1	Title: Sensitivity of Rapid Antigen Tests Against SARS-CoV-2 Omicron and Delta Variants
2 3 4 5 6 7	Authors: Anuradha Rao ^{*,1,2} , Adrianna Westbrook ^{*,1,2} , Leda Bassit ^{1,3} Richard Parsons ^{1,9} , Eric Fitts ⁴ , Morgan Greenleaf ^{1,5} , Kaleb McLendon ^{1,4,6} , Julie A. Sullivan ^{1,2} , William O'Sick ^{1,4,6} , Tyler Baugh ^{1,4,6} , Heather B. Bowers ^{1,3} , Filipp Frank ⁷ , Ethan Wang ⁸ , Mimi Le ² , Jennifer Frediani ^{1,9} , Pavitra Roychoudhury ¹⁰ , Alexander L. Greninger ¹⁰ , Robert Jerris ¹¹ , Nira R. Pollock ¹² , Eric A. Ortlund ^{1,7} , John D. Roback ^{1,4,6} , Wilbur A. Lam ^{+,1,2,13,14} , Anne Piantadosi ^{+,4,8}
8 9 10	*Contributed equally to this manuscript ⁺ Co-corresponding authors
11 12 13 14	Affiliations: ¹ The Atlanta Center for Microsystems-Engineered Point-of-Care Technologies, Atlanta, GA, United States of America.
15 16 17	² Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA.
17 18 19	³ Laboratory of Biochemical Pharmacology, Emory University, Atlanta, Georgia
20 21 22	⁴ Department of Pathology and Laboratory Medicine, Emory University School of Medicine Atlanta, GA USA
22 23 24	⁵ Emory University School of Medicine, Atlanta, GA, USA
2 4 25 26	⁶ Emory/Children's Laboratory for Innovative Assay Development, Atlanta, Georgia, USA.
20 27 28	⁷ Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA.
29 30 31	⁸ Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA.
32 33	⁹ Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA USA
34 35 36	¹⁰ Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
37 38	¹¹ Children's Healthcare of Atlanta, Atlanta, GA, USA.
39 40 41	¹² Department of Laboratory Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
42 43	¹³ Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta, Atlanta, Georgia, USA
44 45 46	¹⁴ Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA.

47 **Co-Corresponding authors**:

- 48
- 49 Wilbur A. Lam
- 50 2015 Uppergate Drive
- 51 Atlanta, GA 30322
- 52 404-785-3874
- 53 <u>wilbur.lam@emory.edu</u>
- 54
- 55 Anne Piantadosi
- 56 101 Woodruff Circle 7207A
- 57 Atlanta, GA 30322
- 58 404-712-9005
- 59 anne.piantadosi@emory.edu
- 60

61

62 **Conflict-of-interest statement**

- 63 ALG reports contract testing from Abbott, Cepheid, Novavax, Pfizer, Janssen, and Hologic, and
- 64 research support from Gilead and Merck, outside of the described work.

65

66 The other authors have declared that no conflict of interest exists.

67 Abstract:

68 Rapid Antigen Tests (RAT) have become an invaluable tool for combating the COVID-19 69 pandemic. However, concerns have been raised regarding the ability of existing RATs to 70 effectively detect emerging SARS-CoV-2 variants. We compared the performance of eight 71 commercially available, emergency use authorized RATs against the Delta and Omicron SARS-72 CoV-2 variants using individual patient and serially diluted pooled clinical samples. The RATs 73 exhibited lower sensitivity for Omicron samples when using PCR Cycle threshold (C_T) value (a 74 proxy for RNA concentration) as the comparator. Interestingly, however, they exhibited similar 75 sensitivity for Omicron and Delta samples when using quantitative antigen concentration as the 76 comparator. We further found that the Omicron samples had lower ratios of antigen to RNA, 77 which offers a potential explanation for the apparent lower sensitivity of RATs for that variant 78 when using C_T value as a reference. Our findings underscore the complexity in assessing RAT 79 performance against emerging variants and highlight the need for ongoing evaluation in the face 80 of changing population immunity and virus evolution. 81

83 Main Text:

84 INTRODUCTION

85 As the SARS-CoV-2 pandemic progresses, rapid antigen tests (RATs) have become a key 86 component of home testing, community screening, and clinical diagnostics owing to their ease of 87 use, low cost, and speed. In the United States, there are currently 19 over-the-counter antigen 88 tests and 23 point-of-care antigen tests available under Emergency Use Authorization (EUA), 89 and hundreds of millions of antigen tests are used every month (1). Concurrently with these 90 important advances in the availability, variety, and widespread use of RATs, SARS-CoV-2 91 continues to evolve, raising concern that new variants may harbor genetic and antigenic changes 92 affecting test performance. The Omicron variant, which was first reported in November 2021 93 and quickly replaced Delta as the predominant variant in the U.S., differs from Delta by 7 amino 94 acid changes and a 2-amino acid deletion in the nucleocapsid (N) protein, the target of most 95 RATs. Prior studies have demonstrated conflicting results, with some showing decreased 96 performance of RATs for Omicron, but others showing comparable performance (2, 3). We 97 compared the performance characteristics of eight RATs in detecting Delta and Omicron 98 variants, using both individual clinical samples and standardized pools of clinical samples, and 99 used orthogonal protein detection, RNA detection, and infectivity measurements to understand 100 variant-specific differences in RAT results.

101

102 **RESULTS**

103 Rapid antigen test sensitivities for Delta and Omicron using serially diluted, pooled clinical

104 samples are similar when using antigen concentration as the comparator, but not when

105 using RNA measured by cycle threshold (C_T) value as the comparator.

