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Abstract The pancreas is an organ with a central role in
nutrient breakdown, nutrient sensing and release of hormones
regulating whole body nutrient homeostasis. In diabetes
mellitus, the balance is broken—cells can be starving in the
midst of plenty. There are indications that the incidence of
diabetes type 1 and 2, and possibly pancreatogenic diabetes, is
rising globally. Events leading to insulin secretion and action
are complex, but there is emerging evidence that intracellular
nucleotides and nucleotides are not only important as intra-
cellular energy molecules but also as extracellular signalling
molecules in purinergic signalling cascades. This signalling
takes place at the level of the pancreas, where the close
apposition of various cells—endocrine, exocrine, stromal
and immune cells—contributes to the integrated function.
Following an introduction to diabetes, the pancreas and
purinergic signalling, we will focus on the role of purinergic
signalling and its changes associated with diabetes in the
pancreas and selected tissues/organ systems affected by
hyperglycaemia and other stress molecules of diabetes. Since
this is the first review of this kind, a comprehensive historical
angle is taken, and common and divergent roles of receptors

for nucleotides and nucleosides in different organ systems will
be given. This integrated picture will aid our understanding of
the challenges of the potential and currently used drugs
targeted to specific organ/cells or disorders associated with
diabetes.
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Introduction

Diabetes

The incidence of diabetes mellitus (types 1 and 2) is globally
rising, and its appearance is shifting towards a younger age
group. Type 1 diabetes (T1D), or insulin-dependent diabetes
mellitus, is an autoimmune disease that precipitates in geneti-
cally predisposed individuals by environmental factors, pre-
dominantly viral infections. As a result, pancreatic β-cell mass
and function deteriorate and patients become dependent on
exogenous insulin [1]. In type 2 diabetes (T2D), insulin secre-
tionmay be close to normal, at least in the beginning, but target
tissues may be resistant to insulin. With progression of the
disease, metabolic stress factors and cytokines, such as inter-
leukin IL-1β, contribute to decrease in β-cell mass and func-
tion [2, 3]. T2D is usually a later onset disease; it is often
associated with obesity and a low-grade inflammation of adi-
pose tissue and auto-inflammation in islets, and subsequently
altered adipokines profiles may in part contribute to an induc-
tion of hepatic and skeletal muscle insulin resistance [4, 5].

Another, less well recognised, form of diabetes mellitus
is due to exocrine pancreatic dysfunction; the disease ac-
counts for about 10% of diabetic patients, but prevalence
may depend on region/population. This pancreatogenic dia-
betes, referred to as type 3c diabetes, occurs due to inherited
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or acquired pancreatic disease and has a unique pattern of
hormonal and metabolic characteristics and diagnosis may
be difficult [6–9]. Links between concurrent exocrine and
endocrine pancreatic disease and contributing factors are
poorly characterised. Usually, the exocrine pathology is
explained as a result of local insulin deficiency or neuropath-
ological changes in pancreas as a result of diabetes or that
autoimmune disease could involve both endocrine and exo-
crine parts of the gland. The close morphological association
between exocrine cells, especially ducts, and islets and release
of various cytokines from exocrine cells suggests that the
exocrine–endocrine axis is important [10–12]. Recent studies
also show that genetic mutation coding for the acinar digestive
enzyme, carboxyl ester lipase, leads to diabetes [6]. It is
proposed that pancreatogenic diabetes may be more common
and frequently associated with inflammation and sub-clinical
chronic pancreatitis [13, 14].

Generally, diabetic mellitus diseases have in common
inadequate insulin-regulated glucose transport and metabo-
lism in major target tissues—liver, skeletal muscle and
adipose tissue. This results in high circulating levels of
glucose, free fatty acids and pro-inflammatory cytokines
that cause serious problems in many organs, such as cardio-
vascular diseases, neuropathy and pain, renal disease, dis-
turbances in the urogenital and gastrointestinal system, skin
healing problems and skeletal muscle weakness. Events
leading to insulin production and action are complex, but
there is emerging evidence that various components of
purinergic signalling may be important regulatory fac-
tors, both at the level of the pancreas and at the level of
the organs affected. Following the introduction to the
pancreas and purinergic signalling, we will focus on
purinergic signalling associated with diabetes in selected
organ systems.

In order to study the basic mechanism of diabetes, many
cell and animal models have been developed (see for re-
views [15, 16]). Here, we mention a few common animal
models, which have been of particular use in studying the
complexity of organ defects in purinergic signalling.
Streptozotocin (STZ)-induced diabetes in rats has been
widely used [17], but has been questioned as a valuable
model for some aspects of diabetes in man. Other animal
models include alloxan-induced diabetes [18, 19], Bio
Breeder diabetic rats (BBD) [20], non-obese diabetic
(NOD) mice [21] and the murine model of T1D, the RIP-
I/hIFNβ transgenic mouse treated with very low doses of
STZ [22]. For T2D diabetes, leptin-deficient or leptin-
resistant mice (ob/ob and db/db) and Zucker diabetic fatty
rats (ZDF) [23] are the most common models.

In diabetes mellitus, the basic cellular defects in metab-
olism lead to altered intracellular nucleotide levels. The next
section will show that nucleotides have also important reg-
ulatory roles on the outside of the cell.

Purinergic signalling

The purinergic system is a signalling system, where the purine
nucleotides, ATP and ADP, and the nucleoside, adenosine, act
as extracellular messengers. This concept, which was first
proposed 40 years ago [24], met with considerable resistance
for many years, largely because ATP had been established as
an intracellular energy source involved in various metabolic
cycles, and it was thought that such a ubiquitous molecule was
unlikely to be involved in selective extracellular signalling.
However, ATP was one of the first molecules to appear in
biological evolution so that it is not really surprising that it
should have been utilised early for extracellular, as well as
intracellular, purposes. The existence of potent extracellular
enzymes that regulate the amount of ATP and adenosine
available for signalling also provides support that ATP has
extracellular actions [25]. Implicit in purinergic signalling is
the presence of receptors for ATP. A basis for distinguishing
adenosine receptors (P1), from ATP/ADP receptors (P2), was
proposed in 1978 [26]. The turning point in acceptance of the
concept of purinergic signalling was in the early 1990 s, when
receptor subtypes were cloned and characterised. Four sub-
types of P1 receptors have been cloned, namely, A1, A2A, A2B

and A3. A1 and A3 receptors preferentially couple to Gi pro-
teins and inhibit adenylate cyclase, while A2A and A2B couple
to Gs and Go and stimulate production of cyclic AMP (cAMP).
P2 receptors belong to two families based on molecular struc-
ture and second messenger systems, namely P2X ionotropic
ligand-gated ion channel receptors and P2Y metabotropic G
protein-coupled receptors [27, 28]. There are currently seven
subtypes of P2X receptors and eight subtypes of P2Y recep-
tors identified and characterised in mammals [29]. Most P2Y
receptors couple to Gq/G11 proteins and thus activate PLC-β,
except for P2Y12, P2Y13 and P2Y14 that couple to Gi proteins
and inhibit adenylate cyclase, and P2Y11 couples to Gs and Gq

[30]. Functional purinoceptors are expressed by neurons and
most non-neuronal cells (see [31]), including various cells in
the pancreas. Two of the agonist-bound receptors, A2A and
P2X4, have been crystallised [32, 33]. Extracellular nucleotide
and nucleoside concentrations are regulated by a large number
of ecto-nucleotidases, and some of those have also been
crystallised [34].

