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(6 to 45 hours versus 15 to 18 days), it is an attractive alternative
to leflunomide for application in organ transplantation.112

CHEMICAL STRUCTURE AND PHARMACOLOGY

Leflunomide (N-(4)) trifluoro-methylphenyl-5-methylisoxazol-
4-carboximide) is a prodrug and is easily converted to its
open ring metabolite A771726, which, in almost all in vitro
and in vivo assays described, exhibits the activities described
for leflunomide. The MNAs are designed to be structurally
similar to A771726.

Leflunomide is insoluble in water and is suspended in 
1% carboxymethylcellulose for oral administration. The
half-life of leflunomide in humans is long (>10 days), and
the drug is metabolized predominantly by the liver. Oral
bioavailability of FK778 is not substantially affected by food,
and no gender effect on pharmacokinetics was observed in
phase I studies.46

MECHANISM OF ACTION

Leflunomide and its analogues have strong antiproliferative
effects on T lymphocytes and especially on B lymphocytes.
The production of IL-2 is not, or is only partially, inhibited
by leflunomide.50

Kinetic studies on activated lymphocytes have shown that
addition of exogenous uridine reversed the antiproliferative
effects of leflunomide,234 and that leflunomide retained its
inhibitory activity when uridine was added 24 hours after
initiation of stimulation. Inhibition of pyrimidine synthesis
was proposed to be an important mechanism of action and
was molecularly confirmed by showing a direct leflunomide-
mediated inhibition of the enzyme dihydroorotate dehydro-
genase.306 Lymphocytes rely entirely on the de novo pathway
of pyrimidine biosynthesis and cannot use another, so-called
pyrimidine salvage, pathway. Dihydroorotate dehydrogenase
inhibition leads to depletion of the nucleotide precursors
uridine triphosphate and cytidine triphosphate, which are
necessary for the synthesis of RNA and DNA, and hence
strongly suppresses DNA and RNA synthesis.

Although in some reports it was mentioned that the
immunosuppressive effect of A771726 in vivo was overcome
by administering uridine,246 this was not confirmed in other
models.270 The in vivo mechanism of action of leflunomide
may depend on factors such as drug levels, disposable 
uridine pools, and immune activation pathways involved,
but in particular, studies have indicated that in addition to
inhibition of dihydroorotate dehydrogenase, leflunomide
and the MNAs may act through inhibition of tyrosine
kinases. Phosphorylation of the epidermal growth factor
receptor of human fibroblasts has been shown to be inhibited
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by leflunomide.168 It also was shown that leflunomide
directly inhibited the interleukin (IL)-2–stimulated protein
tyrosine kinase activity of p56lck168 and of p59fyn, which is
associated with activation through the T cell receptor/CD3
complex. At higher concentrations, A771726 also inhibited
IL-2–induced tyrosine phosphorylation of Janus kinase 1
(JAK1) and JAK3 protein tyrosine kinases, which initiate sig-
naling by the IL-2 receptor.70 In studies attempting to design
inhibitors of the antiapoptotic tyrosine kinase Bruton’s tyro-
sine kinase (BTK), leflunomide analogues were shown to
exhibit strong inhibitory activities.154 Because BTK is a key
factor for T cell–independent antibody formation, this effect
of leflunomide may explain its high potency in the suppres-
sion of T cell–independent IgM xenoantibody formation
(see later).

The hypothesis that leflunomide may exhibit more than
one mechanism of action in vivo was illustrated further in
mice in which uridine restored proliferation and IgM pro-
duction by lipopolysaccharide-stimulated B cells, whereas
suppression of IgG production was not reversed. This phe-
nomenon correlated in a dose-dependent manner with tyro-
sine phosphorylation of JAK3 and STAT6 proteins, known to
be involved in IL-4–induced signal transduction path-
ways.233 This double in vivo mechanism of action was con-
firmed in rats, in which xenogeneic reactivity was
counteracted by the administration of uridine, whereas
alloreactivity was not.51 Other effects of leflunomide and
MNAs have been described, such as inhibition of various
macrophage functions, in particular the production of
oxygen radicals,120,160,161 the inhibition of IgE-mediated
hypersensitivity responses,110 the expression of IL-8 receptor
type A,169 and tumor necrosis factor (TNF)–mediated
nuclear factor κB (NFκB) activation.160

FK778 has equivalent or stronger immunosuppressive
activity than leflunomide in vitro and in vivo.112,227 The
immunosuppressive effect is synergistic with that of cal-
cineurin inhibitors and mycophenolate mofetil.23,66,148,206

FK778 and leflunomide have been shown to possess
antiviral effects. Both inhibit viral replication of members of
the herpesvirus family by preventing tegument acquisition
by viral nucleocapsids during the late stage of virion assem-
bly.71,128,299,300 Leflunomide is effective against multidrug-
resistant cytomegalovirus in vitro,299 although this in vitro
activity is modest, and the selectivity index is low.72 In a rat
model of heterotopic heart transplantation, this anticy-
tomegalovirus effect of leflunomide and FK778 was con-
firmed and was unaffected by uridine administration.52,322

The successful treatment with leflunomide of polyomavirus
type BK nephropathy116,304 and cytomegalovirus in renal
transplant patients has been reported.113

Leflunomide and FK778 have vasculoprotective effects,
independent of the inhibition of dihydroorotate dehydroge-
nase.224 FK778 also inhibits maturation of dendritic cells in
vitro, by preventing upregulation of activation markers and
IL-12 production. This phenomenon was not reversible by
exogenous uridine.323,324

EXPERIMENTAL EXPERIENCE

In various transplantation experiments in rats, leflunomide
was shown to be at least equal in potency as cyclosporine16

and able to synergize with cyclosporine to induce toler-
ance.149 Specific characteristics of leflunomide-mediated
immunosuppression in rats were its ability to interrupt

ongoing acute rejections305 and its efficacy in preventing and
treating chronic vascular rejection.310

One of the most attractive characteristics of leflunomide
and the MNAs is their strong capacity to delay xenograft
rejection150 and to induce partial xenograft tolerance.146 This
capacity may be related to the strong suppressive effects of
leflunomide on T cell–independent xenoantibody formation
and to its ability to induce natural killer cell nonrespon-
siveness146 and modulate xenoantigen expression.147

Monotherapy with FK778 in rats,191 and its combination
with microemulsified cyclosporine in dogs133 or tacrolimus
in nonhuman primates,205 reduced chronic allograft
nephropathy191 and significantly prolonged renal allograft
survival.133,191,205

CLINICAL EXPERIENCE

Leflunomide has not been used in studies involving trans-
plant patients yet because of its suboptimal pharmacokinetic
profile. In a double-blind, randomized multicenter trial in
rheumatoid arthritis patients,237 the efficacy of leflunomide
was found to be superior to placebo and similar to sul-
fasalazine. Overall, it was well tolerated.

A phase II multicenter study was performed with FK778
involving 149 renal transplant patients,294 in which FK778
was combined with tacrolimus and corticosteroids. The
patients receiving FK778 experienced fewer acute rejections,
but there was no effect on graft survival at week 16. The
reduction of acute rejection episodes was most pronounced
in the subgroup in which target levels were obtained in the
second week. Mean total and low-density lipoprotein choles-
terol levels were 20% lower in the FK778 group than in the
placebo group.

