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Abstract: Neurodegeneration is an initial process in the development of diabetic 
retinopathy (DR). 

High quantities of glutamate, oxidative stress, induction of the renin-angiotensin 
system (RAS) and elevated levels of RAGE are crucial elements in the retinal 
neurodegeneration caused by diabetes mellitus. At least, there is emerging proof to 
indicate that the equilibrium between the neurotoxic and neuroprotective components 
will affect the state of the retinal neurons. 

Somatostatin (SST), pigment epithelium-derived factor (PEDF), and erythropoietin 
(Epo) are endogenous neuroprotective peptides that are decreased in the eye of 
diabetic persons and play an essential role in retinal homeostasis. On the other hand, insulin-like growth 
factor 1 (IGF-1), and vascular endothelial growth factor (VEGF) are pivotal proteins which participate in 
the development of new capillaries and finally cause damage to the retinal neurons. During recent years, 
our knowledge about the function of growth factors in the pathogenesis of retinal neurodegeneration has 
increased. However, intensive investigations are needed to clarify the basic processes that contribute to 
retinal neurodegeneration and its association with damage to the capillary blood vessels. The objective of 
this review article is to show new insights on the role of neurotransmitters and growth factors in the 
pathogenesis of diabetic retinopathy. The information contained in this manuscript may provide the basis 
for novel strategies based on the factors of neurodegeneration to diagnose, prevent and treat DR in its 
earliest phases. 
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INTRODUCTION 

1.1. Retinal Neurodegeneration Pathogenesis 

 Retinal neurodegeneration pathogenesis diabetic retino- 
pathy (DR) is a microvascular disorder characterised by 
microaneurysms, capillary perfusion disorders, intraretinal 
haemorrhages, intraretinal microvascular abnormalities, and 
neovascularisation [1-3]. 
 Neurodegeneration is the first phase in the development 
of DR. 
 Recent studies have identified neuroretinal abnormalities 
in diabetic patients, before the evidence of visible micro- 
vascular changes [4-7]. It has been shown in multicentre 
studies that over 80% of diabetic patients will develop DR 
within 20 years [8]. In these patients, reduced reactions in 
full-field and multifocal electroretinography, decreased blue-
yellow colour sensitivity, and contrast sensitivity were usually 
observed before the occurrence of microvascular lesions [4-8]. 
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Numerous neuronal cells are detected as damaged in the very 
early stage of the disease, while microvascular lesions are 
usually difficult to identify by fundus photography [9]. It is 
particularly interesting to assess abnormalities in the nerve 
fibre layer, ganglion cell density, photoreceptor pathological 
changes, retinal thickness, and evaluation of the extracellular 
space of the retina [10-12]. Retinal neurodegeneration has 
also been identified in diabetic rodent models as the very 
early phase of DR. Rats with streptozotocin-induced type 1 
diabetes have exhibited the most accelerated loss of retinal 
ganglion cells at 8 months after the onset of diabetes [13]. 
The spontaneous development of diabetes in mice is also 
associated with changes in neurosensory retina, including 
apoptosis of retinal ganglion cells as well as marked changes 
in the pictures of surviving cells, reduction of cholinergic 
and dopaminergic amacrine cells, and a distinct thinning of 
the inner plexiform layer and inner nuclear layer [14, 15]. 
Furthermore, morphological alterations in astrocytes and 
microglial cells in the inner retina such as impaired 
glutamate metabolism by Müller cells have been found in 
rodents [16-18] and mice [19, 20]. Many growth factors 
participated in pathologic alterations of astrocytes and glial 
cells and are entailed in the evolution of vascular 
pathological changes in diabetic retinopathy: vascular 
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endothelial growth factor (VEGF), platelet-derived growth 
factor (PDGF), insulin-like growth factor (IGF), fibroblast 
growth factor (FGF), SDF-1, somatostatin, arginase, 
glutamate, NO, EPO, and others [21-26]. Neural apoptosis is 
attended by pathological processes in retinal glial cells 
(astrocytes and Müller cells) described as reactive gliosis. 