Purinergic signalling in healthy pancreas

The pancreas is an organ with a central role in nutrient break-
down, nutrient sensing and release of hormones regulating
whole body nutrient homeostasis. The close apposition of
various cells types, and indications that there is an interrelation
between endocrine and exocrine diseases, warrants analysis of
the integrated picture and the possibility that purinergic sig-
nalling may play a coordinating role (Fig. 1). There have been
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a number of reviews on the role of purinergic signalling in
both endocrine and exocrine pancreas [35–39]. Here, we
include only a brief overview, with the latest updates.

There are numerous sources of nucleotides/side within the
pancreas. ATP/ADP is most likely a cotransmitter in both
sympathetic and parasympathetic nerves supplying the pan-
creas and nucleotides are stored and released from hormone-
containing vesicles from endocrine cells [40]. In addition,
ATP is released from enzyme-containing zymogen granules
from acini, where it is accumulated by the vesicular nucleotide
transporter VNUT [41]. Apart from vesicle/granule exocyto-
sis, there may be other mechanisms for ATP release, and this is
highly debated and currently an active research field [42]. A
number of early biochemical studies have shown that the
pancreas expresses several types of ecto-nucleotidases en-
abling conversion of ATP/ADP to adenosine. In pancreatic
islets, ATP pyrophosphatase, alkaline phosphatase, ecto-5′-
nucleotidase as well as NTDPase-3 were found [43]. In exo-
crine pancreas, NTPDase-1 and ecto-5′-nucleotidase were
found in acini, in particular in zymogen granules, and these
were secreted into pancreatic juice in a particular form
(microvesicles). In addition, there are also ATP-generating
enzymes, adenylate kinase and nucleoside diphosphate

kinase, found in pancreatic juice [44]. NTPDase-1 and
NTPDase-2 are also expressed in duct cells, as well as on
blood vessels where the ATP/ADPase activity was strongest.
For the latest review on the cellular and molecular action of
ecto-nucleotidases, see Zimmermann et al. [34].

It has been shown that human β cells express P2X3, P2X5,
P2X7 and P2Y11 and P2Y12 receptors. A large number of
studies on rodent pancreas, islet and cell preparations and β-
cell lines revealed that these express the following P2 receptor
subtypes: P2X1–P2X7, PY1, P2Y2, P2Y4 and P2Y6, P2Y11–
P2Y13; although the functions of some are not known and
there are likely to be differences between species. In general,
some P2 receptors mediate stimulation of insulin release al-
ready in non-stimulating glucose concentrations, while others
may mediate potentiation of glucose-induced insulin secretion
(see [38, 39]). Furthermore, some P2 receptor subtypes (e.g.
mP2Y13, rP2X3) have inhibitory effects on insulin secretion,
probably by stimulating different signalling pathways. Re-
garding adenosine receptors, earlier studies established that
β cells also express A1 receptors that mediate inhibition of
insulin secretion (see [39]). Recent studies indicate that A2B

receptors might also be expressed on β cells where they
mediate inhibition of insulin secretion directly [45] or via the

Fig. 1 Integrated function of pancreas in nutrient breakdown, nutrient
sensing and release of pancreatic hormones. Purinergic signalling plays
significant roles in physiological responses as well as in diabetes.
Distribution of key receptors in pancreatic cells is shown and also
locally produced and blood-born factors that could affect insulin re-
lease and/or β-cell viability. Pancreatic acini secrete digestive enzymes
and ATP. Pancreatic ducts express receptors that are involved in

regulation of bicarbonate-rich fluid secretion. Both exocrine cells can
contribute to the interstitial milieu in the form of nucleotides/nucleo-
sides or secreted cytokines. β Cells secrete insulin and ATP and
purinergic receptors stimulate or inhibit insulin secretion, while others
regulate cell viability. In addition, α cells express receptors that regu-
late glucagon secretion. Figure also shows GLP-1 and GIP that regu-
late both insulin secretion and β-cell mass. For details, see the text
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immune system [46]. Another study also implicates A2A re-
ceptors, which mediate increase in β-cell proliferation [47].
Together, activation of P1 and P2 receptors could exert pulsa-
tile and synchronising effects on secretion of insulin and
glucagon and thus contribute to balanced blood glucose reg-
ulation [35, 37, 48]. Recent studies also show that P2 receptors
may mediate regulation of β-cell mass, which would be
highly relevant to diabetes and is discussed below.

In contrast to β cells, there is less information about
purinergic regulation of other islet cells. α Cells express A2A

receptors, which mediate stimulation of glucagon release,
while A1 receptors mediate inhibition. The P2Y6 receptor also
mediates stimulation of glucagon release, while the P2Y1

receptor mediates inhibition. ADP analogues stimulate so-
matostatin secretion from δ cells most likely via the P2Y1

receptor. P2X7 receptors have been immunolocalised on α
cells [49]. δ Cells express P2Y1 receptors [50].

In exocrine pancreas, acini are a rich site of ATP release,
and they also express and release ectonucleotide/side break-
down enzymes (see above). Rodent acini contain transcripts
for P2Y2, P2Y4, P2X1 and P2X4 receptors, but their function-
ality is low, perhaps indicating a protective mechanism curb-
ing release of digestive enzymes. Secreted luminal ATP, and
adenosine, and also ATP released from nerve endings and duct
cells can regulate pancreatic duct function, which is secretion
of HCO3

− rich fluid that together with acinar enzymes con-
tributes to digestive processes within the small intestine. Pan-
creatic ducts from rodents and human cell lines express P2Y1,
P2Y2, P2Y4, P2Y6 and P2Y11–14, and P2X1, P2X2 and P2X4–
P2X7 receptors. Functional studies show that luminal P2Y
receptors mediate stimulation of mucin secretion and
HCO3

−/H+ transport, and in particular, they stimulate fluid
secretion by activating Cl− channels (TMEM16A and CFTR),
as well as K+ channels (IK, KCa3.1), which potentiate the
secretory effect [51]. P2X7 receptors also mediate regulation
of pancreatic secretion. On the basolateral membrane some
receptors, e.g. P2Y2, mediate down-regulation of secretion,
probably a safety mechanism in over-distended duct. A recent
study on the human adenocarcinoma cell line, PANC-1,
shows that P2Y1 and P2Y6 receptors mediate increase in
proliferation [52]. Pancreatic ducts also express A2A and
A2B receptors that mediate stimulation of CFTR Cl− channels
and therefore secretion.

