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Abstract: Identifying the cell of origin of cancer is important to guide treatment decisions. Machine
learning approaches have been proposed to classify the cell of origin based on somatic mutation
profiles from solid biopsies. However, solid biopsies can cause complications and certain tumors
are not accessible. Liquid biopsies are promising alternatives but their somatic mutation profile is
sparse and current machine learning models fail to perform in this setting. We propose an improved
method to deal with sparsity in liquid biopsy data. Firstly, data augmentation is performed on sparse
data to enhance model robustness. Secondly, we employ data integration to merge information from:
(i) SNV density; (ii) SNVs in driver genes and (iii) trinucleotide motifs. Our adapted method achieves
an average accuracy of 0.88 and 0.65 on data where only 70% and 2% of SNVs are retained, compared
to 0.83 and 0.41 with the original model, respectively. The method and results presented here open
the way for application of machine learning in the detection of the cell of origin of cancer from liquid
biopsy data.

Keywords: deep learning; genomics; genetic variability; bioinformatics

1. Introduction

Identification of the ‘cell of origin’ of cancer—which is representative of its anatomical
origin and histological characteristics—is an important step in effective cancer treatment,
as it has been established that the cell of origin can be a strong predictor of response
to therapy and overall prognosis [1,2]. Importantly, tailoring targeted treatments to the
cell of origin can result in more successful treatment and better prognosis for ‘cancer of
unknown primary’ (CUP) patients, where the cell of origin is often difficult to determine
with standard histopathology techniques [3]. One particularly promising alternative to
identify the cell of origin in CUP patients is based on somatic mutations derived from
whole genome sequencing (WGS) data. Recent studies demonstrate proof of concept of
this, by leveraging machine learning to accurately identify the cell of origin using somatic
mutation density profiles obtained in solid biopsies of primary and metastatic cancers [4,5].
However, in many cases taking solid tissue biopsies is challenging, as accessibility to the
tumor can be limited. Moreover, conventional needle biopsies are invasive and may lead
to clinical complications in one out of six procedures [6]. Even in case a biopsy is feasible,
solid tissue biopsies cannot be used for early detection and screening since the location of
the tumor is not yet known by definition.

Blood plasma of cancer patients contains circulating tumor DNA (ctDNA) which can
be used to detect somatic mutations [7–9]. Liquid biopsies of the blood may, therefore,
provide a valuable alternative to solid biopsies. Moreover, conventional solid tissue biopsy
can only capture tumor heterogeneity to a limited extent as only one spatial location of
the tumor is sampled, while ctDNA originates from the whole tumor and thus captures
more of the tumor heterogeneity [10,11]. Another advantage of liquid biopsies is that
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on top of common solid biopsy biomarker modalities (such as somatic mutations), the
fragmentation pattern of cell-free DNA (cfDNA) can also be leveraged for diagnostic
purposes [12–14]. Coupling fragmentation and mutational profile data to classify the cell of
origin of the tumor is a promising diagnostic avenue. In [14], a machine learning approach
was proposed to detect cancer using genome-wide fragmentation data combined with
mutation analysis in early stage cancer liquid biopsy samples. Furthermore, the benefits
of exploiting multiple liquid biopsy analytes (LBA) were previously shown, where using
data from matched circulating tumor cell (CTC) mRNA, CTC genomic DNA (gDNA),
extracellular vesicle (VE) mRNA and cfDNA enhanced the detection of clinically actionable
information [15]. A major challenge for ctDNA-based cancer diagnostics, however, is that
ctDNA only represents a small fraction of the total cfDNA. As a result, the amount of tumor
DNA that can be captured in liquid biopsies is much lower than in conventional solid
tissue biopsies. While in patients with advanced-stage cancers the ctDNA concentration
can exceed 10% of the total cfDNA (thus increasing the chance of detecting comprehensive
somatic mutation profiles), it is significantly lower in patients with cancer types such as
glioma, medulloblastoma, bladder, renal and gastroesophageal cancer [10]. Moreover,
ctDNA levels are likely to be lower in early-stage tumors where the tumor burden is
low [7,16]. While ctDNA levels can vary depending on tumor type and disease stage, the
generally limited amount of ctDNA in liquid biopsies results in a much sparser somatic
mutation profile when compared to solid tissue biopsies.

Liquid biopsies are only a viable alternative to solid biopsies if there is a certain
level of concordance between the somatic mutations obtained from ctDNA and the tissue,
which is generally high in case of metastatic tumors. According to a prospective study
on advanced metastatic cancers, 72% of somatic SNV/indel mutations found in solid
tissue biopsy samples were detected by the applied liquid biopsy assay with high-intensity
sequencing [17] and similarly in an earlier study on metastatic prostate and breast cancers,
the average concordance was determined as 88% [18]. However, in a recent study on
stage I-IV non-small lung cell cancer (NSCLC) patients, the percentage of concordant
mutations between cfDNA and tissue biopsy ranged between only 12.4% (stage I) and
73.8% (stage IV) [19]. This shows that lower ctDNA concentrations in early stage cancer
can result in a more dramatic sparsity which might complicate the utilization of somatic
mutations to identify the cell of origin, while metastatic cancers with a higher tumor load
are less affected by this issue. Therefore, there is no generally defined concordance level
of somatic mutations in a liquid biopsy when compared to a corresponding solid biopsy
sample, but it is clear that the variable concordance of somatic mutations poses a challenge
to diagnostic applications due to potentially high levels of sparsity.

