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ABSTRACT Fungal-bacterial interactions play a key role in the functioning of many
ecosystems. Thus, understanding their interactive dynamics is of central importance
for gaining predictive knowledge on ecosystem functioning. However, it is challeng-
ing to disentangle the mechanisms behind species associations from observed co-
occurrence patterns, and little is known about the directionality of such interactions.
Here, we applied joint species distribution modeling to high-throughput sequencing
data on co-occurring fungal and bacterial communities in deadwood to ask whether
fungal and bacterial co-occurrences result from shared habitat use (i.e., deadwood’s
properties) or whether there are fungal-bacterial interactive associations after habitat
characteristics are taken into account. Moreover, we tested the hypothesis that the
interactions are mainly modulated through fungal communities influencing bacte-
rial communities. For that, we quantified how much the predictive power of the
joint species distribution models for bacterial and fungal community improved
when accounting for the other community. Our results show that fungi and bacte-
ria form tight association networks (i.e., some species pairs co-occur more fre-
quently and other species pairs co-occur less frequently than expected by chance)
in deadwood that include common (or opposite) responses to the environment as
well as (potentially) biotic interactions. Additionally, we show that information
about the fungal occurrences and abundances increased the power to predict the
bacterial abundances substantially, whereas information about the bacterial occur-
rences and abundances increased the power to predict the fungal abundances
much less. Our results suggest that fungal communities may mainly affect bacteria
in deadwood.

IMPORTANCE Understanding the interactive dynamics between fungal and bacterial
communities is important to gain predictive knowledge on ecosystem functioning.
However, little is known about the mechanisms behind fungal-bacterial associations
and the directionality of species interactions. Applying joint species distribution
modeling to high-throughput sequencing data on co-occurring fungal-bacterial
communities in deadwood, we found evidence that nonrandom fungal-bacterial
associations derive from shared habitat use as well as (potentially) biotic interac-
tions. Importantly, the combination of cross-validations and conditional cross-vali-
dations helped us to answer the question about the directionality of the biotic
interactions, providing evidence that suggests that fungal communities may mainly
affect bacteria in deadwood. Our modeling approach may help gain insight into
the directionality of interactions between different components of the microbiome
in other environments.
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Fungi and bacteria are core members of communities driving biogeochemical cycles,
and interactions between the groups play a key role in the functioning of numerous

ecosystems (1). Thus, understanding their interactive dynamics is of central importance
for gaining predictive knowledge on ecosystem functioning. Biotic interactions are one
of the main assembly processes and are expected to result in nonrandom co-occur-
rence patterns between species (2). Interactive relationships such as mutualism, para-
sitism, and facilitation are expected to lead to aggregated distributions between
species and positive species-to-species associations, whereas competition can be
expected to lead to segregated distributions and negative species-to-species associations
(3). However, inferring biotic processes from co-occurrence patterns in observational stud-
ies is not trivial: nonrandom patterns may result from shared habitat use rather than from
interactive effects (3), whereas opposite responses to simultaneous environmental con-
straints may result in random co-occurrence patterns (4). Although only a manipulative
experiment could establish a causal relationship between observed patterns and underly-
ing biotic processes, recent advances in joint species distribution modeling (JSDM) (5)
have significantly advanced the research on biotic interactions in observational studies by
decomposing species co-occurrence patterns into shared environmental responses and re-
sidual species associations (3, 6, 7).

Fungi are the main contributors to wood decomposition and deeply modify its
physical structure (8); thus, deadwood decomposition in forest ecosystems has been
traditionally attributed to wood-decaying fungi. Nevertheless, the role of bacteria, ei-
ther directly or through interactions with fungi, is being increasingly recognized
(8–10). There are innumerable mechanisms by which fungi can affect bacteria and bac-
teria can affect fungi during wood decomposition, and studying them separately com-
pletely neglects such interactive effects (11). Fungi can strongly modify the deadwood
environment by modifying pH or translocating N and P from soil (12, 13), which, in
turn, may impact bacterial community composition (14, 15). Similarly, bacterial activity
may alter wood properties through, for example, the fixation of atmospheric N2 (16).
Moreover, fungal-bacterial interactions go beyond these effects through modulation of
the environment. There is ample in vitro evidence of antagonistic effects in both direc-
tions (17–19). Bacteria are able to directly feed on fungal mycelia (20). Bacteria can act
as commensalists by consuming fungal exudates and products of wood decomposition
(21, 22). Mutualistic interactions have also been described, where fungi gain protection
against fungicides and bacteria get increased access to resources (23).