Pancreatic stellate cells (PSCs) are thought to be important
in inflammation and fibrosis, and their role in pancreas cancer
and chronic pancreatitis has been well studied, but their role in
diabetes is less clear. At the messenger RNA (mRNA) level,
PSCs express P2Y1, P2Y2, P2Y6, P2X1, P2X4 and P2X6

receptors. Micromolar concentrations of ATP stimulate nucle-
ar Ca2+ signals, which may stimulate proliferation of this cell
type [53]. A recent study shows that the P2X7 receptor on PSC
also can stimulate proliferation of these cells but also cell
death, depending on the ATP concentrations [54].

Purinergic signalling in diabetes

Pancreas

Let us start with intracellular events in β cells, where the
primary defect in intracellular signalling, membrane trans-
porters, metabolic processes or regulation thereof, may lead
to a decrease in insulin secretion and, in the worst case, cell
death. In normal β cells, glucose entry via GLUT (GLUT2
in rodents, GLUT1/3 in humans) and its metabolism leads to
the production of ATP, which closes ATP sensitive K+

channels (KATP), and this in turn leads to depolarisation of
the plasma membrane, influx of Ca2+ and a chain of signal-
ling events that culminate in exocytosis of insulin (and
ATP). Two incretins, GIP and GLP-1, potentiate insulin
secretion and synthesis, as well as preserving β-cell mass
[55]. In normal pancreatic β cells, glucose also stimulates
polyphosphoinositide (PPI) hydrolysis via activation of a
phosphoinositide-specific phospholipase C. In STZ-
injected neonatal rats, glucose-induced PPI hydrolysis was
severely diminished and was associated with reduced
insulin-secreting responses to glucose [56]. A further cyto-
toxic effect of STZ on β cells may be due to a reduction in
the intracellular level of ATP and thus activation of KATP,
hyperpolarisation of cell membrane and reduction of insulin
release [57]. Nevertheless, KATP channel openers, such as
diazoxide, can counteract chronic over-stimulation of β
cells and have been proposed to have beneficial effects in
a subgroup of T2D [58]. Gain-of-function mutations in
KATP channel subunits SUR1 or Kir6.2 can cause transient
or permanent neonatal diabetes, for example, as demonstrat-
ed in a study of R826W mutation in SUR1 [59]. The
intracellular ATP/ADP ratio is a coupling factor between
glucose metabolism and insulin release [60]. Glycation end
products, which are implicated in diabetic complications,
inhibit cytochrome c oxidase and ATP production, resulting
in impairment of glucose-stimulated insulin secretion [61].

In addition to intracellular functions, extracellular
nucleotides/sides regulate pancreatic islet cells (Fig. 1), as
well as a range of organs affected in diabetes. Evidence for
the role of purinergic signalling in relation to diabetes was
obtained in early experiments in the 1970–1980 s. Studies
on a diabetic rat model using alloxan and dithizone [62, 63]
showed that ATP was protective by reducing blood sugar
levels. Infusion of ATP into the carotid artery increased the
sensitivity of alloxan-diabetic rats to glucose, suggesting
that a possible cause of diabetes was a defect in purinergic
innervation of the islet cells [64].

Two early studies on different animal models of T1D and
T2D showed that, although the insulin response to glucose
was lost, insulin secretion to P2 receptor agonists was pre-
served (Fig. 2). In the isolated perfused pancreas of STZ-rats,
ADPβS, a potent P2Y1 receptor agonist induced insulin
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release that was similar to that in control rats, and this was
independent of glucose concentration 5–28 mM [65, 66]. In
ZDF rats, increases in [Ca2+]i and insulin secretion by pan-
creaticβ cells were preserved and mediated by P2Y receptors,
again with ADPβS being most potent [66]. Consequently, a
number of studies focussed on developing stable P2Y1 recep-
tor agonists as potential insulin secretagogues (e.g. 2-
methylthio ATP-α-β, A isomer and stable dinucleoside

polyphosphate analogues); however, a vasodilatory effect
was a risk factor [67–70]. Also using a mouse model, another
pattern regarding the P2Y1 receptor appears. In islets isolated
from P2Y1

−/− mice, insulin secretion was significantly in-
creased at high stimulating glucose concentrations compared
to wild type [71].

In a histochemical study on STZ-diabetic rats, the follow-
ing picture was revealed. In pancreatic islets, P2Y1 receptors
were present in intra-islet capillaries, while P2X4 receptors
were present on β and δ cells. Pancreatic duct cells still
expressed P2Y1 and P2Y2 receptors, while P2X1, P2X3,
P2Y1 and P2Y2 receptors were expressed in small pancreatic
blood vessels [72]. α Cells expressed P2X7 receptors in
healthy pancreas on the periphery of islets. These P2X7-im-
munoreactive cells migrated to the centres of islets to replace
the lost β cells in both STZ-diabetic rats and NOD mice [72,
73]. In another study, P2X7 receptors were also claimed to be
expressed β cells; P2X7 receptors were down-regulated in
T2D, but up-regulated in human obesity [74]. In human islets,
the receptor seems to be involved in secretion of insulin and
the IL-1 receptor antagonist IL-1Ra.

Regarding adenosine receptors, older studies showed that
STZ diabetes suppressed the stimulatory action of adenosine
on glucagon secretion from pancreatic α cells and reduced
vasodilation of the vascular bed [75, 76], via A2 receptors [77].
Several studies showed that a nonspecific adenosine receptor
agonist, adenosine-5′-N-ethylcarboxamide (NECA), de-
creased insulin secretion and increased blood glucose and
decreased glucose uptake. Studies on A1

−/− mice showed
increased insulin and glucagon secretion [78]. A recent study
on A1 receptor knockout mice showed that fasting glucose and
insulin secretion were significantly higher, but insulin sensi-
tivity was impaired as reflected by reduced glucose uptake in
muscles and adipose tissue [79]. However, the effects could
not simply be explained by an A1 receptor effect on insulin
secretion of β cells. Several studies with non-selective adeno-
sine receptor agonists showed the following. NECA decreased
blood glucose in STZ-diabetic and cyclophosphamide-treated
NOD mice; it increased pancreas insulin content and
suppressed expression of pancreatic proinflammatory cyto-
kines (TNF-α, MIP-1α, IL-12 and INF-γ) and in immunore-
active cells [80]. This effect was most likely mediated via the
A2B receptor, although the authors proposed that this was not
at the level of the pancreas. In other studies, infusion of
specific A2B receptor blockers increased insulin secretion in
INS-1 cells and also in T2D model of Goto-Kakizaki rats,
indicating that the effect could be at the pancreas level [45].
Furthermore, a study on a mouse model for T2D suggested
that the increased expression of A2B receptors on endothelial
cells and macrophages enhances production of IL-6 and that
this results in stimulation of an inflammatory response and
insulin resistance in skeletal muscle, adipose tissue and liver;
effects on pancreas were also considered [46].