Despite the sparsity of somatic mutation profiles in liquid biopsies, efforts have already
been made to utilize liquid biopsy data for the identification of the cell of origin of cancer.
The majority of these studies successfully apply targeted approaches [7,20], which mainly
focus on mutation density in cancer driver genes as input features for cancer type classifica-
tion. Due to the low abundance of ctDNA, many driver mutations can be missed due to
sampling artifacts in WGS, therefore targeted sequencing is necessary to ensure detection
sensitivity. However, adding genome-wide information could improve the classification.
According to a recent study on genome-wide liquid biopsies of postoperative early stage
residual cancers, the integration of genome-wide mutation data allowed sensitive residual
disease detection by overcoming the limitations of sparsity [21]. Additionally, previous
work on WGS data from solid tissue biopsies have already established that somatic SNV
density at 1 Mb scale is the most prominent predictor of cancer type as it represents the
genomic imprint of the cell of origin chromatin organization, with passenger somatic SNVs
being the most prominent contributors [4,5]. However, the performance of a support
vector machine classifier based on passenger SNVs was considerably reduced on artificially
generated sparse data [4]. This indicates that current state-of-the-art classifiers might not
be robust enough to reliably predict tumor type from somatic mutation profiles which are
extremely sparse, such as those obtained from liquid biopsies.
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In our work, we explore the utilization of sparse genome-wide somatic mutation
data in the classification of the cell of origin of cancer. High quality genome-wide somatic
mutation data obtained from ctDNA is very scarce [21], and by no means sufficient to
support the training of robust classifiers. Therefore sparse SNV samples are generated
based on WGS of primary cancer samples from the PCAWG dataset [22] to model ctDNA
conditions. Then, in order to address the challenge of sparsity and enable model robustness,
we propose to improve on a state-of-the-art classification approach in two ways. First of all,
we recognize that, in a sparse somatic data setting, massive training set sizes are required
to enable the classifier to become robust against feature sparsity (i.e., missing somatic
mutations), therefore we apply extensive data augmentation. Secondly, to complement the
genome-wide somatic SNV density features, we propose to leverage data integration of two
additional features derived from the SNV data: trinucleotide counts and mutation density
on driver genes. Mutational signatures, which differ between cancer types and reflect the re-
sult of diverse oncogenic processes, are constructed from the whole mutation spectrum that
consists of trinucleotide (e.g., ACA > AGA) mutation frequencies [23]. These trinucleotide
features were utilized for cancer type classification earlier [5]. Trinucleotide mutational
contexts are composite features and therefore can be less affected by scarcely available SNV
mutations. Additionally, while frequently mutated driver genes can represent one of the
major hallmarks of cancer and are commonly shared between cancer types [24], certain
combinations of affected driver genes can differ between different tissues [25], which has
been used as a basis for cancer type classification before [7] and driver gene mutation
density features were found to have some predictive power in a few cancer types (for
instance Panc-AdenoCA) [5].

Our results demonstrate that both data augmentation as well as data integration con-
siderably increase the robustness of the classifier. As a result, when the original solid tissue
biopsy samples are downsampled to retain only 70% of somatic mutations (an approxima-
tion of general sparsity in liquid biopsy of late stage and metastatic cancers [17,19]), the
deep learning model proposed here reaches classification accuracies similar to previous
state-of-the-art classifiers on solid biopsy (i.e., non-sparse) WGS mutation profiles. These
findings raise the possibility that somatic mutation profiles derived from liquid biopsies
can aid the detection of the cell of origin in CUP patients.

2. Materials and Methods
2.1. Sparse Data Generation

Somatic SNV consensus calls of 2374 primary tumors based on WGS with an average
coverage of ~30X were downloaded in VCF format from the ICGC Data Portal (http:
//dcc.icgc.org/releases/PCAWG/, accessed on 16 January 2018). The 2374 primary tumor
sample set was constructed from cancer types where at least 30 samples were available
(Supplementary Table S1). The list of used PCAWG sample and donor identifiers can be
found in Supplementary Table S2.

In order to model the sparse somatic mutation profile of ctDNA in liquid biopsy, we
randomly subsampled 2%, 5%, 10%, 25% and 70% of the somatic SNVs from each primary
cancer VCF file. The resulting random samples were then used to generate genome-wide
SNV bin density, genome-wide trinucleotide and driver gene SNV density data for each
sparse sample. A schematic overview of sparse sample generation can be seen in Figure 1a.

http://dcc.icgc.org/releases/PCAWG/
http://dcc.icgc.org/releases/PCAWG/
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Figure 1. State-of-the-art model performance on the generated sparse datasets and overview of pro-
posed model improvements. (a) Schematic overview of sparse somatic SNV data generation. Sparse 
samples were generated by retaining 70%, 25%, 10%, 5% and 2% of somatic mutations from each 
original sample (mutation downsampling) for the training, validation and test sets. Results were 
evaluated in 3-fold stratified shuffle-split cross-validation. (b) Cancer types classification accuracies 
of somatic SNV data with different (70%, 25%, 10%, 5%, 2%) mutation downsampling rates and full 
somatic SNV data (100%). The axes represent the accuracy for the cancer types, expressed in average 
F1 scores (stratified shuffle split cross-validation with three partitions). Only cancer types with the 
lowest sparse data accuracies are shown. (c) Schematic overview of data augmentation. Sparse so-
matic SNV samples (subsamples of each original WGS sample) were generated by retaining 70%, 
25%, 10%, 5% and 2% of SNVs from each original sample (mutation downsampling). Data augmen-
tation was applied solely on the training set, where instead of one subsample, 𝑁𝑁 ∈
(10, 20, 30, 40, 50) different subsamples were generated based on each full somatic SNV sample 
(sample upsampling). Results were evaluated in 3-fold shuffle-split cross-validation. (d) Schematic 
overview of data integration of trinucleotide motifs and driver gene mutation densities to tackle 
sparse somatic SNV data. The integration of the three feature sets was tested in different deep learn-
ing architectures: early integration, multi-branch integration and consecutive integration. 

2.2. Baseline/Original Model and Additional Implementation 
The original classifier [5] was used from https://github.com/ICGC-TCGA-Pan-

Cancer/TumorType-WGS/tree/master/DNN-Model (accessed on 1 March 2020) and re-
trained on the available PCAWG samples. In all consecutive steps, this model was used 
as a basis and further adjustments were applied on it in the data integration experiments. 
All additional models were implemented and trained in Tensorflow 1.10.0 and Keras 2.1.5. 
All code was written in Python 3.6. 

We used shuffle split cross-validation with three splits, by randomly selecting 60% 
of the samples for training and 20–20% for validation and testing in each split round, re-
spectively. Stratification was applied in each split, in order to distribute the cancer types 
according to the relative percentages in the training (60%), validation (20%) and test sets 
(20%). Hyperparameters were set by optimizing the performance on the validation set in 
each shuffle-split partition. The optimized hyperparameter set was the following: learning 
rate for Adam [26], L2-regularisation penalty (otherwise known as weight decay), dropout 
rate, the number of hidden layers, the number of neurons per hidden layer and activation 