106	We evaluated the sensitivity of eight commercially available RATs for Omicron and
107	Delta using a standardized set of pooled remnant clinical samples (RCS pools) that were serially
108	diluted and quantified for SARS-CoV-2 RNA (measured by C _T value from CDC N2 PCR assay;
109	described in supplementary methods) and nucleocapsid antigen concentration (measured by
110	Quanterix Simoa Assay; described in supplementary methods). When RAT limit of detection
111	(LoD) was measured using antigen concentration as comparator, only the BinaxNow assay was
112	less sensitive in detecting Omicron than Delta, with a three-fold higher LoD (Figure 1A, Figure
113	S1). The other tests performed similarly against Delta and Omicron pools, with a twofold or less
114	difference in LoD (Figure 1A, Figure S1, Figure S2). However, when LoD was measured using
115	C_T value as a comparator, 5 of the 8 RATs were less sensitive in detecting Omicron than Delta
116	(LoD C _T difference ranging from 2.5-3.2 lower for Omicron, corresponding to a nearly tenfold
117	higher RNA concentration) (Figure 1B, Figure S1, Figure S2).
118	Thus, using RCS pools, we observed concordant sensitivity for Omicron and Delta across
119	most commercially available RATs when measured against antigen concentration, but lower
120	sensitivity for Omicron than Delta for over half of the RATs when measured against C_T value,
121	suggesting different relationships between antigen concentration and RNA concentration for
122	Delta versus Omicron.
123	
124	Rapid antigen test sensitivity for Delta and Omicron using individual clinical samples
125	varies between assays and depends on choice of comparator

We next evaluated the sensitivity of two common RATs using a subset of anterior nares
specimens from a large study in which 171 fresh remnant clinical samples (RCS) were collected
from individuals infected with Omicron and 163 banked RCS had been collected from

129 individuals infected with Delta (Table 1, Supplementary Data File). Many of the participants 130 were unvaccinated (40.9% and 48.5% of those infected with Delta and Omicron, respectively), 131 and individuals infected with Omicron had shorter times since last vaccine dose (Table 1). Per 132 study design, most participants were symptomatic (Table 1). However, individuals infected with 133 Omicron had shorter durations of symptoms prior to testing: nearly 80% were tested within 3 134 days of symptom onset and the remaining 20% within 7 days. By contrast, only about a quarter 135 of patients with Delta were tested within 3 days of symptom onset, about half between 3 and 7 136 days, and about a quarter after 7 days. 137 From this study population, 75 Delta and 84 Omicron samples with $C_{\rm T}$ less than 30 138 (Cepheid Xpert assay; described in supplementary methods) were randomly selected for testing 139 with the Abbott BinaxNOWTM COVID-19 Antigen Test and Quidel QuickVue SARS Antigen 140 Test RATs. Across all samples, sensitivity was similar between Delta and Omicron for 141 Quickvue. Sensitivity appeared lower for Omicron than Delta samples for BinaxNow, although 142 this difference was not statistically significant (**Table 2**). As expected, tests were more sensitive 143 in samples with higher concentrations of viral antigen and lower C_T values (Figure 2 A-D). 144 When samples were stratified by antigen concentration (**Table 2, top panel**), QuickVue 145 had similar sensitivity for Delta and Omicron across all strata. BinaxNow appeared somewhat 146 less sensitive for Omicron than Delta, but this difference was not statistically significant. For 147 both assays and both variants, sensitivity increased as antigen concentration increased, as 148 expected. When samples were stratified by C_T value, sensitivity decreased as C_T value increased, 149 as expected (Table 2, bottom panel). Both assays showed lower sensitivity for Omicron than 150 Delta for C_T thresholds 24 and higher; this result was more pronounced, and only statistically 151 significant, for BinaxNOW.

152	Thus, results from both individual RCS and RCS pools show that the QuickVue assay has
153	similar sensitivity in detecting Delta and Omicron when antigen concentration is used as a
154	comparator; it has a somewhat (but not statistically significant) reduced sensitivity for Omicron
155	when using C_T value as a comparator. The BinaxNOW assay has a somewhat (but not
156	statistically significant) reduced sensitivity for Omicron when antigen concentration is used as a
157	comparator; it has a more pronounced (and statistically significant) reduction in sensitivity for
158	Omicron when C_T value is used as a comparator. Results for both individual RCS and RCS pools
159	showed a discrepancy in RAT sensitivity when using antigen concentration versus C_T value as
160	the comparator.
161	To identify potential mutations that might affect test performance, we analyzed SARS-
162	CoV-2 genome sequences. The Delta samples represented a range of sublineages
163	(Supplementary Data File). In the N protein, aside from the four lineage-defining mutations
164	(D63G, R203M, G215C, and D377Y), no mutation was present in more than 3 samples. The
165	Omicron samples all belonged to lineage BA.1 or BA.1.1. In addition to lineage-defining
166	mutations (P13L, R203K, G204R, and DEL31-33), 25 of the 152 samples had D343G and 4 had
167	P67S. The Omicron lineages that have emerged since the time of this study, BA.2, BA.4, and
168	BA.5, contain the additional mutation S413R, which was not present in any of these samples.
169	Overall, sequence analysis confirmed that these clinical samples were representative of Delta and
170	Omicron variants and suggested that, if N protein mutations affect test sensitivity, they are likely
171	to be lineage-defining mutations.
172	

173 Omicron samples have lower antigen-per-RNA than Delta samples

174	We formally compared the relationship between antigen concentration and C_T in 163
175	Delta and 169 Omicron individual RCS, including the samples tested by RAT. As expected,
176	antigen concentration and C _T were highly correlated, both across all samples and for each variant
177	individually (Figure 3), including in sensitivity analysis (Figure S3). Notably, regression
178	analysis indicated a significant association between C_T value and variant (Table 3). Specifically,
179	Omicron samples had a 6.8 (standard error [SE]=0.55) cycle lower C_T than Delta samples, for a
180	given antigen concentration (p-value<0.001), indicating a greater amount of RNA-per-antigen (a
181	lower amount of antigen-per-RNA) than Delta samples. In the full regression model that also
182	included vaccine status and presence of symptoms, Omicron samples had a 6.5 (SE=0.57, p-
183	value<0.001) cycle lower C_T than Delta samples, for a given antigen concentration.
184	Unsurprisingly, C _T value was significantly associated with antigen concentration, with a decrease
185	of 2.3 (SE=0.08, p-value<0.001) cycles and 2.2 (SE=0.08, p-value<0.001) cycles per natural log
186	change in antigen concentration in the base model and full model, respectively. C_T value was
187	also significantly associated with the presence of symptoms; it was 8.0 (SE=2.19, p-
188	value<0.001) cycles lower for symptomatic individuals than asymptomatic individuals. We did
189	not observe a significant association between C_T value and vaccine status (Beta=0.75, SE=1.34,
190	p-value=0.60). In sensitivity analysis, these relationships remained similar and statistically
191	significant, but with lower magnitude of effect (Table S1).
192	The magnitude of C_T difference between Delta and Omicron samples (6.8 cycles, for a
193	given antigen concentration) was greater than the C_T difference expected from the different
194	number of freeze-thaws they had undergone (1.9 cycles, with a concomitant decrease in antigen
195	concentration by 16%, Supplementary Material, Figure S4, Table S2). Thus, we infer that