Fig. 2 Perfusion of isolated rat pancreas with ADPβS and glucose. a
Pancreata isolated from Zucker lean controls (ZLC) were perfused for
30 min with perfusate containing 5 mM glucose (first 15 min not
shown). ADPβS (15 μM) was applied into perfusate as shown by
horizontal bar. ADPβS produced a biphasic insulin release. Raising
glucose to 10 mM produced a biphasic insulin secretion. b Pancreata
isolated from Zucker diabetic fatty (ZDF) rats were perfused using the
same protocol as in a. ADPβS (15 μM) caused a much larger biphasic
insulin secretion while glucose induced a small and transient insulin
release. c Perfusion of isolated rat pancreas from Wistar rats with
ADPβS and glucose. (Reproduced from [66], with permission)
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A key factor in the pathogenesis of diabetes is the pan-
creatic β-cell mass (especially T1D). In order to understand
β-cell function and survival at the integrative level, explo-
ration of the mechanisms of purinergic signalling together
with incretins and inflammatory signals will be necessary.
Here, are some trends in these directions. Pro- and anti-
inflammatory cytokines, originating from various local or
invading cells or from other organs, can influence prolifer-
ation and apoptosis of β cells [81]. A number of purinergic
receptors have similar abilities to mediate cell proliferation
and apoptosis and activities via the P2X7 receptor may be
able to support both functions [82, 83]. The P2X7 receptor
and cytokine systems can be related. For example, in mac-
rophages, the P2X7 receptor is involved IL-1β secretion,
and in T cells, it caused MHC-I shedding and extravasation
[82]. The two incretins, GLP-1 and GIP, augment insulin
secretion, but also have proliferative and anti-apoptotic ef-
fects on β-cell mass [55].

Recently, there have been studies addressing the question
of purinergic signalling and β-cell survival, and the sum-
mary of data is depicted in Fig. 3. P2Y6 receptor agonists
not only increase insulin secretion in MIN6 mouse β cells,
but they also prevent β-cell death induced by tumour ne-
crosis factor-α [84]. In contrast, activation of the P2Y13

receptor of the mouse pancreatic insulinoma cell line,
MIN6C4, has pro-apoptotic effects [85]. Furthermore, high
glucose and free fatty acids induce β-cell apoptosis via
autocrine ADP action on the P2Y13 receptor [86]. Extracel-
lular ATP (1 μM) increased insulin secretion in mouse β-
cell lines, but at higher ATP concentrations, cell viability
decreased and P2Y1 and P2X4 receptors were implicated
[87]. The P2X7 receptor knockout mice had lower β-cell
mass, impaired glucose tolerance and defective insulin and

interleukin secretion [74]. Recent studies address the ques-
tion of adenosine in β-cell mass using screening assays.
Using a zebra fish model of diabetes, it was found that the
non-specific adenosine agonist, NECA, increased prolifera-
tion of β cells but not other endocrine cells, and the data
suggest that this was via A2Aa receptors. In STZ-diabetic
mice, NECA also increased the number of β cells and
improved glucose control [47]. In another screening study,
it was found that adenosine kinase inhibitors increased
rodent and porcine β-cell replication. It was proposed that
the nuclear enzyme regulates adenosine levels and the
mTOR cell proliferation pathway [88].

Earlier reviews describing the roles of purinergic signal-
ling in insulin secretion and diabetes in relation to the
pancreas are available [89–91]. Below, we will review evi-
dence for the role of purinergic signalling in various organs
affected by hyperglycaemia in diabetes and indicate whether
any of those can be potential targets for organ-specific
treatments in diabetes.

Cardiovascular system

Problems associated with diabetes and the cardiovascular
system are many and include hypertension, atherosclerosis,
cardiac disease, microvascular pathology in several organs
and disturbances in blood cells. In particular adenosine re-
ceptors, but also P2 receptors, nucleotide/side converting
enzymes and transporters, are affected in the diabetic vas-
cular system; effects vary depending on the organ and local
regulatory system. In general, in a healthy vessel, there is
P2X receptor-mediated vasoconstriction and P2Y receptor-
mediated vasodilation via stimulation of nitric oxide (NO)
synthase and NO release from endothelial cells. On endo-
thelial cells, A1 receptors also mediate stimulation of NO
release in some vessels. In the heart, adenosine is
cytoprotective, and it slows sinoatrial and atrioventricular
conduction, resulting in decreased heart rate, coronary va-
sodilatation, and it attenuates the functional and metabolic
effects of β-adrenergic receptor stimulation, and in particu-
lar it has significant effects on glucose and fatty acid me-
tabolism [92, 93]. Thus, adenosine helps to restore the
balance in myocardial O2 supply–demand, and there is
evidence that all four adenosine receptor subtypes expressed
in various cells in the heart exert cardioprotective effects
[92]. In the following paragraphs, we will review the orig-
inal studies that support the notion that purinergic signalling
is involved in the diabetic cardiovascular system.

Both microvascular pathology and sympathetic denerva-
tion are present in alloxan-induced diabetes in rats [94].
Twelve weeks after induction of STZ diabetes, there was
prejunctional impairment of sympathetic transmission via P1
receptors and impaired endothelium-mediated vasodilation by
ATP of the rat mesenteric arterial bed [95]. In contrast, at

Fig. 3 Purinergic receptors have effects on β-cell mass. Receptors
marked in green increase β-cell mass (proliferation/replication), while
those marked in red mediate β-cell death (apoptosis). Some purinergic
receptors exert cytoprotective actions when cells are exposed to other
factors, e.g. cytokines. The effects of P1 and P2 receptor stimulation on
cell viability and/or insulin release may be dependent on concentra-
tions of nucleotides/sides. For details, see the text
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8 weeks STZ diabetes, the functions were unimpaired, al-
though sensory-motor nerve-mediated vasodilation was atten-
uated [96]. Enhanced ATP-induced contraction of mesenteric
arteries from diabetic Goto-Kakizaki rats at the chronic stage
of diabetes was shown to be due to increased cPLA2/COX
pathway activity in smooth muscle [97]. It was shown further
that the angiotensin II type 1 antagonist, losartan, normalises
the P2Y receptor-mediated contraction. P2Y receptor-
mediated insulin stimulating responses of β cells and of the
pancreas vascular bed were preserved in STZ-diabetic rat
pancreas [65]. In the tail artery of STZ-diabetic rats, there is
an increased neurotransmitter role for ATP compared to its
cotransmitter noradrenaline (NA) in sympathetic nerves and
an increased potency of ATP via P2X receptors [98].

The sensitivity of platelet aggregation by ADP is in-
creased in diabetic patients, and this may contribute to
microangiopathy [99]. Platelets of T2D patients were
characterised by high ATP content [100]. The activity of
both NTPDase and 5′-nucleotidase of platelets (and synap-
tosomes) showed increased activity in alloxan-induced dia-
betes [101, 102]. Adenosine deaminase and 5′-nucleotidase
activities were higher in platelets in diabetic patients than
control subjects [103]. In erythrocytes, ATP concentration is
influenced by insulin levels in plasma [104], but there is
impairment of ATP release from human erythrocytes in
T2D, which may contribute to the vascular disease [105].
Interestingly, in blood serum of STZ-treated rats, nucleotide
hydrolysis rates were increased, but these could return to
control in rats subjected to physical training [106].