TOXICITY

Although rats tolerate leflunomide well after long-term
administration, dogs develop anemia and gastrointestinal
ulcerations. The most frequent side effects in arthritis
patients receiving long-term leflunomide treatment were
reported to be diarrhea (17%), nausea (10%), alopecia (8%),
and rash (10%),237 leading to a dropout rate of ± 5% in
arthritis trials. In the previously mentioned phase II study
involving FK778, there was a dose-dependent increase in
side effects, including anemia, hypokalemia, symptomatic
myocardial ischemia, and esophagitis.294

CONCLUSION

Leflunomide, and the newer designed analogues, MNAs,
warrant careful investigation in transplant patients, especially
their effect on antibody formation and on chronic vascular
lesions. Their synergism with cyclosporine or tacrolimus
may be valuable.

Brequinar Sodium

Brequinar sodium originally was developed as an antitumor
drug. With the extensive data on safety issues regarding the
use of brequinar as an antineoplastic agent, interest in the
drug as an immunosuppressant to control graft rejection
was stimulated.`

CHEMICAL STRUCTURE AND PHARMACOLOGY

Brequinar is a substituted 4-quinoline carboxylic acid 
(6 fluoro-2-(2-fluoro-1,1-biphenyl-4-yl)-3 methyl-4-quinoline-
carboxylic acid, sodium salt). It is a water-soluble compound
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that is readily absorbed after oral administration.67 Peak
concentrations are obtained approximately 2 hours after oral
administration, with the half-life in humans reported to be
about 8 hours. Two thirds of the breakdown products are
excreted in feces, and one third are excreted in urine.

Brequinar inhibits the mixed lymphocyte reaction in a
dose-dependent manner. The concentration required to
produce a 50% inhibition is species dependent and varies
from 0.025 μg/mL in humans to 40 μg/mL in monkeys.
In humans, there is substantial interindividual variation in
50% inhibition values.155

MECHANISM OF ACTION

As previously mentioned, a first mechanism of action of
brequinar is inhibition of the enzyme dihydroorotate 
dehydrogenase,45 as evidenced by the fact that in vitro and
some in vivo effects of brequinar can be reversed by the
administration of uridine.315 This mode of action explains
the antiproliferative effect of brequinar and its ability to
reduce mRNA levels of interferon (IFN)-γ, IL-2 and IL-10.273

T lymphocytes and B lymphocytes are affected, explaining
the effects of brequinar on cell-mediated and humoral
immunity. Some immunosuppressive effects of brequinar are
unaffected by uridine supplementation, however, suggesting
that another mechanism of action may be involved. In this
respect, it has been shown that brequinar can inhibit 
tyrosine phosphorylation in anti-CD3–stimulated murine 
T lymphocytes.315 It was shown that brequinar-mediated 
control of lymphadenopathy and autoantibody production
in MRL-lpr/lpr mice depended only partially on inhibition
of pyrimidine nucleotide synthesis and that it was rather
associated with in vivo inhibition of protein tyrosine 
phosphorylation.314

EXPERIMENTAL EXPERIENCE

In rats, brequinar treatment, three times weekly for 30 days,
was in most recipients associated with permanent kidney
and liver allograft survival. Prolongation of heart allograft
survival was more difficult to achieve and required longer
periods of treatment.59 Survival times of small bowel 
allografts and hamster xenografts in rat recipients have been
shown to be prolonged equally by brequinar treatment.60

The difference in mechanism of action of brequinar and
cyclosporine led to the expectation that potential synergistic
action would allow significant dose reductions in brequinar
and fewer side effects. Brequinar was shown to be very active
on B lymphocytes, whereas the principal target cells of
cyclosporine are T cells. Although a synergistic effect of
brequinar with cyclosporine was documented in various
experimental models,143 this combination was complicated
by enhanced toxicity of the two compounds as a result of
drug accumulation.189

In xenograft rejection, the humoral immune response is
crucial and was shown to be successfully inhibited by combined
treatment with brequinar and cyclosporine.60 Similarly, bre-
quinar treatment before the transplantation of allogeneic
hearts to previously sensitized recipients significantly
delayed graft rejection and was associated with suppression
of antibody responses to donor tissues.319

CLINICAL EXPERIENCE

Following its approval for phase I studies in 1991, brequinar
was tested in 32 patients receiving kidney transplants.

Patients received standard cyclosporine and steroid therapy;
in addition, brequinar was initiated within 48 hours after the
transplant and given on alternate days, aiming at plasma
levels of less than 2 mg/mL. In this first series of patients,
evidence indicated that the number of rejection episodes
was significantly reduced.58 These initial positive results were
not confirmed in other studies, however, and enthusiasm 
for the drug was tempered because of its narrow range of
therapeutic effectiveness and the risk of thrombocytopenia
at high doses.117

TOXICITY

In rats, the combination of brequinar and cyclosporine was
shown to lead to enhanced toxicity of both compounds as a
result of drug accumulation.189 In humans, the most
common side effects at high doses were thrombocytopenia
and mucositis.58,117

CONCLUSION

Although the characteristics of brequinar suggest that it
would be an attractive immunosuppressant, the suboptimal
pharmacologic profile jeopardizes its use in transplant
patients. The future use of this drug in transplantation
would require the development of analogues exhibiting a
shorter half-life and less toxicity.

15-Deoxyspergualin

In 1981, spergualin (a water-soluble peptide) was isolated
from the culture filtrate of Bacillus latersporus and explored
as a new anticancer or antibiotic substance.266 Its analogue
15-deoxyspergualin subsequently became widely known as 
a promising new immunosuppressant.

Chemical Structure and Pharmacology

Spergualin (1-amino-19-guanitido-11,15-dihydroxy-4,9,
12-triazathioprinenonadecane-10,13-dione) was synthetically
dehydroxylated to produce 15-deoxyspergualin. Because of
its poor oral bioavailability, 15-deoxyspergualin must be
delivered parenterally.272 The drug is rapidly eliminated,
primarily through the kidney.280

Mechanisms of Action

The precise mode of action of 15-deoxyspergualin is
unknown. It specifically binds to Hsp 70, a heat-shock 
protein177 and is believed to have its principal effect by
inhibiting activation of transcription factor NFκB in antigen-
presenting cells and monocytes.99 This premise may explain
why 15-deoxyspergualin inhibits monocyte and macrophage
functions such as antigen presentation, major histocompat-
ibility class II upregulation, IL-1 release, or superoxide 
production.68,296 T cell–specific functions, such as concanavalin
A blastogenesis, mixed lymphocyte reaction responsiveness,
and IL-2 production, are only poorly affected or not affected
at all.261 In contrast, B lymphocyte maturation and antibody
production are sensitive to 15-deoxyspergualin.244 On the
basis of these characteristics, 15-deoxyspergualin is considered
to be a particular immunomodulatory agent with a unique
mechanism of action.