196 differential freeze-thaw conditions are likely to explain some, but not all, of the discrepancy we

197 observed. The observation that Omicron samples have a lower amount of antigen-per-RNA also 198 helps to explain our finding that rapid antigen test sensitivity is different when using C_T versus 199 antigen concentration as a comparator for RCS pools, all of which underwent the same number 200 of freeze thaws.

201

202 Omicron samples have lower infectivity than Delta samples

203 Given the observed discrepancy between protein concentration and C_T value for Delta 204 and Omicron RCS in this study, we assessed whether there was a difference in virus infectivity 205 from these samples. Seventy-five Delta and 85 Omicron clinical samples with $C_T < 30$ were 206 tested against Calu-3 cells in duplicate. Calu-3 cells were infected by 37 (49.3%) of Delta and 37 207 (43.5%) of Omicron samples (Figure S5). ELISpot panels showing representative data are 208 shown in **Figure S6**. Interestingly, infectivity appeared to be inversely associated with C_T value 209 for Delta but not Omicron samples (Figure S5). We formally assessed this using logistic 210 regression analysis. In univariate analysis, Calu-3 infectivity was inversely associated with C_{T} 211 value for Delta (odds ratio[OR]=0.75, 95% CI: 0.63-0.88) but not Omicron (OR=1.03, 95% CI: 212 0.90-1.17), and was not associated with antigen concentration, vaccine status, symptom duration, 213 or age (**Table S3**). In multivariate analysis, Calu-3 infectivity remained inversely associated with 214 C_T value for Delta (**Table S3**). Specifically, for every 1-cycle increase in C_T value, the odds of 215 having a positive Calu-3 result decreased by 28% (95% CI: 14%-42%) for Delta samples. Again, 216 there was no association between Calu-3 infectivity and antigen concentration for either Delta or 217 Omicron samples.

Thus, Omicron samples in this study had less antigen-per-RNA and less infectivity than Delta samples, and there was no association between RNA level (as measured by C_T) and infectivity for Omicron samples.

221

222 **DISCUSSION**

Overall, we found that most commercially available RATs had similar sensitivity in
detecting Omicron and Delta when antigen concentration was used as a comparator. However,
when C_T value was used as a comparator, most RATs had a lower sensitivity for Omicron than
Delta.

227 These findings are largely consistent with prior studies showing lower sensitivity of 228 RATs in detecting Omicron than Delta when using C_T value as a comparator, especially for 229 samples with low RNA concentration. Osterman *et al.* found a 10-100-fold higher LoD for 230 Omicron compared to Delta among nine RATs in Germany (these tests did not overlap with the 231 tests used in our study) (2). Bayart *et al.* found lower sensitivity for Omicron (0%-23%) than 232 Delta (32%-80%) across 6 RATs in Belgium for clinical samples with $C_T>25$ (4). In recent 233 preprints, Bekliz et al. found lower sensitivity for Omicron than Delta across 7 RATs (4 of which 234 were statistically significant), and Landaverde *et al.* found low sensitivity of BinaxNOW for 235 detecting Omicron especially with $C_T > 23$ (5, 6). Only one recent study has shown a high 236 sensitivity of BinaxNOW for Omicron, using clinical samples with $C_{\rm T}$ up to 30 (3). A few other 237 studies reported similar sensitivity for RATs in detecting Omicron and Delta, but these were 238 based on serially diluted, cultured virus, not clinical samples. For example, Deerain et al. 239 reported high sensitivity for both variants up to $C_T=25$ and essentially no detection at $C_T=28$ for 240 10 RATs (mostly non-overlapping with ours) (7). Stanley et al. found decreased sensitivity for

241 Delta compared to Omicron and WA1 (8). All these prior studies used C_T value or RNA 242 concentration as a comparator, and none reported antigen concentration. Thus overall, there is 243 accumulating evidence that many RATs demonstrate lower sensitivity for Omicron than Delta 244 for primary clinical samples when using $C_{\rm T}$ value as a comparator, consistent with our findings. 245 Our study using clinical samples offers a potential explanation for the apparent lower 246 sensitivity of RATs for Omicron, by investigating variant-specific discrepancies in antigen 247 concentration versus C_T value. Specifically, the Omicron samples in this study had a lower 248 amount of antigen-per-RNA than the Delta samples, and because RATs detect antigen rather 249 than RNA, they appear less sensitive for Omicron when C_T value is used as a comparator. By 250 contrast, when we used antigen concentration as a comparator (an "apples to apples") 251 comparison), we found that most RATs had similar sensitivity for Omicron and Delta. 252 We considered several technical factors that could account for differences in 253 measurement of RNA and antigen concentration between variants in this study. Whereas Delta 254 clinical samples underwent RNA and protein concentration testing after two freeze-thaw cycles, 255 Omicron clinical samples were tested fresh. Results from our freeze-thaw experiment suggest 256 that this difference in sample handling could account for some, but not all, of the observed 257 variant-specific differences in the ratio between RNA (Ct value) and antigen concentration. 258 Furthermore, RCS pools, which had undergone the same handling conditions for both Delta and 259 Omicron (i.e. samples in both variant pools had the same number of freeze-thaws), also showed a 260 discrepancy in results when antigen versus RNA concentration was used as a comparator. 261 Because our results were consistent across two different RT-PCR assays (Xpert Xpress CoV-262 2/Flu/RSV *plus* assay (Cepheid) for individual RCS and CDC N2 assay for RCS pools), 263 differences in RT-PCR efficiency are unlikely to account for our findings.