Figure 1. State-of-the-art model performance on the generated sparse datasets and overview of
proposed model improvements. (a) Schematic overview of sparse somatic SNV data generation.
Sparse samples were generated by retaining 70%, 25%, 10%, 5% and 2% of somatic mutations from
each original sample (mutation downsampling) for the training, validation and test sets. Results were
evaluated in 3-fold stratified shuffle-split cross-validation. (b) Cancer types classification accuracies
of somatic SNV data with different (70%, 25%, 10%, 5%, 2%) mutation downsampling rates and full
somatic SNV data (100%). The axes represent the accuracy for the cancer types, expressed in average
F1 scores (stratified shuffle split cross-validation with three partitions). Only cancer types with the
lowest sparse data accuracies are shown. (c) Schematic overview of data augmentation. Sparse so-
matic SNV samples (subsamples of each original WGS sample) were generated by retaining 70%, 25%,
10%, 5% and 2% of SNVs from each original sample (mutation downsampling). Data augmentation
was applied solely on the training set, where instead of one subsample, N ∈ (10, 20, 30, 40, 50)
different subsamples were generated based on each full somatic SNV sample (sample upsampling).
Results were evaluated in 3-fold shuffle-split cross-validation. (d) Schematic overview of data in-
tegration of trinucleotide motifs and driver gene mutation densities to tackle sparse somatic SNV
data. The integration of the three feature sets was tested in different deep learning architectures: early
integration, multi-branch integration and consecutive integration.

2.2. Baseline/Original Model and Additional Implementation

The original classifier [5] was used from https://github.com/ICGC-TCGA-PanCancer/
TumorType-WGS/tree/master/DNN-Model (accessed on 1 March 2020) and retrained on
the available PCAWG samples. In all consecutive steps, this model was used as a basis and
further adjustments were applied on it in the data integration experiments. All additional
models were implemented and trained in Tensorflow 1.10.0 and Keras 2.1.5. All code was
written in Python 3.6.

We used shuffle split cross-validation with three splits, by randomly selecting 60%
of the samples for training and 20–20% for validation and testing in each split round,
respectively. Stratification was applied in each split, in order to distribute the cancer
types according to the relative percentages in the training (60%), validation (20%) and test

https://github.com/ICGC-TCGA-PanCancer/TumorType-WGS/tree/master/DNN-Model
https://github.com/ICGC-TCGA-PanCancer/TumorType-WGS/tree/master/DNN-Model
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sets (20%). Hyperparameters were set by optimizing the performance on the validation
set in each shuffle-split partition. The optimized hyperparameter set was the following:
learning rate for Adam [26], L2-regularisation penalty (otherwise known as weight decay),
dropout rate, the number of hidden layers, the number of neurons per hidden layer and
activation function [5]. We used the same Bayesian method and library for hyperparameter
optimization as in [5], where the ‘gp_minimize’ function from the scikit-optimise 0.7.4
library was applied [27]. Briefly, the models in each fold were trained using the Adam
optimizer with a batch size of 32 for 50 epochs. Bias values were initialised as 0 and all other
network weights were initialised using a glorot uniform distribution [28]. Each model was
evaluated with 200 hyperparameter combinations that were obtained from the Bayesian
optimization process (i.e., ‘gp_minimize’ function was called consecutively 200 times).

In the multi-branch and consecutive data integration experiments, the following
hyperparameters were optimized separately for each feature type: weight decay, number of
dense layers, number of dense nodes per layer, dropout and activation function. This meant
that for the multi-branch experiments, hyperparameters were optimized per branch, while
in the consecutive data integration experiments the hyperparameters were set separately
after each input entry point. The final hyperparameter settings of each model are described
in Supplementary Table S3.

2.3. Accuracy Calculation

Cancer type classification accuracies were calculated as F1-scores to take class imbal-
ance into account, and averaged across the three shuffle split runs. This cross-validation
setup was applied in all further experiments when comparing classification accuracy at
cancer type level. Additionally, average model accuracy was calculated on the basis of
correctly classified samples in all cancer types. F1-scores and confusion matrices were
calculated with scikit-learn 0.23.2 [29].

2.4. Data Augmentation

N subsamples were generated from each sample, where N ∈ (10, 20, 30, 40, 50), N
corresponds to the data augmentation level of the dataset which we refer to as ‘10×’, ‘20×’,
‘30×’, ‘40×’ and ‘50×’ (Supplementary Table S4). Sampled mutations were randomly
selected for all N subsamples as described in ‘Sparse data generation’. If a subsampled
sample was present in the training set, none of its other subsamples was part of the
test/validation sets during the classification process.

2.5. Data Integration

The 96 trinucleotide motif features were generated on a per motif basis where all
occurrences of a motif (e.g., ACA > AGA) were aggregated, resulting in a summed value
for the whole genome in each patient sample.

For the construction of driver gene features, we used the driver gene list released
in one of the flagship papers of the latest the Pan-Cancer Atlas release [30]. SNVs were
counted on gene regions from the start position of the first exon until the end position of
the last exon.

2.6. Feature Importance Assessment

The original published code (https://github.com/ankurtaly/Integrated-Gradients,
accessed on 1 August 2020) from [31] was used to calculate the integrated gradients for
the early integration models. Feature attributions were calculated in respect to the top
predicted label in each sample. When calculating integrated gradients, first the gradient of
the prediction output is calculated with respect to the feature values of the input in a range
of interpolations between the original input (a vector containing all input features) and
a baseline. In our case, zero baseline was used for all features. We calculated the feature
attributions for each test split.

https://github.com/ankurtaly/Integrated-Gradients
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As this approach can be applied to explain feature attributions on a single sample
level, the feature attributions were averaged from all test samples in each cancer type in
order to get cancer type specific feature attributions. In order to aid data visualization
when comparing the full sparse feature matrices, log-modulus transformation L( fi) =
sign( fi) ∗ log(| fi|+1) was applied on the raw feature importance values, where fi is
the feature attribution value of feature f in cancer type i. Then, we averaged the log-
modulus transformed attributions of all test samples in each cancer type in order to get
the transformed attributions per cancer type. Finally, scaling was applied to each feature
matrix individually: fscaled = fi

fmax
if fi > 0 and fscaled = fi

fmin
if 0 > fi. For visualization

purposes, feature attributions were sorted per cancer type in the full solid biopsy SNV data
and then the sparse data matrices were sorted based on the obtained feature order in the
full solid biopsy SNV data, in order to follow the same feature order per cancer type in
all matrices of a given feature type. Features that consistently had 0 attribution across all
cancer types were excluded from visualization and are not displayed in the heatmaps.