Experimental Experience

In most animal experiments, 15-deoxyspergualin did 
not seem to be effective when used to prevent rejection.
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When treatment was initiated several days after transplantation,
however, the drug was found to be much more effective.228

This observation suggested that 15-deoxyspergualin may be
useful for the treatment of rejection crises. This suggestion
was confirmed in dogs,8 and treatment of rejection 
subsequently became the major indication for clinical use
(see later). Because of its effects on monocytes,
macrophages, and B lymphocytes, 15-deoxyspergualin
seems promising for xenotransplantation; this is illustrated
by the fact that it is effective in stringent xenogeneic 
transplant models, such as primary nonfunction of islet
xenografts271 and the induction of xenogeneic chimerism 
in the pig-to-baboon combination.217

Clinical Experience

In clinical transplantation, experience with 15-deoxyspergualin
was obtained mostly in patients with rejection. Between
1988 and 1991, several clinical trials evaluated the effects of
15-deoxyspergualin in the treatment of kidney allograft
rejection. Overall, results indicated that a 7- to 10-day course
of 15-deoxyspergualin monotherapy reversed 70% of the
acute rejections and 40% of the rejections that were already
in a more chronic phase. When a 3-day course of high-dose
methylprednisolone was added, the results improved to 90%
and 60%, respectively.7 Overall, treatment of recurrent rejection
was as effective as treatment of first episodes of rejection.

Because of its effects on antibody formation,
15-deoxyspergualin also was explored in conjunction with
cyclosporine, prednisolone, and antilymphocyte globulin for
its capacity to inhibit secondary antibody production in
ABO-incompatible or HLA-presensitized kidney transplant
recipients and in pig islet xenograft recipients.94,262

15-Deoxyspergualin was safe and effective in ABO-incompatible
and preformed antibody–positive kidney transplantation 
in a prophylactic and a therapeutic regimen for acute 
rejection.262 In two of three 15-deoxyspergualin–treated
patients, small amounts of urinary porcine C-peptide were
detectable for several weeks, indicating some survival of
xenogeneic fetal porcine islets.94 More recently, Kirk and 
colleagues124 found that the combination of alemtuzumab
and 15-deoxyspergualin failed to induce tolerance in a small
series of living donor kidney transplant recipients, but 
experience is too limited to draw firm conclusions.

Toxicity

In the clinical studies involving 15-deoxyspergualin, the
most common side effects were subjective complaints of
facial numbness and gastric discomfort. These symptoms
disappeared as soon as the infusion was interrupted.
Bone marrow suppression was the most common serious
side effect, but it responded effectively to treatment with
recombinant granulocyte colony-stimulating factor.7,262

Conclusion

Until analogues are developed that allow for oral adminis-
tration,137 the major clinical indication of 15-deoxysper-
gualin is limited to the treatment of rejection crises.
15-Deoxyspergualin may be an alternative to steroids or
antilymphocyte agents. The fact that it remains effective
after recurrent administration is promising. In the future,
if xenotransplantation becomes a reality, 15-deoxyspergualin
may become important, especially for islet xenotransplantation.
Because of its effects on macrophages and B lymphocytes,

it may be essential to tackle the difficult problem of primary
graft nonfunction.

FTY720

Origin and Chemical Structure

FTY720 is a synthetic structural analogue of myriocin,
a metabolite of the ascomycete Isaria sinclairii, a fungus that
vegetates on wasps.83,84,223 FTY720 has a molecular weight of
344 daltons and is a 2-amino-2-[2-(4-octylphenyl)ethyl]-
1,3-propanediol hydrochloride. This chemical structure is
different from cyclosporine, FK506, and other current
immunosuppressants.

Antirejection Properties in Small and 
Large Animals

FTY720 given daily by oral gavage has marked antirejection
properties in mice, rats, dogs, and monkeys. FTY720 (0.1 to
10 mg/kg) prolongs survival of skin allografts in highly 
allogeneic rodent models.47 In a DA-to-Lew rat combination,
a short course of peritransplant oral FTY720 (5 mg/kg; day
−1 and 0) prolongs cardiac allograft survival and is as 
efficient as a 10-day post-transplant treatment with FK506
at 1 mg/kg.312 Cardiac and liver allograft survivals are 
prolonged in the ACI-to-Lew rat model by either induction
or maintenance treatment with FTY720.257 Even delayed
administration of FTY720 interrupts an ongoing allograft
rejection suggesting a role for FTY720 as a rescue agent.257,313

FTY720 blocks not only rejection but also graft-versus-host
disease after rat intestinal transplantation.170 Peritransplant
and post-transplant FTY720 (0.1 to 1 mg/kg/day) also has
profound immunosuppressive properties in kidney trans-
plantation in monkeys and dogs and in liver transplantation
in dogs.123,259,279,318

Synergy with Other Immunosuppressants

Small and large animal models provide evidence that
FTY720 acts in synergy with calcineurin inhibitors,
cyclosporine, and FK506 and that this benefit does not result
from pharmacokinetic interactions.258 An induction course
with FTY720 acts in synergy with post-transplant FK506 in
prolonging cardiac allograft survival in rats.312 A similar
phenomenon has been observed when FTY720 is used after
transplantation in combination with cyclosporine in rat skin
and heart allografts.47,104,123,258 FTY720 shows synergistic
effect with FK506 and cyclosporine in heart and liver 
transplants in the ACI-to-Lew rat model.318 FTY720 shows
synergy with cyclosporine in kidney transplantation in dogs
(0.1 to 5 mg/kg/day) and monkeys (0.1 to 1 mg/kg/day).279

Finally, FTY720 (0.1 mg/kg) synergizes with cyclosporine
and FK506 in dog liver transplantation.260 Synergy 
between FTY720 and rapamycin also was observed in cardiac
transplantation in rats.302

Mechanisms of Action

In contrast to cyclosporine and FK506, FTY720 is a poor
inhibitor of T cell function in vitro.279 In particular, FTY720
does not influence antigen-induced IL-2 production. This
lack of in vitro immunosuppressive activity contrasts with
the marked antirejection properties of FTY720 seen in vivo.

Rats receiving one oral dose of 10 mg/kg of FTY720 
show a rapid and profound decrease in peripheral 
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lymphocyte counts. These counts remain significantly
depressed, but return to pretreatment levels within 
14 days.257 Fluorescence-activated cell sorter analysis 
indicates a specific reduction in CD3 cells, with unchanged
CD4-to-CD8 cell ratio.313

It was first suggested that FTY720-induced lymphocy-
topenia results from apoptotic lymphocyte death. In vitro
exposure to high FTY720 concentrations (4 × 10−6 M)
induces chromatin condensation, typical DNA fragmenta-
tion, and formation of apoptotic bodies.258 Apoptosis after
administration of FTY720 also has been documented in
vivo.47,145,163,258 FTY720 causes intragraft apoptotic lympho-
cytic death in animals with ongoing liver allograft rejection.

A second mechanism of action of FTY720 is through
alteration of lymphocyte trafficking.48,98,159,167 After FTY720
administration (4 mg/kg or 8 mg/kg) in mice, labeled B cells
and T cells immediately leave the peripheral blood and
migrate to the peripheral lymph nodes, mesenteric 
lymph nodes, and Peyer’s patches. The labeled cells return 
to the peripheral blood after withdrawal of the drug and do
not undergo apoptotic death. Migration is equivalent for 
T cells, CD4 cells, CD8 cells, and B cells.321 This altered 
cell trafficking is accompanied by a reduction of
lymphocyte infiltration into grafted organs,321 a phenomenon
that would contribute to the antirejection property of
the drug.