264	We also considered whether Omicron-specific mutations may have affected the
265	performance of diagnostic antibodies used in these assays. A recent study mapped the N protein
266	epitopes recognized by antibodies in many SARS-CoV-2 antigen tests and identified escape
267	mutations using deep mutational scanning (9). The key amino acid positions identified
268	considering both antibodies used by the Simoa SARS-CoV-2 N Protein Antigen Test (Quanterix)
269	(5, 36-41, 51-53, 56, 62, 66, 71-73, 82-87, 95, 98-101, 108-117, 128-133, 143, 158-161, 167,
270	171-173) are not canonically mutated in Omicron, and were not specifically mutated in the
271	samples from this study. The same study assessed antibodies for several RATs included here
272	and found no overlap between variant specific mutations and antibody escape mutations. Thus,
273	variant-specific mutations are unlikely to account for differences in the measurement of antigen
274	concentration in this study.

275 Overall, we infer that the Omicron samples in this study truly had a lower amount of 276 antigen-per-RNA than the Delta samples. There are several potential explanations for this based 277 on viral dynamics over the course of infection. Early studies of SARS-CoV-2 showed that viral 278 load generally peaks around day 3 of viral shedding, just before or at the time of symptom onset, 279 and clears after 7-10 days (10-13). Antigen detection peaks later, generally several days after 280 symptom onset (14), and thus antigen detection frequently lags behind RNA detection (15). 281 Individuals in our study infected with Omicron presented for testing sooner after symptom onset 282 than individuals infected with Delta, and thus our Omicron samples may have been collected at a 283 time when antigen levels may still have lagged behind RNA levels.

In addition, there may be variant-specific differences in viral dynamics, because of either intrinsic biological differences in viral replication and pathogenesis, and/or differences in the characteristics of individuals who are infected with each variant. For example, due to the timing

287 of vaccine booster rollouts, individuals infected with Omicron are likely to have been vaccinated 288 more recently (and with more doses) than individuals infected with Delta. Consistent with this, 289 individuals in our study infected with Omicron had been vaccinated more recently than 290 individuals infected with Delta. In a recent study, boosted individuals infected with Omicron 291 were slower to clear viral RNA than unboosted individuals infected with Delta or Omicron, but 292 the effect on antigen dynamics remains unknown (16). Finally, there may be variant-specific 293 differences in the viral lifecycle that lead to differences in RNA and antigen concentration, such 294 as differential sgRNA transcription, gene expression, protein degradation, or protein aggregation. 295 Compatible with our findings, a recent report demonstrated a decrease in the sensitivity of RATs 296 over time since the start of the pandemic, including during the Omicron era (17). The authors 297 posited that increased immunity, including through vaccination, led to early symptom onset and 298 early testing, before epithelial cell shedding had generated high concentrations of nucleocapsid 299 protein.

300 Together with these prior studies, our results support a model in which individuals 301 infected with Omicron presented for testing earlier in the course of infection, when antigen 302 concentration lagged behind RNA concentration, leading to an apparent decrease in rapid antigen 303 test sensitivity when C_T value is used as a comparator. There are likely multiple factors 304 contributing to the earlier presentation for testing of individuals infected with Omicron, one of 305 which may be a more rapid and robust symptom onset due to recent/boosted vaccination. 306 Interestingly, we also found that the Omicron samples in this study had lower infectivity 307 than the Delta samples and there was no correlation between C_T value and infectivity for 308 Omicron samples. These findings may be explained by recent observations that Omicron cell 309 entry has a greater dependence on receptor-mediated endocytosis than TMPRSS2-mediated spike

cleavage and fusion (18) and Omicron replicates less well in TMPRSS2 expressing cells(19)(20).

312 This study has several limitations. First, due to the necessary logistical constraints of 313 comparing contemporary to banked samples, the individual RCS tested in this study had 314 undergone different handling for Omicron versus Delta samples. This was mitigated to some 315 extent by also testing pooled RCS, and by explicitly testing the effects of freeze-thaw cycles. In 316 addition, while we tested eight commercially-available RATs using pooled RCS, we were only 317 able to test individual RCS against two RATs, given constraints in sample volume. Finally, the 318 marked differences we observed in infectivity between Omicron and Delta samples must be 319 interpreted in light of recent studies showing important variant-specific differences in cell entry 320 and cell biology.

321 Nevertheless, our results have important implications for clinical practice and public 322 health. First, we show that the choice of comparator assay plays an important role in interpreting 323 the results of sensitivity evaluations for RATs. Future studies will benefit from the use of well-324 characterized and standardized reference materials to use in assay testing, as well as careful 325 consideration of duration of symptoms at the time of sample collection. Interestingly, based on 326 our findings, the BinaxNOW assay seems to be the most adversely affected by the Omicron 327 variant relative to its performance against Delta variant, which has practical public health 328 implications given its wide use and large market share in the US. By contrast, most 329 commercially-available RATs have similar sensitivity for detecting Omicron and Delta, when 330 antigen concentration is used as a comparator. This reinforces the effectiveness of existing tests, 331 while also emphasizing the point that a negative RDT early in SARS-CoV-2 infection may have 332 low negative predictive value, and RDT testing should be repeated over time. However, within-