3. Results
3.1. Assessment of State-of-the-Art Deep Learning Model on Sparse Somatic Mutation Data

We first assessed the classification performance of a state-of-the-art deep learning
model proposed in [5] in a liquid biopsy setting (Section 2). This model is based on
genome-wide SNV density features across 2897 bins where each bin represents a 1 Mb
region of the genome. Sparse mutation profiles were artificially generated based on the
PCAWG data collection [22], a dataset that consists of 2374 primary cancer samples across
16 cancer types with Soft-Messarc having the smallest sample size of 33 samples and Liver-
HCC representing the biggest cancer type with 304 samples (see Supplementary Table S1
for tumor type abbreviations). To model the somatic mutation sparsity of liquid biopsy
samples, sparse samples were obtained by selecting a subset of all somatic SNVs (mutation
downsampling) from each PCAWG sample. Multiple sparse datasets were generated by
retaining 70%, 25%, 10%, 5% and 2% of all somatic SNVs (Figure 1a). The first measurement
was designated at 70%, as this value is an approximation of the reported percentage of
somatic mutations that can be detected in liquid biopsies compared to solid tissue biopsies
in most advanced and metastatic cancers [17,19]. Lower downsampling levels were chosen
to mimic lower ctDNA concentrations, which have been observed in certain cancer types
and in case of low tumor burden [7,10]. The full somatic SNV data of all 2374 samples
was also classified in order to have baseline accuracies of the original classification setting
from [5] for each cancer type.

As an initial test, predictions were made on the sparse datasets with the original model
trained on the full (100%) somatic SNV data. As expected, accuracy dropped dramatically
in case of each sparse dataset, except at 70% (Supplementary Figure S1). When the model
is trained and tested on the full 100% SNV data, our results are in line with previous
findings [5] and show that for all but five cancer types the classification accuracy exceeds 0.7,
and for most cancer types is well above 0.8 (Supplementary Figures S1 and S2, Figure 1b).
Stomach-AdenoCA is the worst performing tumor type and is often misclassified as Panc-
AdenoCA or Eso-AdenoCA due to similar biological origin, as described in the earlier
study [5].

In the next step, we aimed to assess the effect of SNV downsampling on the training
procedure and retrained the original model on each sparse dataset, instead of applying the
model trained on the full data throughout all sparse test datasets. Overall, when the model
is trained and tested on sparse data, a better accuracy trend is appreciable compared to
the results when the model is trained on the full somatic SNV data but tested on sparse
data (Supplementary Figures S1 and S2, Figure 1b). Generally, when the downsampling
rate increases, classification accuracy decreases, often substantially. When only 2% of
somatic SNVs are retained, an average accuracy below 0.2 in 10 out of 16 tumor types
was observed (Supplementary Figure S2). Still, for six of the cancer types a classification
accuracy exceeding 0.5 was retained, suggesting that even at this sparsity level some signal
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is retained that can be used by the classifier. Interestingly, for ColoRect-AdenoCA the
classification accuracy improved in the 70% downsampled mutation experiment compared
to the 100% baseline (Figure 1b). This might suggest that downsampling the mutations has
a regularization effect on the model for this particular cancer type. Similarly, the average
prediction accuracy of CNS-nonDiffGBM and Lung-SCC also slightly improved at 70%
(Supplementary Figure S2).

In summary, the classification accuracy gradually drops as the number of retained
somatic mutations decreases, with the least but still considerable performance decrease
at 70%, even if the classification model was trained on the corresponding sparse data
set (Figure 1b, Supplementary Figure S2). This indicates that the current model is not
suitable for liquid biopsy data that has a sparser somatic profile than conventional solid
tissue biopsies.

3.2. Data Augmentation

Data augmentation is a technique that was introduced in the field of deep learning to
aid image classification problems where the available training data is limited. Essentially,
data augmentation enhances the available data in terms of size, for instance through basic
sample (image) manipulations (geometrical or color transformations, random erasing,
image mixing etc.) or model-based augmentation methods (GANs, adversarial training
etc.) [32]. Data augmentation addresses the issue of overfitting during the training process,
as the augmented data represents a much more comprehensive collection of possible
data points. Therefore, better model generalization and robustness can be achieved. By
applying different data augmentation approaches, the error rate of the model can be
reduced considerably, even up to 12.1% [33–36].

Contrary to traditional machine learning techniques, the performance of deep learning
models keeps improving as the training data size is increasing, according to a power-law
relationship [37]. Hence, we hypothesized that reduced classification performance due to
sparsity of somatic mutation profiles obtained from liquid biopsies can be mitigated by
substantially increasing the training set size. By providing the classifier with more and
diverse training data it should have more information to learn robust feature patterns
under sparse data conditions. However, since genome-wide somatic mutation data from
liquid biopsy of more than a few samples per cancer type is not yet readily available, we
investigated if the concept of ‘in silico’ data augmentation can be applied. To achieve
sufficiently large training set sizes, augmented training samples were generated based on
multiple random downsampling of somatic SNVs in PCAWG WGS samples (Figure 1c).

Multiple data augmentation experiments (generating N subsamples from each original
sample, where N ∈ (10, 20, 30, 40, 50); see section ‘Data augmentation’ in Section 2) were
performed at each mutation downsampling rate in order to identify a potential inflexion
point after which further data augmentation does not improve the performance (Figure 1c).
The different data augmentation rates were compared based on average accuracy (average
ratio of correctly classified samples in stratified shuffle split cross-validation with three
partitions). Additionally, paired t-tests were performed to determine whether the aver-
age accuracy changes were significant (Supplementary Tables S5 and S6, Supplementary
Figure S5a). Starred comparisons indicate significant differences at p < 0.05. For all down-
sampling rates, 10× data augmentation greatly improves the performance of the model
to an average accuracy of 0.51** compared to 2% baseline with 0.41, 0.66** compared to
the 5% baseline with 0.56, 0.73** compared to the 10% baseline with 0.63, 0.81* compared
to 25% baseline with 0.75 and 0.87* compared to the 70% baseline with 0.83, respectively
(Figure 2a). At the lowest mutation downsampling rates (when 25% and 70% of all SNVs
were retained), performance tops with using only 20× data augmentation, at an average
accuracy of 0.84* compared to 25% baseline with 0.75 and 0.88* compared to the 70% base-
line with 0.83, respectively. At the highest mutation downsampling rates (when retaining
only 2% and 5% of all SNVs), the application of 50× data augmentation shows the most
considerable average performance improvement compared to the baseline experiments
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using the original model without data augmentation, at an average accuracy of 0.57**
compared to 2% baseline with 0.41 and 0.69*** compared to the 5% baseline with 0.56,
respectively (Figure 2a).