In human subjects with T2D, the vasodilator actions of
ATP, UTP and adenosine in skeletal muscle were dimin-
ished by 50% compared to controls, and this effect was most
likely due to altered receptor sensitivity [107]. A similar
conclusion was reached in a study of another vascular bed;
soon after the onset of alloxan-induced diabetes in rabbits,
retinal blood flow velocity decreased following ATP or
2′(3′)-O-(4-benzoylbenzoyl) adenosine 5′-triphosphate infu-
sion and P2X7 receptors were implicated [108]. However,
vasodilator effects of adenosine on retinal arterioles were
preserved in STZ-diabetic rats [109].

Adenosine receptors are major regulators of vascular
beds in many organs. Adenosine and AMP enhanced the
NO synthase response to inflammatory cytokines in diabetic
vascular smooth muscle cells from rat aorta [110]. Relaxa-
tion of the rat aorta by adenosine via A2 receptors and
endothelial release of endothelium-derived relaxing factor
(EDRF) was attenuated in the STZ-diabetic rat [111], al-
though an earlier study found similar release of EDRF in
response to cholinergic stimulation, but enhanced release of
oxygen free radicals in diabetic preparations [112]. It has
been proposed that foetal endothelial dysfunction in gesta-
tional diabetes mellitus involves a functional link between
adenosine and insulin signalling [113]. Adenosine inhibited

the enhanced growth of aortic smooth muscle cells in STZ-
diabetic rats [114].

In the heart, adenosine protects the myocardium against
ischaemic and reperfusion injury; it has negative inotropic
and chronotropic effects and attenuates proliferation of fi-
broblasts. Diabetic patients have ventricular hypertrophy
and reduced tolerance to stress. Atria from 6 week STZ-
diabetic rats exhibited supersensitivity to the negative ino-
tropic and chronotropic effect of adenosine, postulated to be
due to impairment of the adenosine uptake mechanism on
plasma membranes [115]. Also in diabetic rat cardiac fibro-
blasts, altered expression of nucleoside transporters was
detected, and this was proposed to lead to increased uptake
but decreased release of adenosine [116].

Myocardial over-expression of adenine nucleotide
translocase 1 on inner mitochondrial membranes accelerates
mitochondrial ATP/ADP exchange and ameliorates diabetic
cardiomyopathy in mice, a promising target for diabetic car-
diomyopathy [117]. Diabetic cardiomyocytes from rats treated
with losartan maintained the capacity to respond to ATP
depletion leading to contractile failure [118]. STZ diabetes in
rats resulted in an increase in A1 and A3 receptor protein levels
in cardiac myocytes, while A2A receptor protein expression
remained unchanged [119]. Heart rate response to adenosine
infusion (increase due to A2 receptors) is diminished in pa-
tients with diabetes mellitus, probably due to cardiovascular
autonomic neuropathy [120, 121]. In accordance, a prelimi-
nary study showed that ATP and ADP hydrolysis was de-
creased in cardiac synaptosomes of STZ-rats, and this effect
was reversed with insulin treatment [122].

One of the receptors linked to many diseases is the P2X7

receptor. It was hypothesised that P2X7 receptors participate
in the pathogenesis of vascular complications in diabetes,
based on experiments showing that high glucose concentra-
tions triggered the assembly of P2X7 receptors and apopto-
sis in skin fibroblasts that share some of the features with
smooth muscle cells [123]. Accordingly, human fibroblasts
from diabetic patients had enhanced P2X7 receptor activity
[124]. Nevertheless, another paper from this group also
showed that P2Y receptor-dependent GLUT1 activation
was defective in fibroblasts from the T2D patients [125].

Gestational diabetes is first recognised in pregnancy and
is associated with abnormal foetal development and perina-
tal complications. There is a low capacity of adenosine
transport by the foetal endothelium of umbilical vein in
gestational diabetes leading to accumulation of extracellular
adenosine and its action on endothelial A2A receptors
[126–128]) and insulin reversed these effects [129].

Nervous system

Diabetic neuropathy, characterised by nerve fibre atrophy
and loss, was recognised early (for reviews, see [130–133]).
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In T2D animal models, there was early evidence for in-
creased sympathetic activity in STZ-diabetic rats. Mice with
spontaneous diabetes show changes of sympathetic function
similar to those found in diabetic patients with autonomic
nerve pathology [134]. In addition, sympathetic nerves in
pancreatic islets are impaired in BBD rats [135]. STZ-
diabetic mice at 7 weeks showed reduced cutaneous sensory
innervation and reduced expression of P2X3 receptors in
footpad skin [136].

Painful diabetic neuropathy is a complication of diabetes;
it causes hyperalgesia and allodynia [137]. Modulation of
cutaneous polymodal receptors in diabetic rats by sympa-
thetic nerves (which release ATP and NA as cotransmitters)
has been reported [138]. Adenosine seems to be protective.
An adenosine kinase inhibitor, which increases extracellular
levels of adenosine, attenuates tactile allodynia in a rat
model of diabetic neuropathic pain [139]. Allosteric en-
hancers for A1 receptors are targets for neuropathic drug
development [140]. Peripheral neuropathy, vascular disease
and oedema are some of the factors responsible for impaired
healing after trauma and infection. Adenosine receptor ago-
nists have been proposed for promotion of dermal wound
healing, particularly for diabetic foot ulcers [141]. In some
neuropathic pain models, there is activation of dorsal horn
microglia and P2 receptors (P2X4 and P2Y12) [142]. In
STZ-diabetic mice, the levels of P2X2 and P2X3 receptor
mRNAwere significantly increased in dorsal root ganglion,
suggesting that the up-regulation of these receptors is asso-
ciated with mechanical allodynia [143]. A substantial en-
hancement of P2X3 receptor activity and an increase in
expression of P2X3 receptors was reported recently and
claimed to contribute to the development of chronic pain
in STZ-induced diabetic rats [144]. As another approach,
the protective actions of adenosine were investigated in
STZ-diabetic rat models of neuropathic pain. Using antago-
nists, it was concluded that analgesic actions of adenosine
were exerted via A1 receptors [145].

Regarding the effect on the brain, in alloxan-diabetic rats,
there are abnormalities in activity but not expression of G
proteins in the striatum [146]. Diabetic encephalopathy results
in cognitive impairment and modification of hippocampal
function. In STZ-diabetic rats, there was a decrease in ATP
concentrations in cerebrospinal fluid, decrease in density of
P2X3,5,7 and P2Y2,6,11 receptors in hippocampal nerve termi-
nals, but an increase in P2X1,2.5,6,7 and P2Y6 (but not P2Y2)
receptors in membranes of astrocytes/neurones, indicating
changes neuro- and gliotransmission [147]. There is decreased
adenosine uptake in hippocampus of STZ-diabetic rats. This
can increase adenosine sensitivity of synaptic potentials [148]
and accelerate ischaemic block of population spikes in hippo-
campal slices [149]. The balance between inhibitory A1 and
facilitatory A2A receptor activation was modified in the hip-
pocampus of STZ-diabetic rats; A1 receptors were down-

regulated, while A2A receptors were up-regulated [150]. In
patients with diabetic neuropathy, there are abnormalities of
Ca2+/Mg2+ ATPase activity in erythrocytes, and the results
were interpreted in favour of altered Ca2+ homeostasis and
microangiopathy playing a role in the pathogenesis of diabetic
neuropathy [151].