333	patient viral dynamics are evolving throughout the pandemic, likely due to changes in both the
334	virus and the host (e.g., vaccination). Further work is needed to investigate the causes and
335	mechanisms of variant-specific differences in RNA concentration, antigen concentration,
336	infectivity, and viral dynamics, particularly as new variants continue to emerge.
337	
338	MATERIALS AND METHODS
339	All methods are described in detail in Supplementary Materials, below are brief descriptions.
340	Study Design:
341	We used sequence confirmed Delta and Omicron BA.1 individual and pooled remnant
342	clinical samples to compare the performance of EUA RATs in detecting these two variants. The
343	N protein content, PCR C _T values (as a proxy for RNA concentrations) and ability of individual
344	samples to infect cells in <i>in vitro</i> infectivity assays were also measured to comprehensively
345	evaluate differences between Delta and BA.1 variants.
346	
347	Preparation of Delta and Omicron RCS Pools:
348	As part of the NIH Variant Task Force, in collaboration with participating labs, we
349	obtained low C _T , sequence-verified Delta and Omicron remnant clinical samples that remained
350	after diagnostic testing. The N2 C_T and N protein concentrations in these remnant clinical
351	samples (RCS) were determined at ACME POCT (The Atlanta Center for Microsystems-
352	Engineered Point-of-Care Technologies) as part of our internal quality control (QC). The CDC
353	N2 PCR assay C _T value was used as a proxy for RNA concentration (details in Supplementary
354	Methods); N protein concentrations were measured by Simoa (Supplementary Methods).
355	Between 4-21 low N2 C_T RCS with N protein > 4000pg/mL were pooled to generate each Delta

and Omicron pool. These pools were serially diluted, N2 C_T and N protein quantified, and used to compare eight EUA RATs.

358

359 Collection and Storage of Individual RCS:

360 We utilized a hospital and community-based approach for enrolling eligible COVID-19

361 symptomatic patients. For samples collected from July to November 2021 (Delta predominant),

362 mid-turbinate (MT) swabs were collected in 1mL saline and frozen at -80°C. For use in the

363 current study, samples were thawed, 2mLs sterile saline added, frozen, re-thawed, and then

analyzed by Cepheid and Quanterix assays. Subsequently, these samples were thawed and

365 utilized for Binax and QuickVue testing and *in vitro* infectivity assays. MT swab samples

366 collected after January 7, 2022 (Omicron predominant) were collected in 3 mL saline, analyzed

367 fresh by Cepheid and Quanterix assays, and frozen at -80°C. After one freeze thaw, they were

368 used for Binax testing, QuickVue testing and infectivity assays.

369

370 Antigen testing using Quanterix Simoa Assay:

Each pool dilution and every clinical sample used in the current study was analyzed for N
protein concentration using the Quanterix HD-X Simoa SARS-CoV-2 N Protein Antigen (RUO)
assay (Catalog # 103806), according to manufacturer's instructions.

374

375 PCR testing of remnant clinical samples using Cepheid:

All individual remnant clinical samples used for this study underwent PCR testing using

377 the Cepheid GeneXpert Dx Instrument system with either Xpert Xpress CoV-

378 2/Flu/RSV plus cartridges (EUA 302-6991, Rev. B., October 2021) or Xpert Xpress SARS-CoV-

379	2 cartridges (EUA 302-3562, Rev. F January 2021) according to manufacturer's instructions. For
380	the CoV-2/Flu/RSV plus assay, the resulted SARS-CoV-2 Ct value reflects the first of three gene
381	targets (E, N2, or RDRP) to amplify; for the SARS-CoV-2 assay, both E and N2 Ct values are
382	resulted. To determine whether the CT values from the two Xpert assays could be combined for
383	analysis, the laboratory performed a bridging study to confirm that the SARS-CoV-2 assay E
384	target Ct value correlated tightly with the CoV-2 Ct value from the CoV-2/Flu/RSV plus assay.
385	The samples were thawed, split, and run on both assays in parallel according to manufacturer's
386	instructions (Supplementary Table S4).
387	
388	SARS-CoV-2 genome sequencing:
389	All RCS pools and individual RCSs underwent sequencing at ACME POCT, where
390	libraries were generated using SuperScript First Strand Synthesis kit (Thermo Fisher) followed
391	by Swift Amplicon SARS-CoV-2 Research Panel (Swift Biosciences). Illumina MiSeq was used
392	for sequencing, and viralrecon was used for genome assembly.
393	
394	Rapid antigen test testing using pools and individual clinical samples:
395	All rapid antigen testing (pool and individual samples) was performed blinded using the
396	direct swab method where sample was spiked onto the swab and manufacturers' instructions
397	followed for testing. 20 μ l sample (as described in the IFU for BinaxNOW TM COVID-19 Ag
398	CARD) was used for BinaxNOW, while 50µl was used for all other RATs tested. After
399	completion, results were unblinded.
400	

401 Evaluation of infectious SARS-CoV-2 in individual RCS using Calu-3, Vero-TMPRSS-2,

402 and Vero cells:

403	For <i>in vitro</i> infectivity studies, 50µl of each individual RCS was used to inoculate (by
404	spinoculation) cells that were 80-90% confluent growing on a 96-well plate. After two hours,
405	sample was removed, and 50µl Opti-MEM and 150µl methycellulose overlay media were added.
406	This portion of the assay was conducted in the BSL3 facility as live lab-propagated SARS-CoV-
407	2 (Delta and BA.1) of known TCID $_{50/ml}$ were used as positive controls. After 3-6 days of
408	incubation (depending on the cell line used), cells were washed with 1XPBS, fixed with chilled
409	1:1 methanol acetone, permeabilized with 0.2% TritonX, blocked with 1% milk, and then
410	assayed for focus forming units (FFU) by staining with anti-nucleocapsid antibody. Stained foci
411	were read using an ELISpot CTL reader.
412	
413	Statistics:
414	Some C_T values were above the limit of detection and were therefore set to 50, above the
415	highest recorded C _T value. Likewise, some antigen concentrations were below the limit of
416	detection by Simoa and were therefore set equal to zero (0), below the lowest detected antigen
417	concentration. For all analyses, any observations that required imputation were removed in
418	subsequent sensitivity analyses. To meet normality and homoskedasticity assumptions for the
419	linear regression analysis and because there were some values set equal to zero, we used a
420	log(n+1) transformation on antigen concentrations.
421	We calculated the clinical sensitivity of BinaxNow and QuickVue as well as their
122	corresponding 95% confidence intervals for Delta and Omicron samples overall and by C_{T} or

423 antigen concentration thresholds. Clinical sensitivity was calculated by dividing the number of

424 positive tests by the number of positive participants (samples). The sensitivity of Delta and
425 Omicron samples on the same platform were statistically compared through chi-square or
426 Fisher's exact tests.