The model performance was also assessed at cancer type level in all mutation down-
sampling experiments (expressed in average F1 scores) (Figure 2b, Supplementary Figure S3).
When only 70% and 25% of somatic mutations are retained, data augmentation improves
the classifier performance for all cancer types, except ColoRect-AdenoCA, while at 10%
mutation downsampling only the accuracy of Head-SCC does not improve. At higher
downsampling rates (retaining only 2% and 5% of SNVs) data augmentation improves
the classifier performance for all cancer types, except for Uterus-AdenoCA, Lymph-BNHL
and Lung-SCC at 5% and Head-AdenoCA and Lung-SCC at 2%. While Lymph-BNHL
and Lung-SCC are both classified with high accuracy across all downsampling rates even
without data augmentation, Uterus-AdenoCA and Head-AdenoCA show a rather dramatic
drop in classification accuracy as the level of sparsity increases and contrary to other cancer
types, data augmentation remained ineffective at 2% and 5% downsampling for these two
types (Supplementary Figure S2, Figure 2b). Lower classification accuracy can also be
partially associated with lower sample numbers in a few cancer types (Figure 2b). When
retaining only 2% and 5% of somatic SNVs, all samples are persistently misclassified from
a few cancer types without data augmentation (Figure 2b). These results clearly show that
data augmentation is fundamental when dealing with classification of the cell of origin
of cancer from sparse genome-wide mutation data and it can considerably improve the
classification accuracy even at higher downsampling rates (2%, 5%, 10%).

3.3. Data Integration

To compensate for the higher data sparsity, integrating additional genomic features
based on the SNV data (i.e., genome-wide SNV density bins, mutation density on driver
genes and genome-wide trinucleotide motifs) may improve classification accuracy even
further. Model design is a crucial element in this process, even more so when multiple fea-
ture types have to be processed in the model. We therefore assessed three main architecture
types for the integration of the three SNV-derived features: early integration, multi-branch
integration and consecutive integration. The aim of testing these main architecture types
was to assess different feature integration approaches, where consecutive integration repre-
sents a hierarchical feature integration approach, multi-branch integration applies feature
integration in the hidden feature space of the deep learning model, while conversely with
early integration we explored feature integration at the raw input feature level. In early
integration, the original feed-forward deep learning model was applied where all three
feature sets were merged together into one input vector. This architecture is the most
simplistic yet it allows the model to extract hidden features using all input features already
in the first layer right after the input layer. In multi-branch integration, the feature sets
were fed into the model through separated branches and then the final individual dense
layers were concatenated before calculating the final output. In consecutive integration,
the feature sets are processed one after another and when the processing of a feature set is
done, the last dense layer of that feature branch is concatenated with the next feature set
into a new input layer (Figure 1d).

For all models, hyperparameter tuning was done by Bayesian optimization in the same
fashion as in [5] and the optimization of the number of nodes and layers was performed
after each input entry point (Section 2). All data integration experiments were carried
out with the best performing data augmentation setting which varied across mutation
downsampling rates (70%—20×, 25%—20×, 10%—30×, 5%—50×, 2%—50×).
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Figure 2. Classifier performance with data augmentation. (a) Overall effect of data augmentation at
different mutation downsampling rates (70%, 25%, 10%, 5%, 2%). Average accuracy (% of accurately
classified samples, mean value with standard deviation in 3 CV folds) is shown at different downsam-
pling rates with and without applied data augmentation setups (b) Classifier performance at different
mutation downsampling rates with the best data augmentation setup, expressed in F1-scores per
cancer type (average and std is shown based on 3 folds). The best data augmentation setup was
selected based on average accuracy values: 70%—20, 25%—20×, 10%—30×, 5%—50×, 2%—50×.
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We found that including the 96 trinucleotide motifs and driver genes can improve
the classification accuracy on the sparse somatic data. Average accuracy changes were
compared to the best data augmentation models without data integration in paired t-tests
where starred comparisons indicate significant differences at p < 0.05 (Supplementary
Table S5 and S7, Supplementary Figure S5b). Early integration experiments resulted in the
highest average accuracies overall, with an average accuracy of 0.65** compared to the data
augmented baseline with 0.57 at 2%, with an average accuracy of 0.75* compared to the data
augmented baseline with 0.69 at 5%, with an average accuracy of 0.82* compared to the data
augmented baseline with 0.74 at 10% and with an average accuracy of 0.86 compared to the
data augmented baseline with 0.84 at 25%, with the 70% sparse data experiment being the
only exception where the average accuracy remained nearly the same at 0.884 compared to
the data augmented baseline with 0.882 (Figure 3a). When assessing the performance of the
best data integration model at cancer type level, for most cancer types a gradual accuracy
improvement is apparent (Figure 3b). At 2% and 5% downsampling rates, the accuracy
of the majority of cancer types shows the most notable improvement, which is especially
appreciable in Kidney-RCC, Stomach-AdenoCA, Panc-Endocrine, Bone-Osteosarc and
CNS-Medullo (Figure 3b). At other downsampling rates, where more SNVs are retained by
default, certain cancer type accuracies slightly decrease (e.g., Stomach-AdenoCA at 10%
and Ovary-AdenoCA at 25%). In these cases the data augmentation might be insufficient to
combat the increased dimensionality which moreover introduces additional noise caused
by the additional features (Figure 3b). We conclude that utilizing additional, compact
features derived from the raw SNV data can further aid the cancer type classification
model, especially when only 2% or 5% of the somatic SNVs are retained in the sparse
somatic samples.

Life 2021, 11, x FOR PEER REVIEW 11 of 20 
 

 

formed after each input entry point (Section 2). All data integration experiments were car-
ried out with the best performing data augmentation setting which varied across mutation 
downsampling rates (70%—20×, 25%—20×, 10%—30×, 5%—50×, 2%—50×). 