Lymphocytes treated ex vivo with FTY720 and reintro-
duced in vivo similarly migrate to the peripheral lymphoid
tissues, indicating that FTY720 acts directly on lymphocytes.
The effect of FTY720 is abolished by previous exposure 
to pertussis toxin, suggesting that FTY720 modulates 
G protein–coupled chemokine receptors on the cell surface
of the lymphocytes.33 In addition, the process of accelerated
homing was completely blocked in vivo by coadministration
of anti-CD62L, anti-CD49d, and anti-CD11a monoclonal
antibody, suggesting that FTY720 directly affects the homing
receptors.48 It has been suggested that CD4+CD25+ T regula-
tory cells are differently affected by FTY720 compared with
T effector cells.225 CD4+CD25+ T regulatory cells express
lower levels of sphingosine 1-phosphate 1 (S1P1) and 
S1P4 receptors and show reduced response to S1P. In vitro
FTY720-treated CD4+CD25+ T regulatory cells possess 
an increased suppressive activity in an antigen-specific 
proliferation assay.225

FTY720, in the presence of TNF-α, increases the expression
of certain intercellular adhesion molecules on human
umbilical vein endothelial cells in vitro.144 Alteration of cell
trafficking by FTY720 may result not only from its direct
action on lymphocytes but also from an effect on endothelial
cells. S1P receptors also are present on murine dendritic
cells. On administration of FTY720, dendritic cells in 
lymph nodes and spleen are reduced; the expression of
CD11b, CD31/PECAM-1, CD54/ICAM-1, and CCR-7 is
downregulated; and transendothelial migration to CCL19 
is diminished.136

In a murine model of cardiac transplantation, alloantigen-
specific effector-memory T cells were sequestrated in
regional lymphoid tissue, and a decreased T cell infiltration
in the allograft was observed after FTY720 treatment.97,325

Delayed administration of FTY720 attenuated the progres-
sion of vasculopathy and interstitial fibrosis, suggesting that
FTY720 interrupts the trafficking of activated effector-memory
T cells.97

Toxicity

Pulmonary, cardiac, and neurologic toxicities have been
reported, but only in animals exposed to very high doses of
FTY720. The parent compound of FTY720 (myriocin)
induces severe digestive toxicity, but FTY720 itself does
not.46,84 At therapeutic doses, FTY720 seems to be well 
tolerated. Doses of 5 mg/kg cause no clinical toxicity in rats.
Studies in dogs indicate that doses of 5 mg/kg are equally
well tolerated for 90 days.47,123 At 10 mg/kg, no toxicity was
observed in cardiac transplantation rats receiving 
post-transplant FTY720.47,104,258 A single dose of FTY720 at
10 mg/kg was lethal, however, when given before transplan-
tation to rat liver recipients. Monkeys treated with FTY720
(0.1 to 1 mg/kg) showed no specific side effects.279 Typical
side effects of calcineurin inhibitors—nephrotoxicity,
neurotoxicity, and diabetogenicity—have not been observed
with FTY720.

FTY720 in Humans

Stable renal transplant patients maintained on cyclosporine
tolerate well one oral dose of FTY720 (0.25 to 
3.5 mg).25,35,36,235 In particular, no pulmonary toxicity was
noted. Although clinically asymptomatic, a few episodes of
bradycardia were observed. One episode of headache led 
to drug withdrawal.

Similar to its effect in animals, single doses of FTY720
cause a lymphocytopenia that is dose dependent in intensity
and duration and that affects CD4 cells, CD8 cells, memory
T cells, naive T cells, and B cells equally. Monocyte and gran-
ulocyte counts remain unchanged. Doses of 1 mg caused a
rapidly reversible decrease in lymphocyte count with a nadir
at about 6 to 12 hours. Higher doses of FTY720 result in
more sustained and more profound lymphocytopenia.

Maximal concentration and area under the curve are pro-
portional to the dose, indicating that the pharmacokinetic
profile of FTY720 is linear. The volume of distribution is
larger than the blood volume, indicating a widespread tissue
penetration. FTY720 undergoes hepatic metabolism and 
has a long half-life (about 100 hours), indicating extended
pharmacological action. Bioavailability is adequate, and
intersubject variability is low.

In a phase II study in de novo renal transplantation,
FTY720 at 2.5 mg was found to be as effective as MMF in
combination with cyclosporine for the prevention of acute
rejection after renal transplantation. FTY720 was well 
tolerated and not associated with the side effects commonly
observed with immunosuppressant therapies.269

Conclusion and Future Prospects

FTY720 is a promising new type of immunosuppressive
agent (immunomodulator) with unique structure and
mechanism of action (S1P receptor modulator) and marked
antirejection effect. FTY720 modifies lymphocyte trafficking
through alteration of the expression or function of adhesion
molecules. This provokes a migration of lymphocytes from
the peripheral blood to the secondary lymphoid tissues,
a reduction in allograft lymphocyte infiltration, and a
peripheral lymphocytopenia. The effect is dose dependent
and reversible on discontinuation of the drug. FTY720 
also may cause lymphocyte apoptosis, but probably only 
at higher doses. FTY720 can ameliorate or prevent rejection
when used as an induction or maintenance therapy.
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Ongoing acute rejection can be interrupted by post-transplant
FTY720, which acts in synergy with calcineurin inhibitors
cyclosporine and FK506 and with rapamycin. Ongoing
experimental work suggests that FTY720 also may protect
from ischemia-reperfusion injury.13,158,253,278 In addition 
to its role in clinical organ transplantation, FTY720 may
prove useful in the treatment of inflammatory/autoimmune
conditions.121

The first studies in rats involving KRP-203 (2-amino-2-
(2-[4-3(-benzyloxyphenylthio)-2-cholorophenyl]ethyl)-1,
3-propanediol hydrochloride), which has some similarity 
of molecular structure to FTY720, have been published.
KRP-203 alone or in combination with low-dose cyclosporine
or mycophenolic acid prolonged skin and heart allograft
survival with attenuated bradycardia.230,256,263

1,25-Dihydroxyvitamin D3
and Its Analogues

Mechanism of Action

1,25-Dihydroxyvitamin D3 (1,25(OH)2D3) and some of its
new synthetic structural analogues are promising
immunomodulators, with effects in autoimmunity and
transplantation immunology. The detection of the receptor
for 1,25(OH)2D3 (vitamin D receptor) in almost all cells 
of the immune system, especially in antigen-presenting 
cells (macrophages and dendritic cells) and in activated 
T lymphocytes, led to the investigation of a potential role for
1,25(OH)2D3 as an immunomodulator.164,291 In addition,
activated macrophages and dendritic cells are able to synthesize
and secrete 1,25(OH)2D3 in a regulated fashion.102,245 After
macrophage activation by IFN-γ, the secretion of classic
macrophage products, such as IL-1, TNF-α, and IL-12,
precedes the transcription of the vitamin D 1α-hydroxylase
enzyme (responsible for the final and rate-limiting step in the
synthesis of 1,25(OH)2D3) and consequently the production
of 1,25(OH)2D3 itself.185 The timing of its synthesis and
secretion is compatible with that of a suppressive negative
feedback signal.