Retina

Diabetic retinopathy, involving capillary abnormalities, is of-
ten seen in the early stages of diabetes (see [152]). The
involvement of damaged sympathetic nerves (that release the
cotransmitters NA and ATP) in the deterioration of capillaries
and loss of ganglion cells was proposed [153]. High glucose
alters the purinergic signalling system in the retina. Firstly, it
increases the exocytotic release of ATP from cultured retinal
cells and also decreases its extracellular degradation, both of
which result in high levels of ATP [154]. Second, retinal
neurons and microglia cultured in high glucose media aug-
mented Ca2+ responses to P2 receptor stimulation, which may
increase release of neurotransmitters and inflammatory medi-
ators and thus lead to the inflammation involved in the path-
ogenesis of diabetic retinopathy [155].

ATP andADP but not adenosine stimulate phosphoinositide
metabolism in endothelial cells from bovine retinal
microvessels, and it was proposed that this may be involved
in the pathophysiology of diabetic retinopathy [156]. In addi-
tion, the formation of P2X7 receptor pores is enhanced in
retinal microvessels early in the course of experimental diabe-
tes [157]. Extracellular ATP induces cell death of retinal
microvessels via P2X7 receptors and voltage-activated Ca2+

channels, and it was proposed that activation of P2Y4 receptors
triggers a series of events that prevents P2X7 receptor-
mediated pores and toxicity in retinal microvessels [108,
158]. Diabetic retinopathy is associated with macula oedema,
which may be due to breakdown of blood–brain barrier and
other effects, such as dysfunction of glial cell volume regula-
tion. Activation of A1 receptors restores cell volume regulation
of glial cells in the diabetic rat retina [159].

Kidney

Glomerular hyperfiltration, hypertrophy and microvascular
dysfunction are the leading hallmarks of early diabetes leading
to progressive nephropathy and hypertension. Diabetic ne-
phropathy leads to end-stage renal disease, morbidity and
mortality. The kidney is an interface between vascular and
epithelial systems, and both are regulated by P1 and P2 re-
ceptors. Regarding the vasculature, adenosine signalling has a
prominent but complex role. In STZ-diabetic rats, adenosine
enhanced vasoconstriction of the kidney vascular bed via A1

receptors [160]. It was suggested that the increased vasocon-
strictor effect of adenosine on the diabetic renal vasculature
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was caused by defective NO-dependent renal vasodilation of
the afferent arterioles [161]. A1 receptor knockout mice de-
veloped diabetic-induced glomerular hyperfiltration, which
suggested that the tubuloglomerular feedback (TGF) mecha-
nism is not involved in the development of hyperfiltration
[162]. However, in a later paper, it was shown that A1 receptor
knockout blunts glomerular hyperfiltration and the salt para-
dox in early STZ diabetes [163]. Furthermore, a study on an
A1 receptor over-expression mouse model shows that it is a
crucial receptor for regulation of afferent arteriole tone [164].
The general scenario is that in response to salt load, macula
densa cells release ATP, which can be hydrolyzed to adeno-
sine, and A1 (and P2X1) receptors on the afferent arteriole
mediate TGF responses (see [165, 166]). The tubulo-centric
hypothesis, which requires further support, states that in-
creased glucose load and absorption in proximal tubule (as
in diabetes mellitus) decreases electrolyte to macula densa and
thus down-regulated TGF causes increased GFR and
hyperfiltration. Vasodilatory effects are mediated via A2 re-
ceptors, A2A on endothelial cells increase NO production; A2B

receptors are expressed in podocytes. In addition, A2A recep-
tors are also general anti-inflammatory receptors (see [167]).

There is evidence for altered adenosine level and adenosine
receptor expression in diabetes. Reasoning that glomerular
hyperfiltration in diabetes may be due to decreased vasocon-
striction by adenosine, it was shown that inhibiting adenosine
uptake by dipyridamole prevented early alterations in kidney
function associated with diabetes [168]. In addition, adminis-
tration of an adenosine analogue decreased diuresis and gly-
cosuria in STZ-diabetic rats, although the non-specific
adenosine receptor antagonist seemed to have different effects
[169]. Agonists to adenosine receptors attenuated glucose and
protein excretion in diabetic Wistar rat kidneys [170]. How-
ever, if adenosine levels are too high and low sensitivity A2

receptors are activated, the effects may become different.
There is a significant increase in levels of adenosine (and
purine metabolites) in plasma of patients with diabetic ne-
phropathy compared to T2D patients without nephropathy
[171]. Glomeruli of diabetic rats accumulate six times more
adenosine than control tissues, and this is due to decreased
nucleoside uptake activity and increased AMP hydrolysis; a
possible consequence is activation of A2B receptors that then
cause release of transforming growth factor β1 (TFG-1β) that
may contribute to glomerulopathy [172]. In contrast, A2A

receptor activation attenuates inflammation, injury and diabet-
ic nephropathy [173].

In STZ-diabetic rats, A1 and A3 receptor mRNA and
protein increased in both kidney cortex and medulla; A2A

receptor expression increased in the cortex, but not medulla;
A2B receptor expression was unchanged; and immunohisto-
chemistry showed receptor localisation mainly on renal
tubules [174]. cAMP-mediated inhibition of distal phos-
phate transport may explain the observation that adenosine

enhances the antiphosphaturic effect in STZ diabetes [175].
In general, purinergic receptors on renal tubules exert neg-
ative regulator effects on electrolyte transport [176].

Adenosine receptors are being suggested as a therapeutic
option for diabetic nephropathy [167, 172]. The vascular
ectonucleotidase ENTPD-1 is a novel factor considered, as
it prevents chronic microvascular injury, inflammation and
thromboregulation, in STZ-mice [177]. For both ap-
proaches, differential effects of adenosine via A1 vs A2B

receptors should be considered.

