more significant the enrichment. Glycosaminoglycan and steroid biosynthesis were found to be enriched in the
SW/FW group.
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in other aquatic organisms, such as cetaceans and white shrimp (49, 53). Moreover, it has
been suggested that the salinity tolerance capacities were related to differential expres-
sion in immune response genes (54). Various transcriptomics studies further demon-
strated the immune-related genes are altered in fresh water environments (55, 56).

On the other hand, glycerophospholipids are glycerol-based phospholipids that

FIG 3 (A) Venn diagram of the ASV detected in the gill of SW control group and the FW group. Different colors represent different groups; the intersection
represents the set of ASV commonly present in the counterpart groups. Of the 399 ASV recognized (246 in SW, 196 in FW), 43 were found in common in
SW and FW. (B) Various alpha diversity measurements of the two groups. Results indicated that the transfer of fish from SW to FW could lead to significant
reduction of gill microbial diversity. (C) The network relationship among the two groups was obtained from Calypso analysis. Vibrio was mainly found in
SW (red spot), while Pseudomonas was in FW (blue spot). Cetobacterium was found in both SW and FW. Tree diagram at the right bottom shows that the
FW (blue spot) shares some microbiota with SW (red spot).
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FIG 4 (A) Canonical correspondence analysis (CCA) was used to show the microbiota communities under the two conditions. Distinct compositions
were found in the control marine medaka (SW, red spot) and progressive-transfer medaka (FW, blue spot). (B) The microbiota community

(Continued on next page)
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are the main component of biological membranes (57). They play roles in protecting
the cell surface by maintaining the stability of the plasma membrane via modifying
the plasma membrane lipid bilayer (58, 59). To maintain and modify the membrane
structure, it is suggested that extra energy is needed, and the identified enriched
fatty acid biosynthesis could provide such energy for osmoregulation compensatory
processes (60, 61).

Relationship between fish and bacteria. Fish have unique and direct interaction
with the surrounding water. They contact microorganisms throughout their lifetime, a
relationship that may be beneficial or pathogenic. The gut microbes have been exten-
sively studied, and researchers identified the host-microbial relationship that contrib-
uted to nutritional provisioning, metabolic homeostasis, and immune response (62,
63). Diet composition and osmotic stress were the factors that alter the gut microbiota
composition (24, 64, 65). On the other hand, studies of gill bacteria were extremely lim-
ited and were mainly focused on the pathological infection issues (66, 67). Currently, a
study of gills of reef fish has suggested that the gill microbiome composition differed
significantly from that of the gut for both adults and juveniles across 15 teleost fish
families (68). However, to our knowledge, there is no study on the effects of osmotic
stress in gill microbiota. The adaptive microbial community shifts concomitant with
the host habitat change may contribute the necessary physiological changes required
for host survival (22).

In the first part of the study, we suggested that the enriched fatty acid biosynthesis
provides extra energy for osmoregulation in gill cell. A study showed that the
enhanced sphingolipid synthesis could improve osmotic tolerance in bacteria (69).
Thus, it is reasonable to link the host-bacterium interaction in the fish gill. In the sec-
ond part of the study, we aimed to identify the effects of hypotonic stress on gill micro-
biota communities and further determine the common enriched pathways that were
shared by the gill cells and its bacteria.

The core microbial habitat in fish gill and its osmosensing mechanism. Studies
in fish guts have identified that Proteobacteria is a major phylum in numerous species
and were found to compose 90% of the gut microbiota (22, 70–72). Vibrio was found to
be the most dominant reported microbiota in marine fish, while Pseudomonas and
Cetobacterium were found in the fresh water fishes (24, 63, 73, 74). Here, our result
showed that the dominant microbiota in the external tissue (gill) was similar to that of
the internal organ (gut). Vibrio, as the dominant bacterium in the gill of marine medaka,
was suggested to have an evolutionary association with marine fish (75). It has been
shown to produce hydrolytic enzymes for breaking down dietary carbohydrates and lip-
ids (76, 77). On the other hand, Cetobacterium isolates under the phylum Fusobacteria
were increased after fresh water transfer (FW). It has been detected in different freshwater
fish guts (71, 73) and was shown to produce vitamin B12 (78, 79).