The capacity of fungi to modify the spatial structure of deadwood makes them cru-
cial drivers of microbial community composition and activity (24). Mycelia enable fungi
to exploit and expand through the three-dimensional space of deadwood (1), making
hyphae an effective dispersal vector also for the wood-inhabiting bacteria (25). In this
line, in experimental setups, Johnston et al. (26) and Christofides et al. (27) demon-
strated strong directional effects from fungi to bacteria: they inoculated wood pieces
with known wood-decaying fungi and then observed that the development of suc-
ceeding bacterial communities highly depended on the identity of the inoculated
fungi. Therefore, fungal-bacterial interactions might be mainly modulated through fun-
gal communities influencing bacterial communities.

Recent studies have shown that fungi and bacteria co-occur nonrandomly in dead-
wood (10, 28–30). However, using raw co-occurrences, none of the studies could distin-
guish between associations derived from shared habitat use and interactive effects nor
could they explore the directionality of the interactions. Therefore, it remains largely
unknown which are the principal mechanisms behind the reciprocal effects between
fungi and bacteria (11).

The first objective of the present paper was to assess whether fungal and bacterial
co-occurrences result from shared habitat use (i.e., deadwood’s properties) or whether
there are fungal-bacterial interactive associations after habitat characteristics are taken
into account. For this, we applied JSDM to high-throughput sequencing data on co-
occurring fungi and bacteria. Fungal community composition has been reported to be
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strongly influenced by host tree species and deadwood diameter and decay stage
(31–33), variables which reflect different physical-chemical properties. Likewise, bacte-
rial community composition in deadwood is influenced by variables such as water con-
tent, pH, or C/N ratio of deadwood (26, 34–36). Hence, a wide range of log physical
and chemical characteristics were included as fixed effects in the models, and residual
association networks were compared between the models that did versus those that did
not account for the response of species to the environmental variables. Additionally, we
hypothesized that the fungal-bacterial interactions are mainly modulated through fungal
communities influencing bacterial communities. To test the effects of fungal commun-
ities on the bacterial communities and the effect of bacteria on fungi, we quantified how
much the predictive power of the JSDM for bacterial community improved when
accounting for fungal community data and, vice versa, how much predictive power
increased for the fungal community when accounting for bacterial community
composition.

RESULTS

Nonmetric multidimensional scaling (NMDS) ordinations show that the filters to
remove rare operational taxonomic units (OTUs) altered overall community structure
very little, and, similarly, the set of wood physical and chemical characteristics that sig-
nificantly correlated with main trends in community structure also remained the same
(Fig. 1). Fungal and bacterial species richness were uncorrelated (see also Fig. S1 in the
supplemental material), whereas beta-diversity metrics of both domains were signifi-
cantly correlated, regardless of the filtering criteria used (see Fig. S2). Therefore, we
proceeded to hierarchical modeling of species communities (HMSC) using the commu-
nity data sets filtered to bigger data sets (452 fungal and 570 bacterial OTUs) and
smaller data sets (103 fungal and 51 bacterial OTUs).