1,25(OH)2D3 stimulates the differentiation of monocytes
toward good phagocytosis and killing of bacteria, while 
suppressing their antigen-presenting capacity.138,236 Essential
for the latter is the suppression of surface expression of HLA
class II molecules and of classic adhesion molecules necessary
for full T cell stimulation, such as CD86.55 This inhibition of
HLA class II and costimulatory molecule (CD86, CD80,
CD40, CD54) expression also is observed on the surface of
dendritic cells after in vitro or in vivo treatment with
1,25(OH)2D3 or its analogues.20,93,197,203,292,293 Dendritic cells,
being the antigen-presenting cells par excellence, are deviated
toward a more immature or tolerogenic phenotype having 
in vitro and in vivo capacity to induce the development of
regulatory T cells.91,165,166,197,292,293

The crucial cytokines secreted by antigen-presenting cells
(monocytes and dendritic cells) for recruitment and activation
of T cells are directly influenced by 1,25(OH)2D3. IL-12,
being the key cytokine determining the direction in which the
immune system is to be activated, is inhibited by 1,25(OH)2D3

and its analogues.61,140,293 Thereby, 1,25(OH)2D3 directly inter-
feres with the heart of the immune cascade, shifting the immune
reaction toward a T helper type 2 (Th2) profile. In addition,
expression by dendritic cells of the immunosuppressive IL-10,

opposing the effects of IL-12, is increased by treatment with
1,25(OH)2D3 or its analogues.197,293

Although the major immunomodulatory effects of
1,25(OH)2D3 are mediated through its action on antigen-
presenting cells, T cells also are direct targets of
1,25(OH)2D3. The Th1 cytokines IL-2 and IFN-γ are directly
inhibited by 1,25(OH)2D3,6,54,264 whereas the Th2 cytokine
IL-4 is stimulated.27,37,186 The molecular pathways by which
1,25(OH)2D3 modulates the expression of these and other
genes in the immune system varies widely.290 Next to the classic
interaction with vitamin D receptor–specific binding sites in
the promoter region of target genes (vitamin D–responsive
elements) as in the inhibition of IFN-γ,54 1,25(OH)2D3 also
interferes with other pathways of transcription regulation.
1,25(OH)2D3-mediated inhibition of IL-2 is due to impairment
of NFAT/AP-1 complex formation and subsequent association
with its binding site within the IL-2 promoter.6,264 During
the inhibition of IL-12 in monocytes and dendritic cells,
1,25(OH)2D3 targets the NFκB pathway. Activation and
binding of NFκB to its binding site within the promoter of
the p40 subunit of IL-12 are repressed by 1,25(OH)2D3.61

Preclinical Models

The fact that 1,25(OH)2D3 and its analogues influence the
immune system by immunomodulation through the induction
of immune shifts and regulator cells makes these products
appealing for clinical use, especially in the treatment and
prevention of autoimmune diseases. In the animal model of
autoimmune diabetes in the NOD mouse, upregulation of
regulator cells and a shift away from Th1 toward Th2 could
be observed in 1,25(OH)2D3-treated mice locally in the pancreas
and in the peripheral immune system.186 A restoration of
the defective sensitivity to apoptosis characteristic for NOD
T lymphocytes was observed, resulting in a better elimination
of autoreactive effector cells.39,41,64,65 This increased sensitivity
to apoptosis has been described for different apoptosis-
inducing signals. This mechanism may explain why an early
and short-term 1,25(OH)2D3 treatment before the clinical
onset of autoimmunity can lead to long-term protection and
restoration of self-tolerance.42 This arrest in the progression
of autoimmune diabetes in NOD mice treated with an 
analogue of 1,25(OH)2D3 was shown to be associated with
an enhanced frequency of regulatory T cells in the pancreatic
lymph nodes.92 A clear additive and even synergistic effect
was observed between 1,25(OH)2D3 or its analogues and 
other, more classic immunosuppressants, such as cyclosporine,
sirolimus, or mycophenolate mofetil, in vitro and in 
different in vivo autoimmune disease models, such as
autoimmune diabetes40,42,95 and experimental autoimmune
encephalomyelitis.31,32,288

1,25(OH)2D3 and its analogues were investigated in 
various transplantation models, such as pancreatic islet 
allotransplantation and xenotransplantation in mice91,96;
allogeneic heart115 and skin22,295 transplantation in mice; and
allogeneic aorta,207 bone marrow,187 heart,107,139 kidney,208

and liver209 transplantation in rats. The overall conclusion
that can be drawn from these studies is that as monotherapy,
1,25(OH)2D3 and its analogues provoke only a modest 
prolongation of graft function. This is not surprising in 
view of the weak intrinsic effects of 1,25(OH)2D3 and its 
analogues on T cells. In conjunction with other immunosup-
pressants, strong synergistic effects often can be observed,
however.91,96,114,118,187,207-209,295 In addition, in view of its effect
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on antigen presentation and on directing the immune system
in the Th2 direction, 1,25(OH)2D3 may help to induce toler-
ance.91 A major concern remains, however, the side effects of
1,25(OH)2D3 on calcium and bone metabolism. The use of
1,25(OH)2D3 analogues, which have maintained or amplified
immunomodulatory effects in combination with reduced
effects on calcium and bone, already partially conquer this
problem.30,289 The additional use of calcium-lowering meth-
ods, such as limited nutrient calcium intake, and bone
resorption inhibitors, such as bisphosphonates, aid in further
bypassing the negative side effects of hypercalcemia and
excessive bone resorption,287 facilitating the step toward the
clinical applicability of 1,25(OH)2D3 and its analogues for
their potent immunomodulatory properties.

Cyclophosphamide

Cyclophosphamide (2-[bis(2-chloroethyl)amino]-2H-1,3,2-
oxazaphosphorinane 2-oxide) is an oxazaphosphorine that
was first synthesized in 1958 by Arnold and colleagues.10

On cellular uptake, it is extensively metabolized.24,63 The drug
is first transformed to hydroxylated intermediates by the
cytochrome P-450 system.195 The hydroxylated intermediates
undergo breakdown to form the active compounds phos-
phoramide mustard and acrolein, and reaction of the 
phosphoramide mustard with DNA results in cell death.63

At high doses, cyclophosphamide is an effective immuno-
suppressive agent in experimental allograft models,307 with
perhaps some specificity for B lymphocytes.281 On the basis
of a short-term follow-up of a small series of patients, Starzl
and coworkers239 suggested that cyclophosphamide might be
substituted for azathioprine because very good results with
few complications were achieved using triple therapy with
antilymphocyte globulin, cyclophosphamide, and prednisolone.
Previous experience with cyclophosphamide in small series
had not been good, probably because high doses were being
administered.194

Cyclophosphamide has been used in combination with
azathioprine and prednisolone21 in the treatment of chronic
steroid-resistant rejection, and although some benefit was
achieved,285 serious complications were noted. Two small
controlled trials have shown that cyclophosphamide, in
intermittent boluses in the first few weeks after transplantation,
was not beneficial.111,303

The complications of cyclophosphamide can be severe,
such as leukopenia, thrombocytopenia, hemorrhagic cystitis,
nausea, and vomiting. These complications were found to be
rare, however, in a study of a few patients given low-dose
cyclophosphamide as a replacement for azathioprine for
liver dysfunction, and there was no evidence of inadequate
immunosuppression. It is possible that the immunosuppres-
sive effect of cyclophosphamide has never been adequately
tested at dosages sufficiently low to avoid complications.
This possibility is suggested further by the report of Yadav
and colleagues,316 who showed that in living related transplant
recipients who were given cyclophosphamide instead of aza-
thioprine because of hepatic dysfunction or because of the
high cost and unavailability of azathioprine, complications
attributed directly to cyclophosphamide were minimal. The
authors concluded that cyclophosphamide was a safe and
effective alternative to azathioprine.