 Currently, it is not clear whether neural apoptosis or 
reactive gliosis is the initiator of the neurodegenerative 
changes developed in the retina of diabetic patients. The glial 
cells play a pivotal role in neuronal survival and normal 
metabolism. The suggestion that reactive gliosis precedes 
apoptosis in neural cells is based on the speculation that DR 
starts from neuronal injury. The biochemical and histo- 
pathological changes characterised for retinal neuro- 
degeneration have been noticed in diabetic patients without 
any pathologic microcirculatory changes in the retinas by 
ophthalmoscopic examinations [27-29]. The abnormal 
attitude between survival signalling and pro-apoptotic 
reactions in the retinas of subjects with diabetes in the initial 
phases of DR has been described [30]. The neural cells, glial 
cells, endothelial cells, and pericytes as well as several 
vasoactive mediators participate in neurovascular inter- 
actions [31-34]. Nitric oxide (NO) secreted from endothelial 
cells and neurocytes is involved in process of vasodilatation 
[32]. The block of NO synthase changes neurovascular 
complexes [35]. It has been shown that vasodilatation can be 
reduced by raising NO levels experimentally during 
suppression of the secretion of vasodilators by glial cells 
[32]. NO is qualified as a modulator process, rather than a 

direct mediator [33, 34]. In the literature, other mediators of 
vasodilatation in the retina have been described e.g. 
prostanoids, adenosine, ADP, ATP, lactate, glutamate, 
gamma-aminobutyric acid (GABA), taurine, adrenomedullin 
(AM), calcitonin gene-related peptide, atrial natriuretic 
peptide, brain-derived peptide, C-type natriuretic peptide, 
and retinal relaxing factor [35]. Glial cells play a key 
function in the haemodynamic processes by the secretion  
of vasoactive substances [33-39]. Interestingly, at low NO 
concentrations, glial-induced vasodilating prostanoids are 
active (i.e., epoxygenase metabolites), whereas vasoconstricting 
prostanoids (i.e., 20-hydroxyeicosatetraeonic acid) are 
activated by increased NO levels [35]. The second regulator 
is the local oxygen concentration; prostanoids can regulate 
blood flow in association with oxygen concentration, but the 
mechanism of this process has not been clarified to date [34]. 
In diabetes mellitus, without microvascular structural 
changes in the retina, abnormalities in retinal diameter have 
been reported [40-42]. These observations suggest that the 
neurovascular unit is damaged at the earliest phase of DR 
[43]. This problem required studies directed towards the 
signalling neural or glial cells and the relations between 
these cells. The mediators of retinal neurodegeneration include 

- extracellular glutamate accumulation, 

- oxidative stress, 

- reduction of neuroprotective substances synthesised 
by the retina (Fig. 1). 

 

Fig. (1). Pathogenesis of diabetic retinopathy. 
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1.2. Diabetic Retinal Neovascularisation 

2. GROWTH FACTORS AND NEUROTRANS- 
MITTERS INVOLVED IN THE RETINAL NEURO- 
DEGENERATION 

 Diabetic retinal neovascularisation is considered a major 
consequence of retinal ischaemia caused by capillary 
occlusion similarly to other retinopathies; the mechanism of 
its development is not clear. 

 Diabetic retinopathy develops from soft non-proliferative 
changes, characterised by increased vascular permeability to 
moderate and severe non-proliferative diabetic retinopathy 
characterised by vascular obstruction. The next stage is 
proliferative diabetic retinopathy marked by the growth of 
new vascular vessels on the retina and posterior surface of 
the vitreous [10, 11]. Macular oedema defined by retinal 
thickening from leaky blood vessels can develop at any stage 
of retinopathy. 