427 Additionally, we examined and quantified the relationship between C_T values and antigen 428 concentration in COVID-19 positive samples from both the Delta and Omicron dominant eras. 429 We calculated Pearson's correlation coefficient between C_T value and antigen concentration, and 430 performed a linear regression analysis, predicting C_T value from antigen concentration. In the 431 base model, we controlled for variant status. In the full model, we additionally adjusted for 432 vaccine status and symptom duration. Any individual who was unsure of their vaccine status in 433 any capacity was removed from the appropriate regression analyses.

We also evaluated the association between having a positive result for Calu-3 or Vero-TMPRSS-2 culture and C_T value, antigen concentration (pg/mL), symptom duration, vaccine status, and age (years) through unadjusted and adjusted logistic regression analyses. There were no asymptomatic individuals included in this analysis, so symptom duration was treated as a continuous variable to better understand the relationship between days of symptoms and infectivity.

All hypotheses' tests were 2-sided and a p-value below 0.05 was considered significant. Graphs, correlation calculations, and regression modeling were conducted in R v(4.2.0). The sensitivity of RATs and comparisons between sensitivities were calculated and conducted in R v(4.1.3). Tables were created using the gt and gtsummary package and plots were created with the ggpubr, stringr, and ggplot2 package in R (21-25).

445

446 **Study approval:**

- 447 The study protocol was approved by the Emory Institutional Review Board and
- 448 Children's Healthcare of Atlanta (IRB#00001082). Written informed consent was received prior
- to participation.
- 450
- 451 **Author contributions:**
- 452 AR and AW are co-first authors, and AR is listed first due to earlier involvement in
- 453 *conceptualization of the study and experiments.*
- 454 WAL and AP are co-senior authors, and AP is listed last due to earlier involvement in data
- 455 *synthesis and manuscript writing.*
- 456 Conceptualization: AR, AW, LB, KM, MG, JAS, WAL, AP
- 457 Methodology: AR, AW, LB, RP, EF, MG, KM, JAS, WOS, TB, HBB, FF, EW, ML, JFK, PR, ALL,
- 458 RJ, NRP, EAO, JDR, WAL, AP
- 459 Investigation: AR, AW, LB, RP, EF, MG, KM, WOS, FF, EO, NRP, WAL, AP
- 460 Funding: WAL
- 461 Project administration: AR, MG, AP
- 462 Supervision: AR, AW, MG, WAL, AP
- 463 Writing original draft: AP, AW, AR, LB, EF
- 464 Writing review & editing: AP, AW, AR, MG, JKF, FF, NRP
- 465

466 Acknowledgments:

- 467 This work was supported by the National Institute of Biomedical Imaging and
- 468 Bioengineering under the Atlanta Center for Microsystems Engineered Point-of-Care
- 469 Technologies (ACME POCT). This work was supported by the NIBIB at the NIH under awards

- 470 3U54 EB027690-03S1, 3U54 EB027690-03S2, 3U54 EB027690-04S1 and the National Center
- 471 for Advancing Translational Sciences of the NIH under award UL1TR002378.
- 472 We thank Nils Schoof for providing Delta and BA.1 variant of SARS-CoV-2 and
- 473 TMPRSS2 cells used in infectivity assays.
- 474 We thank Children's Healthcare of Atlanta and Emory University's Children's Clinical
- 475 and Translational Discovery Core for sample acquisition, selection, processing and storage.

476

478 **References:**

- 1. <u>https://www.fda.gov/medical-devices/coronavirus-disease-2019-covid-19-emergency-</u>
- 480 <u>use-authorizations-medical-devices/in-vitro-diagnostics-euas-antigen-diagnostic-tests-sars-cov-</u>
 481 <u>2#iaft1</u>. 2019 [
- 482 2. Osterman A, Badell I, Basara E, Stern M, Kriesel F, Eletreby M, et al. Impaired detection
- 483 of omicron by SARS-CoV-2 rapid antigen tests. Med Microbiol Immunol. 2022;211(2-3):105484 17.
- 485 3. Schrom J, Marquez C, Pilarowski G, Wang CY, Mitchell A, Puccinelli R, et al.
- 486 Comparison of SARS-CoV-2 Reverse Transcriptase Polymerase Chain Reaction and BinaxNOW
- 487 Rapid Antigen Tests at a Community Site During an Omicron Surge : A Cross-Sectional Study.
 488 Ann Intern Med. 2022;175(5):682-90.
- 489 4. Bayart JL, Degosserie J, Favresse J, Gillot C, Didembourg M, Djokoto HP, et al.
- 490 Analytical Sensitivity of Six SARS-CoV-2 Rapid Antigen Tests for Omicron versus Delta
- 491 Variant. Viruses. 2022;14(4).
- Bekliz M, Adea K, Puhach O, Perez-Rodriguez F, Marques Melancia S, Baggio S, et al.
 Analytical Sensitivity of Eight Different SARS-CoV-2 Antigen-Detecting Rapid Tests for
- 494 Omicron-BA.1 Variant. Microbiol Spectr. 2022;10(4):e0085322.
- 495 6. Landaverde L, Turcinovic J, Doucette-Stamm L, Gonzales K, Platt J, Connor JH, et al.
- 496 Comparison of BinaxNOWTM and SARS-CoV-2 qRT-PCR detection of the Omicron Variant
- 497 from Matched Anterior Nares Swabs. medRxiv. 2022:2022.01.31.22270206.
- 498 7. Deerain J, Druce J, Tran T, Batty M, Yoga Y, Fennell M, et al. Assessment of the
 499 Analytical Sensitivity of 10 Lateral Flow Devices against the SARS-CoV-2 Omicron Variant. J
 500 Clin Microbiol. 2022;60(2):e0247921.
- 8. Stanley S, Hamel DJ, Wolf ID, Riedel S, Dutta S, Contreras E, et al. Limit of Detection
- for Rapid Antigen Testing of the SARS-CoV-2 Omicron and Delta Variants of Concern Using
 Live-Virus Culture. J Clin Microbiol. 2022;60(5):e0014022.
- 504 9. Frank F, Keen MM, Rao A, Bassit L, Liu X, Bowers HB, et al. Deep mutational scanning
 505 identifies SARS-CoV-2 Nucleocapsid escape mutations of currently available rapid antigen tests.
 506 Cell.
- 507 10. Stankiewicz Karita HC, Dong TQ, Johnston C, Neuzil KM, Paasche-Orlow MK,
- 508 Kissinger PJ, et al. Trajectory of Viral RNA Load Among Persons With Incident SARS-CoV-2
- 509 G614 Infection (Wuhan Strain) in Association With COVID-19 Symptom Onset and Severity.
- 510 JAMA Network Open. 2022;5(1):e2142796-e.
- 511 11. Kissler SM, Fauver JR, Mack C, Olesen SW, Tai C, Shiue KY, et al. Viral dynamics of
- 512 acute SARS-CoV-2 infection and applications to diagnostic and public health strategies. PLoS
- 513 Biol. 2021;19(7):e3001333.
- 514 12. Cevik M, Tate M, Lloyd O, Maraolo AE, Schafers J, Ho A. SARS-CoV-2, SARS-CoV,
- and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic
 review and meta-analysis. Lancet Microbe. 2021;2(1):e13-e22.
- 517 13. Jones TC, Biele G, Muhlemann B, Veith T, Schneider J, Beheim-Schwarzbach J, et al.
- 518 Estimating infectiousness throughout SARS-CoV-2 infection course. Science. 2021;373(6551).
- 519 14. Chu VT, Schwartz NG, Donnelly MAP, Chuey MR, Soto R, Yousaf AR, et al.
- 520 Comparison of Home Antigen Testing With RT-PCR and Viral Culture During the Course of
- 521 SARS-CoV-2 Infection. JAMA Intern Med. 2022;182(7):701-9.