From the species-to-species association matrices, there was evidence for both co-
occurrences arising from shared habitat preferences and from interactive effects. The
association matrix derived from the residuals of the null model was strongly structured
both within and between fungi and bacteria, with several species co-occurring more
and less often than expected by chance (Fig. 2A; Fig. S3A). In the residual association
matrix of the full model (i.e., the associations remaining after the effects of environ-
mental predictors were taken into account), several of those associations remained,
but many others disappeared. This means that many of the species-to-species associa-
tions detected by the null model were the result of many species pairs responding in
the same (or opposite) way to the characteristics of deadwood (Fig. 2B; Fig. S3B).
Additionally, many other associations shifted from positive to negative or from negative
to positive (changes in the direction of the associations are easiest to see in Fig. S3, since
the association matrix involves a lower number of OTUs).

Variance partitioning community composition revealed that for bacteria, log-level
random effects (i.e., the species-to-species association network) explained a greater frac-
tion of the variance than those for fungi (Fig. 3; Fig. S4). The partitioning further showed
that the fractions explained by log chemical characteristics in comparison to log physical
characteristics were similar in both fungi and bacteria: chemistry explained more than
double the variance than physical characteristics for both domains (Fig. 3; Fig. S4).

The models had generally somewhat greater predictive power for bacteria than for
fungi, especially when the prediction was conditioned by the occurrences and abun-
dances of fungi (Table 1; Table S1). For prediction of fungal occurrences (the binomial
model), including the fixed effects (all environmental predictors) increased the predic-
tive power by 0.031 area under the curve (AUC) points in comparison to the null model
not including environmental predictors. Including also the information on bacterial
occurrences and abundances increased the power an additional 0.014 AUC points
(conditional predictive power of full model versus nonconditional predictive power of
full model) (Table 1; Table S1). Bacterial community was nearly half as good a predictor
of fungal occurrences than were the environmental predictors (i.e., log chemical and
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FIG 1 Fungal and bacterial community structures with the whole community and after filtering rare OTUs. NMDS ordination plots showing the main trends
in fungal community structure including all OTUs (A), after applying the filter resulting in bigger data set (C), and after applying the filter resulting in
smaller data set (E). Bacterial community structure including all OTUs (B), after applying the filter resulting in bigger data set (D), and after applying the
filter resulting in smaller data set (F). Gray arrows depict the environmental variables significantly associated with the main trends in community structure.
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physical characteristics). When predicting bacterial occurrences, environmental predic-
tors increased predictive power by 0.031 AUC points, and including fungal occurrences
and abundances increased the power an additional 0.059 AUC points (Table 1; Table S1).
For bacterial occurrences, fungal community was nearly twice as good a predictor as
were the environmental predictors. Prediction of abundances (the log-normal models)
was overall worse, but the trends were similar: information about the fungal occurrences
and abundances increased the power to predict the bacterial abundances substantially,
whereas information about the bacterial occurrences and abundances increased the
power to predict the fungal abundances much less (Table 1; Table S1).

DISCUSSION

Fungal-bacterial interactions are ubiquitous in nature and play a key role in the
function of many ecosystems (1). Here, we jointly studied fungal and bacterial com-
munities in deadwood, and similar to other studies that reported nonrandom co-occur-
rence patterns between them (28–30), we observed that the species association net-
work is strongly structured both within and between fungi and bacteria. Previous
works have attributed the nonrandom associations between fungi and bacteria to
modifications of wood chemistry by the fungal activity (26, 29); however, our results
show that many significant associations remain after accounting for the effects of envi-
ronmental predictors. This suggests that biotic interactions beyond the effects on and
responses to environmental factors occur between fungi and bacteria.

In this study, we measured a wide range of environmental predictors, including
both wood chemical and physical characteristics. Studies analyzing fungal commun-
ities in deadwood usually measure physical characteristics of wood, which, in turn, are
correlated with chemistry (31–33), whereas wood chemical explanatory variables are
more commonly included in studies involving the bacterial community (34–36). Here,
addressing fungi and bacteria together, we show that both kinds of variables explained
a similar fraction of variance in these domains: chemistry was twice as important as log
physical characteristics. Since we lack temporal data, we could not distinguish whether
fungi modified the wood chemistry first and bacteria responded to the modification or