We found that including the 96 trinucleotide motifs and driver genes can improve 
the classification accuracy on the sparse somatic data. Average accuracy changes were 
compared to the best data augmentation models without data integration in paired t-tests 
where starred comparisons indicate significant differences at p < 0.05 (Supplementary Ta-
ble S5 and S7, Supplementary Figure S5b). Early integration experiments resulted in the 
highest average accuracies overall, with an average accuracy of 0.65** compared to the 
data augmented baseline with 0.57 at 2%, with an average accuracy of 0.75* compared to 
the data augmented baseline with 0.69 at 5%, with an average accuracy of 0.82* compared 
to the data augmented baseline with 0.74 at 10% and with an average accuracy of 0.86 
compared to the data augmented baseline with 0.84 at 25%, with the 70% sparse data ex-
periment being the only exception where the average accuracy remained nearly the same 
at 0.884 compared to the data augmented baseline with 0.882 (Figure 3a). When assessing 
the performance of the best data integration model at cancer type level, for most cancer 
types a gradual accuracy improvement is apparent (Figure 3b). At 2% and 5% downsam-
pling rates, the accuracy of the majority of cancer types shows the most notable improve-
ment, which is especially appreciable in Kidney-RCC, Stomach-AdenoCA, Panc-Endo-
crine, Bone-Osteosarc and CNS-Medullo (Figure 3b). At other downsampling rates, where 
more SNVs are retained by default, certain cancer type accuracies slightly decrease (e.g., 
Stomach-AdenoCA at 10% and Ovary-AdenoCA at 25%). In these cases the data augmen-
tation might be insufficient to combat the increased dimensionality which moreover in-
troduces additional noise caused by the additional features (Figure 3b). We conclude that 
utilizing additional, compact features derived from the raw SNV data can further aid the 
cancer type classification model, especially when only 2% or 5% of the somatic SNVs are 
retained in the sparse somatic samples. 

 
(a) 

Figure 3. Cont.



Life 2022, 12, 1 12 of 20
Life 2021, 11, x FOR PEER REVIEW 12 of 20 
 

 

 
(b) 

Figure 3. Classifier performance with data integration. (a) Overall effect of data integration at dif-
ferent mutation downsampling rates (70%, 25%, 10%, 5%, 2%). Average accuracy (% of accurately 
classified samples, mean value with standard deviation in 3 CV folds) is shown at different 
downsampling rates with and without different applied data integration architectures (b) Classifier 
performance at different mutation downsampling rates with the best data integration architecture, 
expressed in F1-scores per cancer type (average and std is shown based on three folds). The best 
data integration architecture was selected based on average accuracy (a) values, which was consist-
ently the early data integration architecture across all downsampling rates. For comparison we used 
the best data augmentation model as the “model without data integration”. 

3.4. Assessment of Top 1, 2 and 3 Ranked Predictions 
In a diagnostic setting, where the aim of the cancer type classifier is to support the 

physician in making treatment decisions, it may be sufficient to provide a ranked list of 
predictions, rather than only the top prediction. This is especially true if a few predictions 
are close in terms of ranking based on the predicted cancer type probabilities (i.e., have 
very similar classification scores). These tumor types may have similar features, which 
could direct treatment decisions as well. We therefore also assessed the classifier accuracy 
when considering the top 1, 2 and 3 predictions of the model. When comparing the aver-
age accuracy of top 1 predictions (average ratio of correctly classified samples in stratified 
shuffle split cross-validation with three partitions) between different mutation downsam-
pling rates with and without our model improvements, the final improved model 
achieves an average accuracy of 0.65 compared to an average accuracy of 0.41 with the 
original model at 2%, 0.75 compared to 0.56 at 5%, 0.82 compared to 0.63 at 10%, 0.86 
compared to 0.75 at 25% and 0.88 compared to 0.83 at 70% (Figure 4a). When the original 
model trained on full somatic data is compared to different mutation downsampling rates 
with our model improvements in terms of average accuracy of the top 1 predictions, we 
found that the classifier performs slightly better at 70% downsampling rate than at 100% 
(Figure 4a). The underlying reason is likely that the noise introduced by the missing SNV 
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mutation downsampling rates (70%, 25%, 10%, 5%, 2%). Average accuracy (% of accurately classified
samples, mean value with standard deviation in 3 CV folds) is shown at different downsampling
rates with and without different applied data integration architectures (b) Classifier performance
at different mutation downsampling rates with the best data integration architecture, expressed in
F1-scores per cancer type (average and std is shown based on three folds). The best data integration
architecture was selected based on average accuracy (a) values, which was consistently the early
data integration architecture across all downsampling rates. For comparison we used the best data
augmentation model as the “model without data integration”.

3.4. Assessment of Top 1, 2 and 3 Ranked Predictions

In a diagnostic setting, where the aim of the cancer type classifier is to support the
physician in making treatment decisions, it may be sufficient to provide a ranked list of
predictions, rather than only the top prediction. This is especially true if a few predictions
are close in terms of ranking based on the predicted cancer type probabilities (i.e., have
very similar classification scores). These tumor types may have similar features, which
could direct treatment decisions as well. We therefore also assessed the classifier accuracy
when considering the top 1, 2 and 3 predictions of the model. When comparing the
average accuracy of top 1 predictions (average ratio of correctly classified samples in
stratified shuffle split cross-validation with three partitions) between different mutation
downsampling rates with and without our model improvements, the final improved model
achieves an average accuracy of 0.65 compared to an average accuracy of 0.41 with the
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original model at 2%, 0.75 compared to 0.56 at 5%, 0.82 compared to 0.63 at 10%, 0.86
compared to 0.75 at 25% and 0.88 compared to 0.83 at 70% (Figure 4a). When the original
model trained on full somatic data is compared to different mutation downsampling rates
with our model improvements in terms of average accuracy of the top 1 predictions, we
found that the classifier performs slightly better at 70% downsampling rate than at 100%
(Figure 4a). The underlying reason is likely that the noise introduced by the missing SNV
calls functions as a regularizer at this rate and it improves on the generalization performance
of the deep learning model during training and validation (at higher downsampling rates,
this benefit clearly diminished since at those rates the lack of data is so severe that it
decreases the overall performance). When the correct cancer type is identified from the
top 3 predictions, the average accuracy is above 0.85 with our improvements, even at 2%
downsampling rate (Figure 4a). When considering the top 2 and 3 predictions, the detection
of all cancer types is improved, most prominently in case of Stomach-AdenoCA (Figure 4b).

3.5. Feature Importance Assessment

Interpretability is an important aspect in the application of machine learning, especially
in the clinical field. By understanding why the model has made a certain prediction, the
adoption of the approach in the clinic is facilitated as physicians can, to a certain extent,
manually verify its decisions based on their own knowledge and experience. Model
interpretation is usually done by feature importance assessment (or in other words feature
attribution). However, defining feature importance is inherently problematic with deep
learning models, due to the highly non-linear and complex nature of the models. As a result,
along with the emergence of these models, solutions to assess feature attributions have also
been developed. We aimed to use a straightforward method for our interpretation task and
applied the so-called ‘integrated gradients’ method to obtain feature attributions [32] (see
Section 2). In summary, the method takes the gradient of the output (probability of cancer
type) with respect to the input feature values. In case of positive feature attribution, when
the value of the feature was moving away from the baseline value then the probability
of the given cancer type would increase, while in case of negative feature attribution, if
the feature value moved closer to the baseline value then the target probability would
increase [32]. Feature attribution is calculated per sample. To attain a feature importance
within the context of a specific cancer type, feature attributions are averaged across the
samples within the class.