Urinogenital system

A high incidence of bladder dysfunction has been reported
in patients with diabetes mellitus; the symptoms may prog-
ress with time and range from an overactive bladder and
hypercontractive detrusor to voiding problems with urinary
retention and acontractile detrusor. It is not certain whether
bladder dysfunction is secondary to neuropathology or blad-
der overdistension with smooth muscle and urothelial dys-
function. Again, animal studies have been useful. In STZ-
induced diabetic rats, there is bladder hypertrophy and dis-
tension [178]. After 3 months, STZ-treated rats showed
reduced contractile responses to nerve stimulation, but no
change in sensitivity to acetylcholine and ATP [179]. Later,
it was claimed that there was a reduction in the non-
cholinergic contractile component of parasympathetic nerve
stimulation in 12 weeks STZ-rats, probably caused by a
reduction in release of the non-cholinergic transmitter
[180]. It was proposed that cholinergic and purinergic para-
sympathetic nerve components of contraction were mini-
mally affected by STZ treatment, but in M2-muscarinic
knockout mouse bladder, STZ treatment reduced both the
cholinergic and purinergic components [181]. There are
conflicting reports about the changes in ATP-mediated neu-
ral responses in STZ-diabetic bladder. This appears to de-
pend largely on the time course; it seems likely that there is
an increase in the purinergic component in the early stages
(1–8 weeks), but decreased responses after 8 weeks. Up-
regulation of P2X1 receptors was claimed in the early stages
of STZ diabetes and down-regulation of P2X2 receptors in
the later stages [182, 183]. Similarly, there was increased
expression of P2Y2, P2Y4 and P2X4 receptors in STZ-rats in
2–4 months, but not at 8 months [184]. Furthermore,
6 months after alloxan-induced diabetes in rabbits, there
was enhancement of purinergic, but reduction of cholinergic
neurotransmission to the detrusor muscle of the bladder
[185]. The P2X3 receptor is important for afferent pathways
controlling urinary bladder volume reflexes [173], and this
may be a candidate regulator. Impairment of the initiation of
voiding reflexes via sensory nerve pathways activated by
ATP released from urothelial cells in the bladder in diabetes
has also been implicated [186–188]. In addition, there is
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impaired ATP-induced release of prostaglandins from
urothelial cells [189], and urothelium itself releases ATP
[190]. Both ATP and NO are released from the urothelium
in the bladder. In early diabetic bladders from STZ-treated
rats showing overactivity and a ‘diuretic’ underactivity
model, the release ratio of ATP and NO was correlated with
bladder contraction frequency, being enhanced in overactive
and diminished in underactive bladders [191]. It was
suggested that the ATP/NO ratio could be used to monitor
changes in bladder activity during drug therapy.

Adenosine, a direct vasodilator of corpus cavernosum, was
recommended for the treatment of diabetic erectile impotence
[192]. Adenosine-induced inhibition of sympathetic nerve-
mediated contractile responses of mouse corpus cavernosum
is impaired in T2D db/db mice [193]. It was suggested that the
relaxant response of the corpus cavernosum to adenosine and
ATP in both men and rats was largely endothelium-dependent
via release of NO [194]. A functional study of purinergic
signalling in the alloxan-diabetic rabbit corpus cavernosum
led to the conclusion that relaxations mediated by both P2Y1

receptors (via ADP and ATP) on endothelial cells and P2Y4

receptors (via UTP and ATP) on cavernosal smooth muscle,
were impaired [195]. Another paper showed that ATP can
contract corpus cavernosum smooth muscle via P2X1 recep-
tors and relax via P2Y1 and P2Y2 receptors and that the P2Y
receptor relaxant effects were significantly decreased in STZ-
diabetic rats [196].

Gastrointestinal system

Many gastrointestinal complications of diabetes seem to be
related to dysfunction of the neurons supplying the enteric
nervous system. Thus, delayed gastric emptying, abnormal
motility, secretion or absorption could lead to some of the
symptoms of pain, constipation, diarrhoea, irritable bowel,
ulcers, etc. Non-adrenergic, non-cholinergic (NANC) relaxant
responses of the gastric funduswere impaired in 8 and 12week
STZ-induced diabetic rats [197, 198]. However, in 8 week
STZ-diabetic rats, there appeared to be an increase in the
purinergic component of the vagal NANC responses of the
gastric fundus to vagal nerve stimulation [199]. Another study
described impairment of the nitrergic component of NANC
nerve-mediated relaxations of the rat gastric fundus [200].
Moreover, impairment of the nitrergic-mediated relaxation of
rat duodenum was described in 3–4 week STZ-rats; responses
to the NO donor sodium nitroprusside were unchanged, but
the response to ATPwas enhanced [201]. It was suggested that
reduction in NO synthase activity was associated with the
impairment of NANC relaxation. Impairment of both
purinergic and nitrergic components of NANC inhibitory
neurotransmission was claimed in the gastrointestinal tract of
T1D diabetic RIP-I/hIFNβ transgenic mice [22]. Electrophys-
iological responses to NA, but not to acetylcholine or ATP,

were potentiated in the caecum of 8 week STZ-diabetic rats,
perhaps resulting from supersensitivity of α-adrenoceptors
after sympathetic nerve damage [202].

Fatty infiltrations of the liver are common in T2D pa-
tients and liver tests are abnormal, but it is not clear whether
this is due to obesity. ATP administrated to alloxan-diabetic
rats lowered blood glucose, decreased liver fat, increased
serum albumin and decreased β-globulin [203]. Develop-
ment of STZ diabetes in rats resulted in a significant in-
crease in expression of A2A and A3 (but not A1) receptor
mRNA levels and protein content in the rat liver, while
expression of A2B was markedly decreased [204]. Adeno-
sine induced hepatic glucose production, and this was
inhibited by an A2B receptor antagonist that also reduced
blood glucose in KK-Ay T2D diabetic mice [205]. In anoth-
er study on the liver of STZ-induced diabetic rats, an in-
crease in adenosine A1 receptor expression was detected in
hepatocytes, as well as increased glycogen synthesis with
the adenosine analogue, cyclopentyladenosine [206].

ATP reduced binding to insulin receptor degradation in
rat adipocytes [207]. A similar process may happen in
hepatocytes that are the main site of insulin degradation.
However, in later studies, it was shown that it was cellular
ATP that had a direct allosteric effect on insulin-degrading
enzyme [208, 209].

Adipocytes

One of the manifestations of diabetes is an enhancement of the
lipolytic process, release of free fatty acids, adipokines and
cytokines. Adenosine is known to have anti-lipolytic effects; it
stimulates lipogenesis, modulates insulin sensitivity, and me-
diates leptin secretion in isolated adipocytes. Activation of A1

receptors on adipocytes for the treatment of non-insulin-
dependent diabetes mellitus was proposed early [210]. Ac-
cordingly, over-expression of A1 receptors in adipose tissue
protects mice from obesity-related insulin resistance [211].
Knockdown of A1 receptors impaired insulin sensitivity of
glucose uptake by adipocytes [79]. Although A1 agonists, by
inhibiting adenylate cyclase, inhibited lipolysis in vitro and in
vivo in STZ-diabetic animals, oral administration also pro-
duced significant bradycardia [212]. Recent reviews summa-
rise adenosine receptor physiology and challenges in
therapeutic approach for treatment of diabetes and obesity
[213, 214]. In addition, A1 receptors stimulate adipocyte
differentiation, while A2B receptors inhibit adipogenesis,
and targeting these may be useful in management of
obesity and diabetes [215].