FIG 2 Species association networks. Species association networks derived from the log (i.e., sample)-level random effects of the JSDM. (A) The network
derived from the null model (i.e., including only sequencing depths as explanatory variables) shows raw species co-occurrences. (B) The network derived
from the full model (i.e., including all measured environmental predictors) shows co-occurrences once shared (or opposite) habitat use has been taken into
account. Differences between networks of null and full models are more visible in Fig. S3 in the supplemental material, since the association matrix
involves lower number of OTUs.
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if both bacteria and fungi are responding to wood chemistry, which, in turn, depends
on other log characteristics. The answer is probably complex, since dominant fungi
may shape subsequent bacterial communities by lowering wood pH (13, 26), but differ-
ent tree species may have specific chemical characteristics as well (33, 34).

Variance partitioning revealed a stronger effect of log-level random effects on bac-
terial community composition than on fungal community composition. Log-level ran-
dom effects likely model interactive associations between species, since environmental
predictors were included in the JSDM as fixed effects; however, they could also repre-
sent missing environmental covariates. In the same line, cross-validation results suggest
directional interactive effects from fungi to bacteria: information on fungal occurrences

FIG 3 Variance partitioning of fungal and bacterial community compositions. Proportions of variance
explained by log chemical (water, pH, C, N, and lignin) and physical characteristics (tree species
identity, decay time, and DBH) and sample-level random effects (i.e., species-to-species association
matrix) in fungi (A) and bacteria (B). Bar plots show the variance proportions species by species,
whereas text boxes show proportions averaged over species and models (binomial versus log
normal). Species are differently ordered in binomial and log-normal parts of the model, since they
were separately ordered based on the effect size of chemical predictors. Note that only explained
variance is depicted in the plot: the explanatory powers of binomial and log-normal models for fungi
and bacteria are reported in the corresponding column of Table 1.
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and abundances was twice as good a predictor of bacterial community composition
than the environmental predictors altogether. However, this was not the case when
using information on bacterial communities to predict fungi; in this case, environmental
predictors had twice as good predictive power. Again, it might be argued that unmeas-
ured explanatory variables rather than actual biotic interactions are responsible for resid-
ual associations between fungi and bacteria. We believe this to be unlikely, because a
common response of fungi and bacteria to unmeasured variables would have resulted
in symmetrical effects between fungi and bacteria, which is not the case in our study—
fungi are a good predictor of bacteria, but the opposite is not true. The overall low pre-
dictive powers of the models are not surprising given the inherent stochasticity of micro-
bial community development. There are many well-documented mechanisms affecting
fungal and bacterial community assembly and altering their spatial distributions, such as
drift, dispersal limitation, priority effects, or endpoint assembly cycles (37). Moreover, it is
challenging predicting highly diverse communities with a relatively small data set.

The directional effect of fungi on bacteria is in line with other studies (26, 27, 29),
which suggested that the modification of pH by fungi is an important underlying
mechanism. Even if we cannot give any final answer on the involved mechanisms with
this observational study, our results suggest that part of the effect of fungi on bacteria
is uncorrelated with any chemical variable of the wood. There are alternative ways
fungi might affect bacterial composition. Fungal hyphae are proficient in exploring the
wood three-dimensional space, and they can be considered to constitute ideal trans-
port paths and scaffolds for bacteria (1). In fact, bacteria have been reported to use
fungal mycelia to disperse more efficiently in other substrates (23, 38).

The joint movement of bacteria with fungi (and hence, their interactions) might
have deep consequences for deadwood decomposition and forest nutrient dynamics.
Previous findings on co-occurrence patterns between wood-decaying fungi and N2-fix-
ing bacteria suggest that deadwood decomposition might be an interactive process
where bacteria may provide the N source and fungi provide the C source (10, 11, 28, 36).
Similar interactions between fungi and bacteria have also been reported in the process of
litter decomposition (38). Furthermore, implications of fungal-bacterial associations in eco-
system functions go well beyond plant matter decomposition (1). For instance, mycelium-
based dispersal improves the movement of bacteria in heterogeneously polluted soils
where movement of bacteria is otherwise impaired, thus stimulating contaminant biode-
gradation (39–41).