The only standard indication for cyclophosphamide in
transplantation today is the desensitization of highly sensitized

recipients before renal transplantation. Most of these protocols
involve repeated plasmapheresis, in combination with
cyclophosphamide, either with or without continuation of
steroids, until a kidney transplant can be performed.1

Bredinin (Mizoribine)

Bredinin, 4-carbamoyl-1-β-D-ribofuranosylimidazolium-
5-olate, is a nucleoside analogue that is structurally similar
to ribavirin. It was isolated from the culture media of the soil
fungus Eupenicillium brefeldianum as an antibiotic agent
with activity against Candida albicans. Bredinin exerts its
immunosuppressive function through selective inhibition of
the enzymes inosine monophosphate dehydrogenase and
guanosine monophosphate synthetase, both of which are
required for the generation of guanosine monophosphate
from inosine monophosphate in the de novo pathway.

Previously, bredinin has been used mainly in Japan and is
infrequently used elsewhere. In a canine model of renal
transplantation, bredinin prolonged graft survival.9 In humans,
compared with azathioprine, bredinin showed equally
potent immunosuppressive activity and fewer adverse
effects.12,129,173,265,267 Because of its similarity in structure to
ribavirin, bredinin also exhibits in vitro antiviral activity
against cytomegalovirus, respiratory syncytial virus, measles,
hepatitis C virus, coronavirus, parainfluenza, and influenza
virus.105,179,219,229,231

In conclusion, experience with bredinin today is limited,
but results show that it is a safe and effective immunosup-
pressant in human kidney transplantation. Phase III trials
are under way in France, Germany, and the United Kingdom
in renal transplant patients.

Janus Kinase 3 Inhibitors

JAK3 is a tyrosine kinase essential for the signal transduction
from the common γ chain of the cytokine receptors for IL-2,
IL-4, IL-7, IL-9, IL-15, and IL-21 to the nucleus. Its expression
is restricted to immune cells, and this feature makes it an
attractive target for new immunosuppressants. Deficiency 
in JAK3 results in severe combined immunodeficiency 
syndrome.152,212,214,215 Because bone marrow transplantation
is curative for severe combined immunodeficiency syndrome
patients, it can be concluded that JAK3 has no other essential
functions in other systems or organs.182

Several JAK3 inhibitors have been developed—tyrphostin
AG-490, PNU156804, dimethoxyquinazoline compounds
(WHI-P131), CP-690 550, and Mannich base NC1153. From
studies on acute lymphoblastic leukemia cells, it was concluded
that tyrphostin AG-490 was a selective JAK2 inhibitor, with
only bystander inhibitory activity against JAK3. In other 
T cell lines, AG-490 showed specific inhibitory activity
against JAK3.301 In rats, the combination of tyrphostin 
AG-490 and cyclosporine resulted in a prolongation of heart
allografts.19,125,126

PNU156804 is an antibiotic of the undecylprodigioisin
family and is an inhibitor of JAK3.172 In a rat model of heart
transplantation, it prolonged allograft survival and showed
synergism with cyclosporine.70,233 WHI-P131 was originally
designed as an antileukemic drug.252 WHI-P131 prevented
acute graft-versus-host disease, while preserving graft-versus-
leukemia effect284 and prevented the onset of diabetes in
NOD mice.43 Platelet function is disturbed by WHI-P131,
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and this effect is independent of JAK3 inhibition, raising
issues of selectivity of this drug.274

CP-690 550 is the most potent (inhibitory potency of
1 nM) and selective JAK3 inhibitor to date. In rodents and
nonhuman primates, CP-690 550 exerted strong suppression
of immune reactions and prolongation of heart and kidney
allograft survivals. In monotherapy, it significantly delayed
the onset of rejection in kidney allografts.28,29,44,130 In non-
human primates, CP-690 550 significantly reduced T cell 
IL-2–enhanced IFN-γ production and CD25 and CD71
expression, and it inhibited cellular alloimmune responses in
vitro.44,192 Administration in vivo resulted in a reduction of
natural killer cell and T cell numbers, whereas CD8+ effector
memory T cells were unaffected.56,192 The most common
side effect of CP-690 550 is anemia, and this is due to 
inhibition of JAK2-mediated signaling through the erythro-
poietin receptor. Another possible detrimental result of
interference with IL-2 signaling relates to the fact that 
tolerance induction essentially depends on the IL-2 path-
way.132,156,157 Mannich base NC1153 preferentially inhibited
JAK3, prolonged kidney allograft survival, and induced
transplantation tolerance in rats without toxic effects.243

In conclusion, specific JAK3 inhibitors show great promise
as new effective immunosuppressants, with few side 
effects. Clinical studies in autoimmune disease and organ
transplantation are in progress.

Others

Cladribine is an adenosine deaminase–resistant analogue of
deoxyadenosine and is used in the treatment of leukemia
and lymphoma. Many studies have explored the immuno-
suppressive capacity of cladribine. In vitro, cladribine
inhibits B cell and T cell proliferation.88 In vivo, cladribine
monotherapy was shown to prolong skin allograft survival
in mice89; in combination with cyclosporine, it prolonged
liver and heart allograft survival in rats226; and it was more
effective than cyclosporine monotherapy in small bowel
allografts.183 No clinical trials are published to date.

The farnesyltransferase inhibitor A 228839 was developed
as an anticancer compound that inhibits Ras guanosine
triphosphatases. A 228839 inhibited lectin-induced prolifer-
ation and antigen-presenting cell–induced T cell proliferation.
The compound also inhibited lymphocyte Th1 cytokine
production and promoted apoptosis in lectin-activated 
lymphocytes.232

FR 252921, an immunosuppressive agent isolated from
the culture of Pseudomonas fluorescens, inhibits activating
protein-1 transcription activity and acts predominantly
against antigen-presenting cells. FR 252921 showed synergy
with tacrolimus in vitro and in vivo. In murine models 
of skin transplantation, compared with the optimal dose of
tacrolimus alone, the combination of FR 252921 and
tacrolimus prolonged graft survival.80-82

TOTAL LYMPHOID IRRADIATION

For several decades, total lymphoid irradiation (TLI) has
been used to treat Hodgkin’s disease.119 The possibility of
applying TLI as an immunosuppressive regimen rather than
as an anticancer treatment was discovered by investigators 
at Stanford University.85 In a study involving patients 
with Hodgkin’s disease, they showed that cellular immune

functions were severely impaired, whereas secondary 
hematological tumors were rare, and the only infections
commonly observed after TLI were localized herpes zoster
infections.87

Procedure of Total Lymphoid Irradiation

TLI is delivered through two ports. A first, so-called mantle,
port includes the lymph nodes of the neck, axillae, and 
mediastinum. The other port is called the “inverted Y”
and encompasses aortic, iliac, and pelvic lymph nodes and
spleen. Usually, a total dose of 40 to 50 Gy (1 Gy = 100 rad)
is administered in daily fractions of 1.5 to 2.5 Gy.