- 522 15. Soni A, Herbert C, Filippaios A, Broach J, Colubri A, Fahey N, et al. Comparison of
- 523 Rapid Antigen Tests' Performance between Delta (B.1.61.7; AY.X) and Omicron (B.1.1.529;
- BA1) Variants of SARS-CoV-2: Secondary Analysis from a Serial Home Self-Testing Study.
 medRxiv. 2022:2022.02.27.22271090.
- 526 16. Hay JA, Kissler SM, Fauver JR, Mack C, Tai CG, Samant RM, et al. Quantifying the 527 impact of immune history and variant on SARS-CoV-2 viral kinetics and infection rebound: a
- 528 retrospective cohort study. medRxiv. 2022:2022.01.13.22269257.
- 529 17. Meiners LaH, Johanna and Mühlemann, Barbara and Schmidt, Marie Luisa and Walper,
- 530 Felix and Menzel, Peter and Schwarzer, Rolf and Rose, Ruben and Krumbholz, Andi and Jones,
- 531 Terry C. and Corman, Victor M. and Seybold, Joachim and Drosten, Christian. SARS-CoV-2
- Rapid Antigen Test Sensitivity and Viral Load in Freshly Symptomatic Hospital Employees,
 December 2020 to February 2022. The Lancet. 2022.
- 534 18. Willett BJ, Grove J, MacLean OA, Wilkie C, De Lorenzo G, Furnon W, et al. SARS-
- 535 CoV-2 Omicron is an immune escape variant with an altered cell entry pathway. Nat Microbiol.
 536 2022;7(8):1161-79.
- 537 19. Meng B, Abdullahi A, Ferreira I, Goonawardane N, Saito A, Kimura I, et al. Altered
 538 TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity. Nature.
- 539 2022;603(7902):706-14.
- 540 20. Mautner L, Hoyos M, Dangel A, Berger C, Ehrhardt A, Baiker A. Replication kinetics
- and infectivity of SARS-CoV-2 variants of concern in common cell culture models. Virol J.
 2022;19(1):76.
- 543 21. Richard Iannone, Joe Cheng, Barret Schloerke, Hughes E. gt: Easily Create Presentation544 Ready Display Tables. R package version 0.7.0. ed2022.
- 545 22. Sjoberg DD, Whiting K, Curry M, Lavery JA, Larmarange J. Reproducible summary 546 tables with the gtsummary package. 2021.
- 547 23. Alboukadel Kassambara. ggpubr: 'ggplot2' Based Publication Ready Plots. R package 548 version 0.4.0. ed2020.
- 549 24. Wickham Hadley stringr: Simple, Consistent Wrappers for Common String Operations.550 R package version 1.4.1 ed2022.
- 551 25. Wickham Hadley ggplot2: Elegant Graphics for Data Analysis. . New York: Springer-552 Verlag 2016.
- 553

555

556 Fig. 1. Results of testing 8 commercially available rapid antigen tests against remnant

557 **clinical sample pools.** Each of eight commercially available rapid antigen tests (RATs) was

tested using sequence-confirmed, serially diluted and quantified (N2 C_T CDC Assay and

559 Quanterix Simoa SARS-CoV-2 N Protein Antigen Test) pools generated from remnant clinical

samples (RCS) of the same variant. Panels A and B show each RAT's limit of detection, which

is the lowest antigen concentration (A) or highest C_T value (B) that was detected in five out of

562 five replicates. When testing was repeated with independent RCS pools, or independent lots of

tests, they are presented as separate data points.

564

565

569 Fig. 2. Results of testing 2 commercially available rapid antigen tests against individual

571 residual mid turbinate samples from 75 individuals with Delta infection and 84 individuals with

572 BA.1 infection underwent RT-PCR testing using the Xpert Xpress CoV-2/Flu/RSV plus & Xpert

573 Xpress SARS-CoV-2 assays (Cepheid), protein quantification using the Simoa SARS-CoV-2 N

574 Protein Antigen assay (Quanterix), and rapid antigen testing (QuickVue or Binax) according to

- 575 the manufacturer's instructions. Y-axes reflect natural log(n+1) transformed antigen
- 576 concentration. Abbreviations: Cycle threshold (C_T)
- 577
- 578
- 579

581 Fig. 3. Correlation between antigen concentration and C_T value for individual remnant

582 clinical samples. Sequence-verified residual mid turbinate samples from 163 individuals with

583 Delta infection and 169 individuals with BA.1 infection underwent RT-PCR testing using the

584 Xpert Xpress CoV-2/Flu/RSV plus & Xpert Xpress SARS-CoV-2 assays (Cepheid) and protein

testing using the Simoa SARS-CoV-2 N Protein Antigen assay (Quanterix), according to the

586 manufacturer's instructions. Y-axes reflect natural log(n+1) transformed antigen concentration.