TABLE 1 Explanatory and predictive powers of the modelsa

Category Model
No. of
species

Explanatory
power

Unconditional
predictive
power

Conditional
predictive
power

Occurrence
Fungi Null 452 0.786 0.568 0.607

Full 452 0.824 0.599 0.613
Bacteria Null 570 0.876 0.556 0.665

Full 570 0.894 0.587 0.646

Abundance
Fungi Null 452 0.315 20.051 20.016

Full 452 0.425 20.010 0.001
Bacteria Null 570 0.398 20.002 0.049

Full 570 0.486 0.012 0.047
aExplanatory and predictive powers of the models for fungal and bacterial occurrences (measured in terms of
AUC of the binomial model) and abundances (measured in terms of R2 of the log-normal model) were averaged
over the species. Null models have sequencing depth as the sole explanatory variable, whereas full models
include also the environmental predictors. Explanatory power is based on model fitted to all data,
unconditional predictive power is based on 2-fold cross-validation, where values of environmental predictors
are known, and conditional predictive power is based on 2-fold cross-validation where the occurrences and
abundances of the nonfocal group (bacteria to predict fungi and fungi to predict bacteria) are also assumed to
be known. Note that AUC index takes values between 0.5 and 1, whereas R2 ranges between 0 and 1.
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Finally, the JSDM approach that we applied does not model explicitly compositional
data using a multinomial distribution. Extending the data models of JSDMs to include
the multinomial distribution is one of the key challenges in the ongoing merging of
multivariate methods developed separately for microbial ecology and for the commu-
nity ecology of macroorganisms (3). Failing to account for the multinomial nature of
the data could theoretically generate negative associations between species. This
would certainly be the case if the data involve two species, as then the increase in
sequence count of one species would directly decrease the sequence count of the
other species. However, even for the case of two species, the presence-absence part of
the model would be less problematic, as missing the occurrence of one species
because the other species dominates the sequence data would be unlikely. Moreover,
we believe that this is not a major problem for the abundance data either, since the
community consists of a very large number of species, none of which dominates the
data in terms of sequence abundance. Thus, the constraining effect of the total num-
ber of sequences is diluted through the whole community and is not likely to generate
strong negative associations between any pair of species. Reflecting this, the associa-
tions we report are not predominantly negative (Fig. 2), but they contain a balanced
set of associations that are positive, negative, or not statistically supported. Therefore,
we consider our results robust even if the JSDM applied here does not include the mul-
tinomial data model.

In conclusion, our study shows that fungi and bacteria form tight association net-
works (i.e., they co-occur more or less frequently than expected by chance) in dead-
wood that include common (or opposite) responses to the environment, as well as
(potentially) biotic interactions. Importantly, the combination of cross-validations and
conditional cross-validations helped us to answer the question about the directionality
of the biotic interactions, providing observational evidence suggesting that fungal-bac-
terial interactions may be modulated through fungal communities influencing bacterial
communities. Our modeling approach may help gaining insight into the directionality of
interactions between different components of the microbiome in other environments.

MATERIALS ANDMETHODS
Study area and sampling design. The study area was located in the 25-ha Zofin ForestGEO

Dynamics plot in the Novohradské Hory mountains, Czech Republic (48°3995799N, 14°4292499E; www
.forestgeo.si.edu). This area is part of the 42-ha core zone of the Žofínský prales National Nature Reserve
(established 1838), which has never been managed and thus represents a virgin forest. The bedrock con-
sists of fine- to medium-grain porphyritic and biotite granite. Annual average rainfall is 866mm, and an-
nual average temperature is 6.2°C (42). The living tree volume, which is calculated to be 690 m3 ha21

(43), is dominated by Fagus sylvatica (51.5% of total living wood volume), followed by Picea abies
(42.8%) and Abies alba (4.8%). Other tree species (Ulmus glabra, Acer pseudoplatanus, Acer platanoides,
and Sorbus aucuparia) represent 1% of living wood volume. The dead coarse wood debris is calculated
to be on average 208 m3 ha21 (44) and is more evenly represented by F. sylvatica, P. abies, and A. alba,
with 23.6%, 43.7%, and 31.4% of the volume, respectively (43).