First, we aimed to assess feature importances on the original, full SNV data and
executed early data integration on it, in order to have feature importances calculated based
on the full somatic profile of the PCAWG samples. The top 1 bin, top 2 trinucleotide and
top 2 driver gene features were selected in each cancer type separately based on the ranked
absolute feature importances, and then the union of all top features across all cancer types
(41 bins, 13 driver genes and 19 trinucleotides) were visualized (Figure 5a). Interestingly,
in Skin-Melanoma, five of the positively attributed top trinucleotide features bear C > T
nucleotide transition (CCC > CTC, CCT > CTT, GCA > GTA, TCC > TTC, TCT > TTT), while
other positively attributed substitution types only appear in one or two trinucleotides. This
is in line with the fact that this cancer type is dominated by C > T nucleotide transitions
due to UV-light exposure [38]. BCL2 has a high positive attribution in Lymph-BNHL and it
was found to be frequently mutated in multiple lymphomas [39]. ERBB4 is among the top
attributed driver genes in Liver-HCC, which also corresponds to previous findings, where
ERBB4 was described as a suppressor in the development of Liver-HCC, suggesting that
somatic mutations in ERBB4 can function as drivers [40]. ERBB4 also positively contributed
to the prediction of Stomach-AdenoCA, Panc-AdenoCA, Eso-AdenoCA, Kidney-RCC and
Lymph-CLL. ERBB4 mutations were found in gastric carcinomas, albeit to a lesser extent
than in colorectal and lung carcinomas [41], however, to our knowledge, notable SNVs have
not been reported in Lymph-CLL. Moreover, ERBB4 was proposed as a tumor suppressor
in Kidney-RCC [42], which might correlate with its positive feature attribution driven
by increased somatic mutation density in ERBB4 in Kidney-RCC. Importantly, we do not
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imply to draw direct connections with causality but rather aim to show that certain feature
importances can capture meaningful underlying biological variation.
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Figure 4. Classifier performance in predicting the top N labels. (a) Average accuracy (% of accurately
classified samples, mean value with standard deviation in 3 CV folds) when the correct cancer type is
among top 1, 2 and 3 predictions. Average accuracy of the best models is shown at each mutation
downsampling rate when identifying the correct tumour type among its top N-ranked predictions
N ∈ (1, 2, 3), error bars indicate standard deviation. (b) Classifier performance on somatic SNV
data with 10% of retained mutations when the correct cancer type is among top 1, 2 and 3 predictions,
compared to the baseline model. The axes represent the accuracy for each cancer type, expressed in
average F1 scores (stratified shuffle split cross-validation with three partitions).
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matic data and sparse data settings in early data integration, as this architecture type re-
sulted in the highest accuracy improvements in general. Our results show that the feature 
importance changes considerably in sparse data compared to the full SNV data (Figure 
5b). The effect of SNV downsampling can be clearly seen when comparing feature im-
portance profiles of the bin features in the baseline experiment with full somatic data to 
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nucleotide feature importances did not change drastically in sparse data, indicating that 
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Figure 5. Feature importance assessment across all sparsity levels. (a) Top features in each feature
type based on feature importance in full solid biopsy data. Top features were selected based on
average feature importance ranking per cancer type in the test folds, resulting in 41 bins, 13 driver
genes and 19 trinucleotides. The color scale represents negative (blue) and positive (red) feature
importance values with zero (white) centering. (b) Feature importance patterns per feature type in
full solid biopsy SNV data and sparse SNV data. Heatmaps of overall feature importance patterns
were log-modulus transformed and scaled. Feature attributions were sorted per cancer type in the
full solid biopsy SNV data and then the sparse data matrices were sorted to follow the same feature
order per cancer type.

Overall changes in feature importance were compared between the original, full
somatic data and sparse data settings in early data integration, as this architecture type
resulted in the highest accuracy improvements in general. Our results show that the
feature importance changes considerably in sparse data compared to the full SNV data
(Figure 5b). The effect of SNV downsampling can be clearly seen when comparing feature
importance profiles of the bin features in the baseline experiment with full somatic data
to the experiments with sparse data, where many features have changed signs or have
lessened or completely diminished importance due to sparsity. On the other hand, the 96
trinucleotide feature importances did not change drastically in sparse data, indicating that
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these features can still be harnessed more effectively by the classifier. This again validates
our intuition, as we expected to see performance improvement on much sparser data with
the inclusion of more SNV derived features.

4. Discussion

Diagnosis of CUPs poses an important challenge in clinical practice. Utilizing the
genome-wide somatic mutation profiles of ctDNA could offer a valuable approach to detect
the cell of origin of cancer, but liquid biopsies bring about their own challenges as the
inherently low concentration of ctDNA gives rise to sparse somatic mutation profiles. Our
results show that both data augmentation and data integration can massively improve clas-
sifier performance, but the effect depends on the sparsity of mutational profiles. It appears
that at less severe 70% and 25% downsampling, where more information is preserved from
the original WGS samples by definition, the classifier cannot exploit the generated training
samples of higher data augmentation levels (30–50×) and, hence, 20× data augmentation
is sufficient to improve classifier performance. Data integration resulted in performance
improvement in all sparse datasets except 70%, where the average accuracy remained
nearly the same in comparison to the best data augmented model (0.884 and 0.882). When
looking at the top 1 predictions with our improved model compared to the predictions
made with the original model in all sparse datasets, the improved model achieves an aver-
age accuracy of 0.65 compared to an average accuracy of 0.41 with the original model at 2%,
0.75 compared to 0.56 at 5%, 0.82 compared to 0.63 at 10%, 0.86 compared to 0.75 at 25% and
0.88 compared to 0.83 at 70%, respectively, while in case the correct cancer type is identified
from the top 3 predictions, our model reaches an average accuracy above 0.85, even at 2%
and 5% downsampling rate (Figure 4a). This suggests that in case targeted treatments can
be sufficiently selected based on the top 3 predicted cancer types, our classifier can aid
treatment decisions even in extremely sparse data conditions.