587 The red circle signifies 41 Delta samples whose C_T values were above the assay detection limit

and antigen concentrations were below the assay detection limit. Abbreviations: Cycle threshold

589 (C_T).

- 590
- 591
- 592

593 Tables

	Delta, n (%)	Omicron, n (%)
Sex		
Female	98 (60.9%)	91 (53.2%)
Male	63 (39.1%)	80 (46.8%)
Race		
White	79 (47.9%)	80 (44.9%)
Black/African American	73 (44.2%)	75 (42.1%)
Asian	3 (1.8%)	8 (4.5%)
Other	10 (6.1%)	11 (6.2%)
Refuse to Answer	0 (0%)	4 (2.3%)
Ethnicity		
Hispanic	12 (7.4%)	26 (15.2%)
Non-Hispanic	149 (92.6%)	144 (84.2%)
Refuse to Answer	0 (0%)	1 (0.6%)
Vaccine Status		
Unvaccinated/Not Fully Vaccinated	65 (40.9%)	83 (48.5%)
Fully Vaccinated/Boosted	94 (59.1%)	88 (51.5%)
Days Since Last Vaccine		
Within The Last 90 Days	17 (17.7%)	41 (43.1%)
Between 91 and 180 Days	22 (22.9%)	16 (16.8%)
Between 181 and 270 Days	52 (54.2%)	28 (29.5%)

Table 1. Demographics of patients with Delta (N=163) and Omicron (N=171).

More than 270 Days	5 (5.2%)	10 (10.5%)
Symptom Status		
Asymptomatic	5 (3.1%)	1 (0.6%)
Symptomatic	156 (96.9%)	170 (99.4%)
Symptom Duration		
Symptoms for at most 3 days	36 (23.1%)	132 (77.7%)
Symptoms for between 4 and 7 days	80 (51.3%)	38 (22.3%)
Symptoms for more than 7 days	40 (25.6%)	0 (0%)

594

Table 2: Sensitivity of BinaxNOW and QuickVue RATs using individual RCS. Samples

were stratified by antigen concentration (top panel) or C_T value (bottom panel), and the sensitivity of detection with corresponding 95% confidence intervals for Delta and Omicron was compared within each stratum using chi-square or Fisher's exact test. The supplementary data file contains results of BinaxNOW and QuickVue for each observation.

	BinaxNow			QuickVue		
	Delta	Omicron	P-value	Delta	Omicron	P-value
Overall	57.3	45.7	0.18	60	58.5	0.97
	(56.2, 58.4)	(44.7, 46.8)		(58.9, 61.1)	(57.5, 59.5)	
Antigen	Concentration	(pg/mL)				
10	0 (0, 0)	0 (0, 0)		0 (0, 0)	0 (0, 0)	
100				0	7.4	0.52
100	0 (0, 0)	0 (0, 0)		(0, 0)	(0.0, 17.3)	
1000	29.3	22.0	0.56	31.7	37.9	0.67
1000	(15.3, 43.2)	(11.46, 32.61)		(17.5, 100)	(25.4, 50.4)	
10000	51.5	35.4	0.08	54.6	51.3	0.74
10000	(39.5, 63.6)	(24.9, 46.0)		(42.5, 66.6)	(40.2, 62.4)	0.74
100000	56.8	44.6	0.4.4	59.5	58.2	
	(45.5, 68.0)	(34.4, 54.7)	0.16	(48.3, 70.6)	(48.11, 68.4)	1
C _T Value	e					
≤20	100	91.7	0.89	100	95.8	1
	(100, 100)	(90.6, 100)		(100, 100)	(95.0, 100)	
≤22	95	72.6	0.08	95	92.2	1

	(94.0, 100)	(71.3, 73.8)		(94.0, 100)	(91.4, 100)	
≤24	93.3	58.0	0.001	93.3	76.8	0.09
	(92.4, 100)	(56.8, 59.1)		(92.4, 100)	(75.8, 77.8)	
≤26	81.4	54.4	0.01	88.4	69.6	0.03
	(80.2, 82.6)	(53.3, 55.5)		(87.4, 100)	(68.6, 70.6)	
≤28	70	48.3	0.01	73.3	61.8	0.16
	(68.8, 71.2)	(47.3, 49.4)		(72.2, 74.4)	(60.8, 62.8)	

596

Table 3. Association between C_T value and natural log(n+1) transformed antigen concentration

(pg/ml), variant, vaccine status, and presence of symptoms for 151 Delta and 168 Omicron samples,

	Base Model			Full Model		
Variable	Beta	SE	p-value	Beta	SE	p-value
Log (Antigen Concentration + 1)	-2.3	0.079	< 0.001	-2.2	0.080	< 0.001
Variant						
Delta	Ref	—		Ref	—	
Omicron	-6.8	0.546	< 0.001	-6.5	0.569	< 0.001
Vaccine Status						
Not Fully Vaccinated				Ref	—	
Fully Vaccinated				0.75	1.34	0.6
Presence of Symptoms						
Asymptomatic				Ref	—	
Symptomatic				-8.0	2.19	< 0.001
Days Since Last Vaccine						
Unvaccinated				Ref		
Within the Last 90 Days				0.23	1.31	0.9
Between 91 and 180 Days Ago				-0.10	1.53	>0.9
Between 181 and 270 Days Ago				-0.57	1.49	0.7
More than 270 Days Ago				0.86	1.85	0.6

excluding samples with missing information on days since last vaccine or symptom duration.

SE = Standard Error, Ref = Reference Level

NOTE: Beta coefficients have been rounded but percentage change calculations were computed before rounding and therefore may be different.