The log sampling scheme was detailed in previous publications (33, 36), but here follows a brief
description. For the study area, detailed information is available about every living and dead tree with
diameter at breast height (DBH) of $10 cm (including spatial location, DBH, tree species, tree status,
live/dead, standing/lying, snag, breakage, windthrow, stump, etc.): all the variables were repeatedly
recorded in 1975, 1997, 2008, and 2013 (45). Using this information, all trees belonging to F. sylvatica, P.
abies, and A. alba, with a DBH between 30 cm and 100 cm, and first recorded as dead and lying in 1975,
1997, 2008, or 2013 were identified. Trees decomposing as standing before they were downed were
omitted to exclude logs with unclear decay lengths. Hence, a tree species (beech, spruce, and fir), decay
length (,5, 5 to 15, 16 to 38, or .38 years), and DBH was assigned to each log. Then, within each tree
species and decay length class, logs were selected randomly. The final data set was composed of 118
trees: 39 beech logs (of which 9 had a decay length of ,5 years, 13 of 5 to 15years, 12 of 16 to 38years,
and 5 of.38years), 36 fir logs (2 of,5 years, 14 of 5 to 15years, 13 of 16 to 38years, and 7 of.38years),
and 43 spruce logs (10 of ,5 years, 12 of 5 to 15years, 11 of 16 to 38years, and 10 of .38years) (see
Table S2 in the supplemental material).

To obtain representative samples, four subsamples were obtained from each log in October 2013
using an electric drill with a bit diameter of 8mm. The length of each log (or the sum of the lengths of
its fragments) was measured, and subsamples were collected at one-fifth, two-fifths, three-fifths, and
four-fifths of the log length. The four subsamples of each log were pooled to yield one composite sam-
ple per log. Drilling was performed vertically from the middle of the upper surface to a depth of 40 cm.
The drill bit was sterilized between drillings.
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Sample processing, chemical analysis, and DNA extraction and amplification. Details of sample
processing and analysis were given in previous publications (33, 36). Briefly, the sawdust material was
weighed, freeze-dried, and milled using an Ultra Centrifugal Mill ZM 200 (Retsch, Germany). Dry mass
content was measured as a loss of mass during freeze-drying, and the pH was measured in distilled
water (1:10). The wood C and N contents were measured in an external laboratory (Research Institute for
Soil and Water Conservation, Prague, Czech Republic) as described previously (46). Klason lignin content
was measured as dry weight of solids after hydrolysis with 72% (wt/wt) H2SO4 (47).

Total genomic DNA was extracted from 2� 200mg of material of each sample using the NucleoSpin
Soil kit (Macherey-Nagel, Germany) according to the manufacturer’s instructions. Then, PCR amplifica-
tions were performed in three PCRs per sample as described previously (33, 36) using barcoded gITS7
and ITS4 primers targeting fungal ITS2 (48) and barcoded 515F and 806R primers targeting the V4 region
of the bacterial 16S rRNA gene (49). Amplicons were purified, pooled, and sequenced on the Illumina
MiSeq to obtain pair-end sequences of 2� 250 bp.