Osmoregulatory changes for acclimation can be divided into two major stages,
which are the adaptive period with changes in osmotic parameters and the chronic
regulatory period for achieving homeostasis (80). During the adaptive phase, changes
in external osmolality could induce water fluxes across the cytoplasmic membrane that
lead to the modification of intracellular environments such as cellular hydration, mo-
lecular crowding, magnitude of turgor, and cellular integrity (81). For the prolonged
osmoregulatory mechanism, metabolic pathway activation plays a major role. The
enriched methionine metabolism in this study is linked to folate cycle, and the one-car-
bon metabolism of the histone-like nucleoid structuring protein is a key regulator in
sensing the change in osmolality (82).

FIG 4 Legend (Continued)
distribution at phylum level. Proteobacteria was mainly found in the samples. (C) The microbiota community distribution at genus level. Vibrio (pink
spot) was mainly found in SW, while Pseudomonas (blue spot) was in FW. Cetobacterium (light green spot) was found in both SW and FW. (D) The
relative abundance of selected gill bacteria at genus level. Vibrio was highly present in the SW gill. When the fish was transferred to fresh water
(FW), Vibrio was reduced and Pseudomonas was increased. (E) PCoA of rearing water and gill samples. The SW (orange) and FW (green) gill
microbiota were located apart from the seawater (yellow) and the fresh water (purple).
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FIG 5 (Continued)
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Shared enriched chitin-related pathways in gill DEGs and gill bacteria. The study
tried to identify the shared pathways that were enriched in both gill cells and gill bacteria. The
shared glycosaminoglycan and chitin metabolism (Fig. 2B and C and 5C and D) may provide
hints for the bacterium-host relationship in gill during osmotic stress. Chitin is a cellulose-like
biopolymer that is mainly found in marine invertebrates, insects, fungi, and yeasts (83).
Chitinase-like proteins have been found to be involved in immune response (84). A previous
study in crab demonstrated that the gills could participate in chitin degradation and may pre-
vent pathogen infection (85). However, its function in fish gill is not known. On the other
hand, glycosaminoglycan and aminoglycan metabolic processes were shown to be enriched
in various cancers (86, 87), similar to chitin, their roles in fish gill osmoregulation are poorly
understood. It is not possible to confirm the osmoregulatory functions of these pathways by
the current bioinformatics analysis. Nevertheless, the study here suggested chitin and glycoa-
minoglycan metabolism are important in fish gill osmoregulatory events. Further investigation
on this group of genes in the future might discover their new roles in fish osmoregulation.

Conclusions. This is the first study using the transcriptome and 16S rRNA gene
sequencing to report the hypotonic responsive genes in gill cells and the compositions of
gill microbiota in marine medaka. The overlapping glycosaminoglycan- and chitin-related
pathways suggest the host-bacterium interaction in fish gill during osmotic stress.

FIG 5 (A) Comparison of microbiota at genus level between the gill of SW control group and the FW group. y axis shows the genus, and the x axis represents
the log2 fold value. Vibrio was mainly found in SW, while Pseudomonas was dominant in FW gill. (B) Volcano plot of the microbiota. Red indicates the
significant changes in abundances, while green refers to changes without statistical significance. SW was used as the reference. Vibrio was reduced (red
underline) after the fresh water transfer, while Pseudomonas (green underline) increased its abundance. (C) KEGG bioinformatics analysis on the gill microbiota.
Only the glycosaminoglycan degradation was enriched significantly in SW group. (D) MetaCyc analysis showed the 20 enriched pathways with significant
changes. The bar plot shows mean proportions of differential MetaCyc pathways. The difference in proportions between the groups is shown with 95%
confidence intervals. Methionine biosynthesis and chitin derivative degradation were identified that may play roles with the gill cell in osmoregulation.
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MATERIALS ANDMETHODS
Fish maintenance and experimental setup. Six-month-old marine medaka (O. melastigma) was

maintained in seawater at 26°C. Thirty fish were transferred to 50% seawater for 7 days, followed by
fresh water for another 7 days before gill isolation for RNA sequencing and 16S rRNA gene sequencing.
The transfer experiment was based on our previously published protocol (24). Seawater-to-seawater
transfer was performed in another 30 fish as the control group (SW). Fish were kept in one tank for each
condition after the transfer. Gill samples were extracted after the transfer. All experimental protocols
were approved by the ethics committee of Kyushu University, Japan (A19-165-1).