In previous studies, the reported percentage of somatic mutations that can be detected
in liquid biopsies compared to solid tissue biopsies in most advanced and metastatic
cancers were 72% and 73.8% [17,19], therefore our 70% sparse dataset was designated
as an approximation of the reported values that can potentially reflect the sparsity in
metastatic/CUP liquid biopsy data. As mentioned above, the final average accuracy at
70% is 0.88 compared to the baseline 0.83, and might indicate that this genome-wide SNV
mutation information based approach can perform well in advanced and metastatic cancers.
Interestingly, at 70%, the average accuracy has improved compared to the baseline model
with full somatic SNV data (Figure 4a), which suggests that mutation downsampling can
function as a regularizer at this rate, giving rise to improved performance. However, while
retaining 70% of somatic SNVs provides a reasonable dataset to get an accuracy estimate
for most tumor types in CUP/metastatic condition, this approximation might only be
reliably applied for samples which are deep sequenced and cannot hold for samples with
lower average coverage. Besides, certain cancer types such as glioma, medulloblastoma,
bladder, renal and gastroesophageal cancer have been reported to have significantly lower
ctDNA concentrations even in advanced disease [10]. For these tumor types, fewer variants
will be detected in the blood and, therefore, lower downsampling rates provide a better
estimation of classifier performance. With the improvements applied on the sparse dataset,
a classification accuracy of 0.87 was achieved at 25% and 0.8 at 10% in CNS-Medullo
(medulloblastoma), 0.97 accuracy was achieved at 25% and 0.95 at 10% in CNS-DiffGBM
(diffuse glioma), 0.84 accuracy was achieved at 25% and 0.78 at 10% in CNS-DiffGBM
(non-diffuse glioma), 0.68 accuracy was achieved at 25% and 0.55 at 10% in Kidney-ChRCC
(renal cell carcinoma, distal tubule), 0.92 accuracy was achieved at 25% and 0.9 at 10% in
Kidney-RCC (renal cell carcinoma, proximal tubule) and a classification accuracy of 0.84
was achieved at 25% and 0.79 at 10% in Eso-AdenoCA (esophageal adenocarcinoma).

The results presented here indicate that most of the problematic cancer types can still be
classified with a reasonable accuracy even in very sparse somatic SNV data, which supports
the diagnostic relevance of somatic SNV data derived from liquid biopsies. Moreover, since
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variants at low allele frequencies can be missed in solid biopsy samples at lower tumor
purity levels, we hypothesise the applicability of our improvements to boost predictive
performance on tissue biopsy samples, by means of predicting the cell of origin in tissue
biopsy data with a classification model that was trained on sparse augmented data with
data integration. This argument is bolstered by our finding where we compared the
performance of the improved classifier on 70% downsampled data to the performance of
the original model on the 100% SNV data, and the average accuracy of the 70% model was
found to be improved compared to the baseline model (Figure 4a).

An important caveat in using somatic mutation profiles obtained from liquid biopsies
is the presence of non-cancerous somatic mutations. According to a recent study, most of the
non-cancerous cfDNA originates from white blood cells (WBC), therefore liquid biopsies
contain a significant amount of somatic mutations as a result of clonal haematopoiesis in
WBC [6,17], which are indistinguishable from somatic mutations that arise in the cancer.
This finding emphasises the importance of matched cfDNA WBC sequencing for accurate
somatic variant interpretation in liquid biopsies. In our work, we only accounted for
the sparse profile of somatic mutations that arise from ctDNA and considered the non-
cancerous somatic SNVs and germline mutations to be already filtered out based on e.g.,
matched cfDNA WBC sequencing.

5. Conclusions

Despite the challenge of using sparse somatic data to identify the cell of origin of
cancer, our results demonstrate that a deep learning classification model that uses multiple
feature types and training set augmentation can help to harness the available sparse data
in an efficient way. We conclude that somatic mutation density profiles obtained from
liquid biopsies are suitable for the detection of the cell of origin of cancer, in particular
for advanced and metastatic patients, and therefore they provide a valuable alternative to
invasive solid tissue biopsies for CUP identification.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life12010001/s1, Table S1: Sample distribution across cancer types in the used PCAWG
dataset, Table S2: List of used PCAWG samples in the training, validation and test folds with
donor identifiers and DCC project codes, Table S3: List of final optimized hyperparameters of all
models, Table S4.: Number of training samples with and without data augmentation in the 3 cross-
validation folds, Table S5: Saphiro-Wilk test of normal distribution in each data augmentation and
data integration experiment. Available data points (accuracies in 3-fold CV) were limited, Table
S6: Paired t-test statistics and p-value in data augmentation experiments. All data augmentation
experiments were compared to the baseline 3-fold CV accuracies (model without data augmentation),
Table S7: Paired t-test statistics and p-value in data integration experiments. All data integration
experiments were compared to the best data augmentation model 3-fold CV accuracies (without
any data integration), Figure S1: Classifier performance at different mutation downsampling rates
(expressed in average F1 score and standard deviation of accuracy in folds) with the original model
trained on the full (100%) data. Test samples were generated by retaining 70%, 25%, 10%, 5% and 2%
of somatic mutations from each original sample (mutation downsampling) while the training and
validation set consisted of only original, full somatic SNV samples, Figure S2: Classifier performance
(expressed in average F1 score and standard deviation of accuracy in folds) at different mutation
downsampling rates with models trained on sparse data sets. Samples were generated by retaining
70%, 25%, 10%, 5% and 2% of somatic mutations from each original sample (mutation downsampling)
for the training, validation and test sets, Figure S3: Classifier performance (expressed in average
F1 score and standard deviation of accuracy in folds) at different mutation downsampling rates
with all the data augmentation setups. Samples were generated by retaining 70%, 25%, 10%, 5%
and 2% of somatic mutations from each original sample (mutation downsampling). Different data
augmentation levels were assessed, see Data augmentation in Materials and methods, Figure S4:
Classifier performance (expressed in average F1 score and standard deviation of accuracy in folds)
at different mutation downsampling rates with all the data integration setups on the best data
augmentation model. Samples were generated by retaining 70%, 25%, 10%, 5% and 2% of somatic
mutations from each original sample (mutation downsampling). After performing data augmentation
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experiments, the best data augmentation setup was selected based on average accuracy values: 70%—
20×, 25%—20×, 10%—30×, 5%—50×, 2%—50×. Figure S5. Categorical heatmap of p-values
in paired t-tests of data augmentation experiments (compared to baseline) and data integration
experiments (compared to best data augmentation model).
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