Sequence data processing. The sequencing data were processed using SEED v 2.0.3 (50) as
described in references 33 and 36. For bacteria, pair-end reads were merged using fastq-join (51). For
fungi, only forward read sequences beginning with the primer gITS7 were considered, since for certain
highly abundant wood-decomposing fungi (e.g., Armillaria spp.), ITS2 is longer than 550 bases and these
sequences would be missed during pair-end joining. The whole or partial ITS2 was extracted from fungal
amplicons using ITS Extractor 1.0.8 (52). Sequences of inferior quality (mean Phred score of ,30, all
sequences with ambiguous bases) or length (,40 bases) were removed. Chimeric sequences were
detected and deleted using UCHIME implementation in USEARCH 7.0.1090 (53). Sequences were clustered
using UPARSE implemented in USEARCH (54) at a 97% similarity level. Consensus sequences were con-
structed for each cluster, and the closest hits at the species level were identified using BLASTn against
UNITE (55) and GenBank for fungi and Ribosomal Database Project (56) and GenBank for bacteria. The min-
imum and maximum read counts were 1,598 and 21,375 for fungi, and 1,606 and 15,113 for bacteria,
respectively. This resulted in 4,519 fungal and 21,260 bacterial OTUs, of which 263 and 11,601 were global
singletons and were removed. Therefore, the final data consisted of 4,256 fungal and 9,659 bacterial OTUs.

Statistical analyses. We analyzed the data with a hierarchical modeling of species communities
(HMSC) framework (57, 58), which belongs to the class of JSDM (5). In HMSC, community data are ana-
lyzed by constructing a hierarchical model in the generalized linear model (GLM) framework and using
Bayesian inference.

The response data consisted of abundances (sequence counts) of bacterial and fungal OTUs in the
n=118 logs (i.e., sampling units). As the data were zero inflated (i.e., dominated by species’ absences),
we applied a hurdle model. A hurdle model consists of two parts, one modeling the presence-absence
and the other modeling abundance conditional on presence. To fit the first model, we first truncated
the data to presence-absence, keeping all zeros as zeros and setting the nonzeros to one, and we fitted
a binomial model with probit link function to each column (i.e., OTU). Then, to fit the second model, we
generated a second data set by setting all zeros to missing values (i.e., ignoring them) and keeping all
nonzeros in their original values. To model these abundances conditional on presence (scaled to zero
mean and unit variance), we used the lognormal model. We included both of the presence-absence and
the abundance models in the same model, so that the response matrix Y (for notation, see reference 58)
included each fungal and bacterial OTU twice. See reference 3 for more details about HMSC models,
including how hurdle models can be used to model zero-inflated data.

As data on rare species are not sufficiently informative to enable fitting species-specific models (see,
e.g., reference 3), we included in the analyses only those OTUs with a prevalence of .10% among the
sampling units and which had at least 0.5% relative abundance in one of the sampling units. These
choices resulted in 452 fungal OTUs and 570 bacterial OTUs. To test the robustness of the results against
these choices, we also ran an alternative analysis, where we used 20% as the prevalence threshold and
5% as the maximal relative abundance threshold, resulting in 103 fungal and 51 bacterial OTUs.
Additionally, to assess how the filtering criteria affected fungal and bacterial community structure, we
carried out NMDS ordination plots separately for (i) the whole community (4,256 fungal and 9,659 bacte-
rial OTUs); (ii) the data obtained with the filter generating a bigger data set (452 fungal and 570 bacterial
OTUs); and (iii) the data obtained with filter generating the smaller data set (103 fungal and 51 bacterial
OTUs). NMDS was performed using metaMDS() function from vegan (59). Because fungal communities
were too complex to obtain reliable NMDS ordinations in two dimensions, we conducted the ordina-
tions in three dimensions by setting the argument k = 3 in the metaMDS() function. The first two axes
are shown in results, since interpreting three-dimensional plots is very difficult. Significant explanatory
variables were added to the ordinations as arrow vectors using envfit() function from vegan (59).
Significance of each explanatory variable was tested independently using 999 permutations.