ATP originates from sympathetic nerves and seems to have
dual effect on white adipocyte: stimulating lipolysis and
inhibiting insulin-induced leptin secretion [216]. Although
adipocytes express several P2 receptors (P2Y1,2,4,6,11), the
leptin effect may be due to P2Y1 receptors, since specific
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antagonist reduced leptin release in isolated adipocytes and
circulating levels of leptin was lower in P2Y1 knockout mice
[217]. High ATP dosages stimulated inflammatory responses
and insulin resistance in rat adipocytes [218]. Human adipo-
cytes express P2X7 receptors that modulate the release of
inflammatory cytokines, and interestingly, patients with met-
abolic syndrome showed enhanced expression of P2X7 re-
ceptors [219]. Brown adipocytes that have a capacity to
convert metabolic energy to heat also express a number of
P2 receptors (P2Y2, P2Y6, P2Y12, P2X1–7), that can increase
Ca2+ signalling and membrane trafficking [220], and their role
inmetabolic syndromes needs to be evaluated. In patients with
T2D, insulin resistance is related to lowered ATP synthesis in
liver, which is at least partly accounted for by fat deposits
assessed from waist circumference [221].

Skeletal muscle

Skeletal muscles are the major site of insulin-sensitive glu-
cose uptake, and therefore, insulin resistance has a profound
effect on hyperglycaemia and glucose intolerance in T2D.
Diabetes also leads to muscle weakness that is linked most
strongly to impairment of glucose uptake via the insulin-
sensitive GLUT4 transporter and subsequent metabolic dis-
turbances. For example, ATP synthesis is impaired in iso-
lated mitochondria from myotubes isolated from T2D
patients [222]. There are a number of studies indicating that
purinergic receptors also regulate glucose transport into
muscles and vascular perfusion, which can alter muscle
performance. There are studies that show that A1 receptors
are involved in insulin sensitivity of glucose uptake and
utilisation in isolated muscle fibres [223, 224]. In addition,
extracellular ATP stimulates translocation of GLUT4 to
plasma membranes of muscle fibres [225]. Exercise in-
creases interstitial concentrations of ATP [226], and a recent
study showed immunohistochemical localisation of several
P2 receptors on skeletal muscle plasma membrane, and on
blood vessels, although the distribution was similar in sam-
ples from normal and T2D individuals [227].

On the issue related to the vascular supply of skeletal
muscles, there are also a number studies implicating
purinergic signalling. Pre-diabetic ZDF rats have high insulin
levels, which impair the ability of red blood cells to release
ATP in response to low pO2. It was suggested that this O2-
dependent release of ATP may contribute to the failure in the
regulation of O2 supply to meet the demand in skeletal muscle
in pre-diabetes [228]. ATP release was also shown to be
impaired in erythrocytes of humans with T2D, and it was
suggested that this could contribute to peripheral vascular
disease in skeletal muscle in T2D [229]. In human experi-
ments, it was shown that the vasodilator action of ATP, UTP
and adenosine in skeletal muscle was diminished by 50% in
T2D patients. This does not seem to be due to altered receptor

expression, but rather to their altered sensitivity, and it may
underlie reduced vascular function to limit exercise capacity
[107]. A recent study showed that 7-day bed rest induced
insulin resistance and lowered content/activity of proteins
responsible for glucose transport, phosphorylation and storage
in muscles [230].

Skin

Impaired wound healing is one of the major problems in
patients with diabetes, and it can lead to ulcers, pain and
eventually amputation. The exact mechanisms are not un-
derstood, but eventually, alterations in fibroblast prolifera-
tion lead to formation of granulation tissue that delays
wound healing. It has been suggested that adenosine A2A

receptor activation by polydeoxyribonucleotide might rep-
resent a therapeutic strategy to overcome the diabetes-
impaired cell-cycle machinery during impaired skin
wound healing in genetically diabetic mice [231]. Im-
proved healing of skin wounds in diabetic rabbits has
been reported during direct delivery of intracellular ATP
via lipid vesicles [232].

Therapeutic approaches

Purinergic signalling offers potential for the development of
novel therapeutic approaches to treat the primary disorder in
diabetes, i.e. the pancreas, as well as diabetes-related prob-
lems in other organs/tissues. Strategies for the pancreas
could include drugs that would increase insulin secretion,
protect and support β-cell regeneration, curb inflammation
within the pancreas, and for T1D, pretreatment of islets
before transplantation and stem cell therapy (the latter two
are beyond this review). There are a number of promising
studies on model animals and systems that could be trans-
lated to human applications.

In order to increase insulin secretion for treatment of
T2D, stable and tissue specific analogues for the P2Y1

receptor have been developed, although no drug is in clin-
ical trials (see above). Other P2Y receptors that could be
considered are P2Y6 receptors that mediate increase in in-
sulin secretion and prevent β-cell death [84]. Inhibition of
the pro-apoptotic P2Y13 receptor may also be considered
[85]. The P2X7 receptor may be an interesting target for
diabetes and obesity, but due to its wide expression in
several pancreatic cells, inflammatory cells and CNS, more
basic knowledge is needed.

Adenosine is a potent endogenous autocrine anti-
inflammatory and immunosuppressive molecule, it is re-
leased or formed after breakdown of at the site of injury
and therefore adenosine receptors are also potential targets.
The methylxanthine, caffeine, is a nonspecific adenosine
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receptor blocker, and it is no surprise that a role of coffee
consumption in lowering the risk of T2D has been widely
debated. Well-controlled studies in diabetic mice models pro-
vide support for human studies [233]. Nevertheless, more
specific adenosine receptor drugs would provide a better con-
trol. A2A receptor agonists may be exploited for β-cell regen-
eration [47]. Antagonists of A2B receptors would improve
insulin secretion as well as decrease the inflammatory response
and improve insulin resistance [45, 46]. In fact, A2B blockers
are being developed for reversal of insulin resistance in T2D:
ATL 844 as a joint venture by Clinical Data Inc. and Novartis;
and GS 6201 (CVT-6883) by Gilead Sciences [234, 235].

Regarding other diabetic associated maladies, Sandoz/
Novartis is developing an A1 receptor agonist SDZ
WAG94; Gilead has GS 9667 in clinical I trials for the
treatment of hypertriglyceridemia associated with diabetes.
The specific A2A agonist BVT.115959 by Biovitrum is in
clinical II trials for diabetic neuropathic pain, and
Sonedenoson by King is in clinical trials for diabetic foot
ulcers and wound healing [235].

In addition to purinergic signalling, the energy/nucleotide
status of pancreatic and other cells could be considered for
therapeutic approaches. Enhancement of ATP synthesis in pan-
creatic islets, e.g. by biotin, reinforces glucose-induced insulin
secretion [236]. Direct delivery of intracellular ATP via lipid
vesicles appears to be possible, at least in the skin [232].

Conclusions and perspectives

The pancreas is a central organ in nutrient and energy homeo-
stasis with endocrine, exocrine, stromal and immunoreactive
cells, which participate in complex processes that have conse-
quences for whole body physiology (Fig. 1). This review has
focussed on the role of purinergic signalling in the regulation
of insulin secretion andβ-cell viability, and in the regulation of
various tissues/organs that are affected by diabetes. The enor-
mous flexibility and diversity of the purinergic system can be
exploited in drug design for the treatment of primary and
secondary sites of diabetes, although integrated understanding
is needed. Some purinergic drugs are already in clinical trials,
and it is hoped that finer regulation of diabetes 2 and 1 and their
complications will be possible in the near future.
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