Mechanisms of Action

Much of the currently available experimental evidence on
the immunological mechanisms underlying TLI-induced
tolerance points to the importance of suppressor cells.247

Strober’s group identified post-TLI suppressor cells as 
host-type natural killer T cells because the protective effect
of TLI against graft-versus-host disease was abrogated in
mice with a CD1d inactivated gene.134 These host-type 
natural killer T cells produced IL-4 and stimulated donor-type
cells also to produce IL-4.134,135 Definitive evidence of the
functional importance and activity of these suppressor cells
was provided by the demonstration that they could prevent
graft-versus-host disease in vivo.101

Post-TLI attenuation of effector T lymphocyte reactivity
was proposed to be equally responsible for the observed
immunosuppressed state after TLI.18,73,74 This intrinsic T cell
defect depended on the irradiation of thymus and
extrathymic tissues.188 After TLI, anergized T cells were
shown to be incapable of proliferating even in the presence
of exogenous IL-2.76

In other studies, TLI was shown to lead to thymic clonal
deletion of donor-reactive or host-reactive lymphocytes.220

TLI-treated mice also exhibited decreased antidonor cytotoxic
T cell precursor frequencies.78 Finally, Strober’s group
showed that Th2 lymphocytes recover soon after TLI,
whereas Th1 lymphocytes remain deficient for several
months,17 and they showed that this defect also can be 
prevented by thymic shielding during irradiation.18 This Th2
dominance after TLI has been confirmed by other groups 
in rodents75 and in large animals.238

Experimental Experience

TLI-treated BALB/c mice receiving a fully allogeneic C57BL6
bone marrow and skin graft on the first day after TLI became
stable hematopoietic chimeras without signs of graft-
versus-host disease, and they developed permanent 
donor-specific tolerance with preserved anti–third-party
reactivity.250 Tolerance induction was critically dependent 
on the width of the irradiation field, the time of transplan-
tation after TLI, the total dose of TLI, and the absence of
presensitization.250,297,298

Following these promising results in rodents, transplantation
experiments using TLI were performed in dogs. Although
bone marrow chimerism could be easily induced, tolerance
to either heart90 or kidney106 allografts was not obtained,
suggesting that TLI-induced bone marrow chimerism 
does not create tolerance toward organ-specific antigens.
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The combination of TLI and low-dose cyclosporine was
found to be effective and clinically safe in rats,216 and TLI
with postoperative antithymocyte globulin induced perma-
nent and specific transplantation tolerance toward heart
allografts in about 40% of transplanted dogs.249 These
encouraging results led to a similar trial in clinical kidney
transplantation (discussed later). Myburgh and associates176

applied a modified TLI regimen in baboons, with low dosage
and wide field exposure, and showed that tolerance can be
achieved in larger animals without concomitant bone
marrow transplantation.

The principal disadvantage for the clinical application 
of TLI is that the complete regimen of fractionated daily
irradiation needs to be administered and completed before,
but sufficiently close to, the moment of transplantation, and
finding a suitable donor organ within such a restricted 
time frame is problematic. Investigators have explored the
possibility of using TLI after transplantation. In mouse and
rat heart allograft models, post-transplantation TLI signifi-
cantly prolonged graft survival when combined with mono-
clonal anti-CD4 antibodies277 or infusion of donor-type
dendritic cell precursors.100 Pretransplantation TLI com-
bined with cyclosporine,242 cyclosporine and pretransplant
splenectomy,317 cyclosporine and anti-CD4 monoclonal
antibody,241 or deoxyspergualin162 resulted in significantly
longer graft survival rates than any other combination 
previously used.

Also, in heart or heart-lung transplantation experiments
between xenogeneic nonhuman primate species, preoperative
TLI, when administered in combination with cyclosporine and
antithymocyte globulin,218 cyclosporine and splenectomy,26 or
cyclosporine and methylprednisolone,193 was more efficient
than any other treatment regimen. Pretransplantation TLI,
combined with cyclosporine and methotrexate in a pig heart-
into-baboon model resulted in a graft survival time of more
than 2 weeks. This regimen inhibited xenoreactive natural
antibody production, but not the xenoreactivity of
macrophages.311 In a pig islet-into-rat xenograft model,
TLI in combination with deoxyspergualin was extremely
effective,271 and even in a discordant lamb-into-pig model,
TLI synergized with cyclosporine and azathioprine to provoke
a 30-fold increase of the mean xenograft survival time.275

Clinical Experience

The first clinical kidney transplants using TLI were performed
at the University of Minnesota in 20 patients who had 
previously rejected a renal allograft.178 Because similar
results (an increase of about 30% 1-year graft survival 
compared with historical control data) were achieved in this
patient population using cyclosporine, and because of the
ease of administration, the investigators concluded that
cyclosporine was preferred over TLI.

In the 1980s, a controlled trial was performed at the
University of Leuven, Belgium, in patients with end-stage
diabetic nephropathy receiving cadaver kidney allografts,
investigating the effect of pretransplantation TLI (20 daily
fractions of 1 Gy, followed by once-weekly TLI doses until 
a suitable donor was found), followed by low-dose post-
transplantation prednisone maintenance treatment. Long-term
(8-year) follow-up revealed that rejection episodes were
more frequent and patient and graft survivals were significantly
inferior in the TLI-treated group. The excess mortality in the

TLI-treated patients was due to sepsis, resulting from 
high-dose steroid therapy needed to treat rejection crises.
This clinical experience confirmed the animal data, which
also showed that TLI alone is insufficient to provoke long-term
graft survival or tolerance and that extra manipulations are
needed.

In a study at Stanford University, 24 patients received 
a first, and 1 patient a second, cadaver renal allograft using
TLI and antithymocyte globulin.142 The actuarial graft 
survival was 76% and 68% at 1 and 2 years. Ten of the 
25 patients never had a rejection crisis despite an overall
poor HLA matching between donor and recipient. As in the
Leuven study, phenotyping of the suppressor/cytotoxic 
lymphocytes revealed that only 10% of the post-TLI 
suppressor/cytotoxic cells were cytotoxic (compared with 
± 50% in control subjects). The expansion within the 
suppressor/cytotoxic subpopulation observed after TLI was
entirely due to an increase of suppressor cells.

In follow-up studies, a specific antidonor mixed lymphocyte
culture hyporesponsiveness or nonresponsiveness was
shown,53 and in some patients, all immunosuppressive drugs
could be withdrawn.248 An evaluation in a larger group of
52 patients treated with the same protocol at the same center
showed a 3-year graft survival of about 50%, which is less
than in cyclosporine-treated patients (about 75%).142

Synergism between TLI and cyclosporine was studied in
comparison with the conventional immunosuppressive 
regimen (ALG, prednisolone, azathioprine) in 20 patients 
at Rome University.57,171 Only 1 of the patients treated with
conventional immunosuppression retained a functioning
graft, whereas 7 of the TLI-treated patients had a functioning
graft, among whom 4 never had a rejection crisis.