Library construction and Illumina RNA-seq. Total RNA from seawater and fresh water transferred
gills was extracted for transcriptome sequencing (RNA-seq) by TRIzol reagent (Life Technologies, CA,
USA). Five gills (one side) were pooled as one biological sample, with each group containing four rep-
licates for library construction. The sequencing method was based on our previously published pro-
tocol (5). Briefly, RNA concentrations were measured using a Qubit RNA assay kit on a Qubit 2.0 fluo-
rometer (Life Technologies, CA, USA); 300 ng total RNA with an RNA integrity number of .8 was used
for library construction (Agilent Technologies, CA, USA). The Agilent 2100 Bioanalyzer system was
used for qualification. cDNA libraries were prepared using the TruSeq stranded mRNA LT sample prep
kit (Illumina, San Diego, USA) per the protocol. Index codes were ligated to identify the individual
samples. mRNA was purified from total RNA using poly(T) oligonucleotide-attached magnetic beads
(Illumina, San Diego, USA) before fragmentation. cDNAs were then synthesized by using random oli-
gonucleotides and SuperScript II with DNA polymerase I and RNase H treatment. Overhangs were
blunted by treatment with exonuclease/polymerase followed by 39-end adenylation and ligation to
Illumina PE adaptor oligonucleotides. DNA fragments with adaptor molecules on both ends were
enriched by using the Illumina PCR primer cocktail for 15 PCR cycles. Products were purified using
the AMPure XP system and quantified by the Agilent Bioanalyzer 2100 system and then sequenced
by the BGISEQ-500 platform. Sequence reads were filtered by SOAPunke software (v1.5.2) to remove
reads with adaptors, .0.1% unknown bases (N), and low-quality reads (i.e., percentage of bases with
quality of less than 20 is greater than 50% in a read).

Sequencing reads were mapped to the reference genome using Bowtie2 (v2.2.5) (88) with the pa-
rameter settings “-q –phred64 –sensitive –dpad 0 –gbar 99999999 –mp 1,1 –np 1 –score-min L,0,-0.1 -p
16 -k 200,” and then we calculated gene expression level with the RSME software package (89) with
default settings to estimate gene and isoform expression levels from RNA-seq data. The DEGs were
detected by PossionDis with a fold change of$2.0 and false discovery rate (FDR) of #0.001 (90). GO and
KEGG analysis were performed by using phyper, a function of R.

16S rRNAmetagenomic sequencing. Five gill samples (the other side of the same fish) were pooled
as one sample, with each group containing four replicates for metagenomic 16S rRNA gene sequencing.
Rearing seawater and fresh water were collected at the end of the experiment. Bacterial DNA was
extracted by using the DNeasy blood and tissue kit (Qiagen, Hilden, Germany). Bacterial genomic DNA
was then collected and quantified using the Qubit dsDNA HS assay kit (Life Technologies, Carlsbad, CA,
USA) as previously described (91).

A 30-ng sample of genomic DNA was subjected to amplicon PCR reaction to amplify the DNA frag-
ment flanking the V3 and V4 regions of the 16S rRNA gene as previously described (91). Primer sequen-
ces were the following: forward primer, 59-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG CCT
ACG GGN GGC WGC AG-39; reverse primer, 59-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA GGA
CTA CHV GGG TAT CTA ATC C-39. PCR was performed as initial denaturation at 95°C for 3 min, followed
by 25 cycles of denaturation at 95°C for 30 s, annealing at 55°C for 30 s, elongation at 72°C for 30 s, and
a final elongation step at 72°C for 5 min. The 16S V3 and V4 amplicon was purified from free primers
and primer-dimer species using Ampure XP beads (Agencourt Bioscience, Beverly, MA, USA). The library
was quantified using real-time quantitative PCR and quality checked using an Agilent 2100 bioanalyzer
instrument (EvaGreen; Santa Clara, CA, USA). The normalized library was then sequenced by the BGI
sequencer platform.