As fixed explanatory variables in the matrix X of HMSC, we included variables related to wood chem-
istry and physical characteristics. The continuous variables describing wood chemistry were (i) percent
water content, (ii) pH, (iii) percent C content, (iv) log-transformed percent N content, and (v) percent lig-
nin content. Variables related to log physical characteristics were (vi) tree species (categorical with
beech, spruce, and fir levels), (vii) decay time (categorical with ,5, 5 to 15, 16 to 38, or .38years levels),
and (viii) DBH in centimeters (continuous). To control for variation in sequencing depth, we also included
the (ix) log-transformed number of reads as a continuous variable. To identify association networks within
fungi and within bacteria, as well as among these two groups, we included a community-level random
effect (implemented with the help of latent variables [see reference 58]) at the sampling unit (i.e., the log)
level. The community-level random effect models covariation among the species that cannot be attributed
to the environmental variables, including the effects of species interactions, or to the responses of the
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species to environmental covariates not included in the model (3). In the following, we refer to such unex-
plained covariation among the species as species associations, irrespective of what is the causal reason
behind it. In an exploratory analysis prior to model fitting, we excluded C/N ratio as an explanatory vari-
able, since it almost perfectly correlated with wood N content. We then partitioned the explained variance
into fixed effects (i.e., explanatory covariates) and log-level random effects (i.e., residual association matrix).
Fixed effects were further grouped as log chemical characteristics (pooling water, pH, C, N, and lignin) and
log physical characteristics (pooling tree species identity, decay time, and DBH).

We built species-to-species association matrices using the correlation matrix R both for a model
including the explanatory variables described above (called the full model) and a model which other-
wise had the same structure but did not include explanatory variables (called the null model). The
association matrix derived from the null model showed a combination of co-occurrence patterns cre-
ated by shared habitat use as well as the patterns resulting from interactive reciprocal effects. In con-
trast, association matrices derived from the full model showed the co-occurrence patterns once the
environmental effects were taken into account and thus were more likely to result from interactive
associations.

Explanatory and predictive powers of the models were assessed by calculating AUC for presence-ab-
sence data and the standard R2 for the abundance data. When computing explanatory power, models
were fitted to all data, i.e., the same data were used to fit the models and make the predictions. When
computing predictive power, we applied a 2-fold cross-validation approach across the sampling units. In
cross-validation, sampling units are randomly divided into two folds, and to make predictions in one
fold (i.e., the testing set), the models are fitted to the data from the other fold (i.e., the training set). First,
we computed unconditional predictive power where community data Y is assumed to be known in only
those sampling units that belong to the training set. Hence, the unconditional predictive power only
uses the information on the environmental predictors and ignores the information in the species associa-
tion matrix. Then, to examine the link between fungi and bacteria, we asked how much improvement the
JSDM was able to make for predictions on bacterial communities when knowing the fungal composition,
and, vice versa, how much improvement the JSDM was able to make for predictions on fungal commun-
ities when knowing the bacterial composition. To do so, we computed conditional predictive power,
where the occurrences and abundances of bacteria were assumed to be known in the testing set when
predicting fungi and where occurrences and abundances of fungi were assumed to be known when pre-
dicting bacteria. In contrast to unconditional predictive power, in conditional predictive power, the infor-
mation in the species association matrix is used to make the predictions in addition to the information on
environmental predictors (see reference 3 for technical details). We quantified the information value of
fungi for predicting bacteria (and vice versa, the information value of bacteria for predicting fungi) as the
difference between conditional and unconditional predictive power, i.e., the predictive power that did ver-
sus the power that did not utilize information about the occurrences and abundances of the non-focal
species group.

We fitted the model with the R-package (60) Hmsc (57) assuming the default prior distributions. We
sampled the posterior distribution with four Markov Chain Monte Carlo (MCMC) chains, each of which
was run for 150,000 iterations, of which the first 50,000 were removed as burn-in. The iterations were
thinned by 100 to yield 1,000 posterior samples per chain and thus 4,000 posterior samples in total. We
assessed MCMC convergence by computing the effective number of samples and the potential scale
reduction factor (57) for the parameters measuring species responses to environmental covariates and
species-to-species associations (Fig. S5).

Data availability. Raw sequence data for fungi and bacteria are available in the MG RAST public
database with data set numbers mgp18370 and mgp82275, respectively. Processed OTU and metadata
tables as well as R scripts supporting the results have been archived in the Dryad repository (https://doi
.org/10.5061/dryad.sxksn030s).
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