The use of a wide-field TLI regimen, shown to be effective
in baboons,176 was studied in humans at the University of
Johannesburg.174,175 The 1-year and 5-year actuarial graft
survivals were 86% and 60% and were significantly better for
unsensitized patients (80% at 5 years). Seven patients (9.6%)
died from transplant-related causes, five with functioning
grafts. The facts that in two patients all immunosuppressive
drugs could be stopped for several years, and that, in most 
of the others, only low-dose maintenance immunosuppres-
sion (cyclosporine, 3 mg/kg, and prednisolone, <10 mg/day
orally) was used without any rejection crisis, seem to 
confirm the results obtained in the baboon model, in 
which more than 50% of the animals became specifically 
tolerant.176

Post-transplant TLI combined with anti-CD3 monoclonal
antibodies or with antithymocyte globulin and donor-specific
blood transfusions seemed effective in a rat heart allograft
model.309 On the basis of these results, the efficacy of TLI
was evaluated in heart transplant patients with therapy-
resistant or early vascular rejection.108,141,222 TLI resulted in 
a significant reduction of rejection recurrences, an effect that
was maintained for at least 2 years. These favorable results
have been confirmed by several other groups.11,49,153,276,286

Also, TLI-treated patients develop less coronary atherosclerosis
than matched controls despite multiple rejection episodes.196

TLI in the treatment of progressive bronchiolitis obliterans
syndrome after lung transplantation was retrospectively
evaluated in 37 patients in a more recent study. TLI significantly
reduced the rate of decline in forced expiratory volume in 
1 second, was well tolerated, and was associated with few severe
complications.77

X3343-Ch21  4/8/08  2:57 PM  Page 341



342

Conclusion

Although TLI has been shown to be a safe immunosuppres-
sive regimen, it also has become evident that it is inefficient
at inducing tolerance in large animal models and humans
and is cumbersome to administer. Consequently, TLI has
been abandoned in clinical practice except for the treatment of
therapy-resistant rejection of heart or heart-lung transplant.
In view of the increasing interest in xenotransplantation, the
potential of TLI to interfere with xenogeneic reactivity must
be explored further. The fact that TLI may concomitantly
influence T cell–dependent and T cell–independent immunity
may be important because both immune arms are now known
to be equally important for the rejection of xenografts.

PHOTOPHERESIS

Extracorporeal photopheresis is a technique in which leuko-
cytes, removed from patients by leukapheresis, are exposed
to 8-methoxypsoralen and ultraviolet A light. It was developed
as an immunoregulatory treatment for erythrodermic 
cutaneous T cell lymphoma.69 Subsequently, the procedure
was shown to be safe as an alternative treatment for various
human immune and autoimmune diseases,201 and in rats199

and monkeys,198 the regimen was shown to result in
extended skin allograft and cardiac allograft and xenograft
survivals. Different mechanisms have been shown to contribute
to the immunomodulatory effect of photopheresis, including
selective inhibition of effector cells,199,200 induction of a high
rate of apoptosis,320 increased capacity to phagocytose 
apoptotic T cells resulting in the induction of anticlonotypic
immune responses,213 and a shift toward Th2 immune 
activation.14

In clinical transplantation, photopheresis has been
applied as a therapeutic and prophylactic option. It has been
applied in the treatment of recurrent or resistant acute 
rejection in renal transplant patients,14,62,86,103,131,254,308 but
the number of patients included in these studies is limited,
and prospective, randomized trials are needed. The safety
and efficacy of photopheresis in the prevention of acute
rejection of cardiac allografts have been evaluated in primary
cardiac allograft recipients randomly assigned to standard
triple-drug immunosuppressive therapy (cyclosporine,
azathioprine, and prednisone) alone or in conjunction with
24 photopheresis sessions performed during the first 
6 months after transplantation. After 6 months of follow-up,
photopheresis-treated patients developed significantly fewer
rejections, and there were no significant differences in the
rates or types of infection. Although there was no 
significant effect on graft survival rates at 6 or 12 months,
this study indicated that photopheresis may be an effective
new immunosuppressive regimen in transplant recipients.15

In patients with refractory bronchiolitis obliterans after lung
transplantation, photopheresis resulted in a stabilization of
graft function, and in some of these patients it resulted in
histological reversal of rejection.181,221

SPLENECTOMY

Splenectomy in the recipient before transplantation was 
first proposed by Starzl and colleagues240 in 1963 as a 
means to improve graft survival. Although splenectomy 
is a standard procedure for patients who develop 

hypersplenism or azathioprine-associated leukopenia,
evidence on the role of splenectomy in enhancing graft 
survival is controversial.122,184,204,211,240,251 A large prospective 
randomized trial in Minneapolis showed splenectomy to
improve graft survival significantly,79 but longer term
follow-up showed loss of beneficial effects because of an
increased infection-related mortality.255 Several other 
single-center studies have shown an alarming risk of sepsis
and death, nullifying any early benefits of splenectomy on
graft survival,2,202 and a multicenter analysis from the South
Eastern Organ Procurement Foundation confirmed 
a modest improvement in graft survival after splenectomy
but a relentless increase in patient mortality.151

Splenectomy may have a place in the preparation of
a recipient who is to receive an ABO-incompatible graft,
a practice that is likely to become more widely used in living
related donor transplantation, in which an ABO-incompatible
but otherwise suitable donor is the only available donor.
Alexandre and associates3,4 reported a series of 38 such
ABO-incompatible living donor transplants in which the
recipient was prepared by plasmapheresis, donor-specific
platelet transfusion, and splenectomy. Although the authors
believe that the need for plasmapheresis and donor-specific
platelet transfusion should be re-evaluated, splenectomy was
thought to be important because 3 recipients who did not
have a splenectomy lost their grafts from acute vascular
rejection, in contrast to only 5 of 33 who did undergo
splenectomy.3,4,210 Ishikawa and colleagues109 in Japan
reported a small-scale but successful experience with 
postsplenectomy, ABO-incompatible, living donor kidney
transplantation. Antigen-specific immunoadsorption and
rituximab treatment have been developed more recently,
however, as alternatives to plasmapheresis and splenectomy in
the setting of ABO-incompatible kidney transplantation.282,283

PLASMAPHERESIS

Plasmapheresis has been applied in three settings. The first is
in the treatment of steroid-resistant acute rejection that is
morphologically predominantly vascular and considered to
be antibody-mediated rather than cell-mediated. Although
some initial reports suggested a beneficial effect,38 controlled
trials were unconvincing.5,127 Nojima and colleagues180

reported the successful treatment of antibody-mediated
acute renal allograft rejection by combining plasmapheresis
with 15-deoxyspergualin. The second setting is in the 
preparation of recipients of ABO-incompatible living 
donor kidneys, referred to earlier,3,210 although Brynger and
coworkers34 have reported some successful ABO-incompatible
grafts without prior plasmapheresis of the recipient. In the
third setting, plasmapheresis is used in an attempt to reduce
the titer and the broad reactivity of HLA antibodies in highly
sensitized candidate transplant dialysis patients; it is combined
with cyclophosphamide therapy to prevent reappearance of
the antibodies. Encouraging early results of this approach
have been reported, although they were associated with 
considerable morbidity.268 Immunoadsorption has been
applied as an alternative to plasmapheresis and was found to
be an equally efficient method.190,282,283 Studies of this
approach in highly sensitized candidate transplant recipients
are continuing, in particular, the search for drugs that 
selectively prevent synthesis of antibodies but perhaps may
be less toxic than cyclophosphamide.
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