Bioinformatics analysis, data processing, and ASV prediction. Bioinformatics analysis was carried
out by following a workflow that includes (i) quality assessment and preprocessing of raw sequence
reads with adapter, primer, and base quality trimming, (ii) custom reference database generation, (iii)
amplicon sequence variant (ASV) prediction and taxonomy assignment, (iv) statistical analysis, and (v)
visualization. Unless stated otherwise, data handling, statistics, and visualization were performed using
custom-made Python, Perl, and R scripts.

The quality of raw sequence data was assessed based on the presence of adapters, primers, and low-
quality bases. The presence of these in the data was addressed by trimming the bases off from both
ends of the reads using either standalone or a combination of FastQC v0.11.8, Cutadapt v2.10, and Trim
Galore v0.6.6 while maintaining a minimum Phred quality score of 20 and length of 150 bp for paired-
end (PE) reads. A taxonomy classifier based on 341F-805R universal primer (92), which corresponds to
the V3-V4 hypervariable region in the 16S small subunit ribosomal DNA, was built from Silva 138.1 SSU
NR99 reference database (Silva 138) (93–95) using RESCRIPt plugin in Qiime v2 (Qiime2), 2020.6 release
(96). In brief, Silva 138 was processed starting with trimming of low-quality sequences, filtering sequen-
ces by length and taxonomy (900, 1,200, and 1,400 bases for archaea, bacteria, and eukaryotes, respec-
tively), dereplicating sequences and taxonomy by lowest common ancestor (LCA), and extracting ampli-
con-specific region classifier by Qiime2 feature-classifier extract-reads function. Meanwhile, amplicon
sequences were processed and analyzed by Qiime2 pipeline involving steps that import, merge,
denoise, and classify features from PE reads and associated metadata into a collection of Qiime2 artifact
and visualization files. While —p-min-fold-parent-over-abundance was set to 2, no further trimming and
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truncation of sequences were carried out during denoising. A quality control step was carried out on
denoised sequences to address un- or poorly characterized features using Qiime2 “quality-control
exclude seqs” module at 97% identity threshold and 95% query alignment, searching against full-length
Silva 138 with vsearch. Features classified as chloroplast or mitochondria were excluded from the data
set. Phylogenetic analysis was performed on ASV using Qiime2 alignment and phylogeny functions, gen-
erating a midpoint-rooted tree. Features represented as a table, sequence, distance matrix, phylogenetic
tree, and biom files were exported individually and combined into a phyloseq object using qiime2R for
downstream analysis.

Taxonomic and functional analysis. Taxonomic profiling was carried using phyloseq package (97)
in R 4.0.2. The resulting phylogenetic tree was visualized using the plot_tree function in the phyloseq
package and was annotated with ggtree package (98, 99) in R. Significant difference on alpha diversity
indices between SW and FW groups was tested using one-way analysis of variance followed by post hoc
Tukey honestly significant difference at a 95% confidence level. Likewise, significant differentially abun-
dant taxa at various levels between treatments were identified using DESeq2 (100). Inferences derived
from DESeq2 were based on Wald test for two groups with a parametric fit for dispersion and
Benjamini-Hochberg correction for multiple testing at a 95% confidence level. On the other hand, func-
tional profiling was performed using PICRUSt2 v2.0.0-b with built-in EC/MetaCyc and KEGG/KO data-
bases (101–103). MetaCyc and KEGG pathway abundances were further analyzed using statistical analy-
sis of taxonomic and functional profiles (STAMP) v2.1.3 (104). Statistical significance in pathway
enrichments was calculated between treatments based on White’s nonparametric t test (two-sided) with
bootstrapping at 95% confidence intervals and Storey’s FDR for multiple testing at the 5% significance
level. Finally, cooccurrence network analysis at the family and genus levels was done using Calypso
v8.84 with default parameters (37).

Data accessibility. The sequencing data from this study have been submitted to the NCBI
BioProject (https://www.ncbi.nlm.nih.gov/bioproject) under the accession numbers PRJNA702883 and
PRJNA588335.
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