 The new vascular vessels of DR and contracted 
concomitant connective tissues deformed the retina and can 
be cause of partial retinal separation, leading to severe and 
irreversible vision loss [12]. In DR, many mediators 
participate in the initial phases of eye complications. 
Overproduction of advanced glycation end-products through 
the pathogenesis of diabetes mellitus causes an overload of 
oxidative stress and activates inflammatory processes. 
Intensive production of oxygen-free radicals results in a 
decrease in the thickness of the vessel wall and diminished 
vascular permeability and elasticity. Inflammation is 
connected by an increased production of cytokines and is a 
secondary effect by hyperglycaemia [3-6, 9, 11]. The arterial 
wall damage in the peripheral and ocular vascular system is 
caused by chronic inflammation [3-6]. In this pathogenesis, 
an increase in permeability, leukocyte adhesion, and 
synthesis of the extracellular matrix is noticed. Inflammation 
processes lead to the development of retinopathy [3-6]. The 
prolonged hyperglycaemia causes apoptosis or death of the 
pericytes and malfunction of the vascular walls. Incompetent 
blood vessels in the retina characterised swelling. Disturbances 
of permeability results in the leaking of fluid or blood  
into the eye, connected with macular oedema or retinal 
haemorrhages. It is a cause of vision loss. In the late phase of 
DR, the deficit of oxygen in the retina is observed and 
stimulates the expression of VEGF and EPO. VEGF and 
EPO lead to the proliferation of blood vessels, stimulating 
the growth of new blood vessels on the surface of the retina. 
The new vessels are fragile, therefore, blood may leak from 
the ruptured vessels and cause scarring, which can damage 
eyesight, resulting in blindness [9-11]. 

2. GROWTH FACTORS AND NEUROTRANS- 
MITTERS INVOLVED IN RETINAL NEURODE- 
GENERATION 

2.1. Glutamate 

 Glutamate is the main stimulating neurotransmitter for 
the photoreceptor-bipolar-ganglion cell in the retina. 
Increased glutamate concentration in the retina cause 
inordinate activation and are entailed in the so-called 

“excitotoxicity” leading to neurodegeneration [44-46]. The 
excitotoxicity of glutamate caused the over-activation of 
ionotropic glutamate receptors, which have been described in 
rats with streptozotocin-induced diabetes mellitus. 44, 46, 
47]. The glutamate, oxidative stress [45-47], advanced 
glycation end-product receptor regulation [46-48], and  
renin-angiotensin system activation [44, 48] are pivotal 
processes in retinal neurodegeneration induced by diabetes 
mellitus. According to the last investigations, we can suspect 
that diabetes mellitus–induced down-regulation of neuro- 
protective factors synthesised by the retina participated in the 
neurodegenerative process of the DR [49, 50]. On these 
grounds, we can make the hypothesis that the prevention or 
arrest of DR development will involve methods based on 
neuroprotection. 

2.2. Somatostatin (SST) 

 Somatostatin is an endogenous neuroprotective peptide 
and neurotransmitter that is decreased in the eye structures of 
diabetic patients [51]. Activation of the glial cells is a major 
cause of retinal neurodegeneration. Retinal astrocytes in 
healthy subjects express glial fibrillary acidic protein. In 
Müller cells, this expression is not noticed. In the course of 
diabetes mellitus, an abnormal expression of glial fibrillary 
acidic protein is observed in Müller cells [33]. Müller cells 
seem to play an important function in the development of 
diabetic retinal microangiopathy because these cells secrete 
substances that are capable of regulating blood flow, 
vascular permeability, and cell survival. Their processes 
fouled all of the blood vessels in the retina [33, 34]. The 
human retina secretes SST in significant amounts [52, 53]. 
The SST-receptors (SSTRs) are also presented in the retina, 
especially SSTR1 and SSTR2 [54]. SST is an important 
neuromodulator in the retina: this acts viaintracellular Ca2+-
signalling, nitric oxide function, and decreased glutamate 
secretion from the photoreceptors. SST is a powerful agent 
against angiogenesis and is involved in the regulation of ion 
transport and water transport systems [54]. It suspected that 
SST is crucial in the prevention of both proliferative DR 
(PDR) and diabetic macular oedema (DME). Eye drops with 
SST were capable of preventing glial cell activation [51]. 
Glial activation and apoptosis are the pivotal processes of 
retinal neurodegeneration [51]. Because SST receptors are 
expressed on the surface of endothelial cells, SST may 
directly inhibit angiogenesis [51, 52] and indirectly decrease 
the production of VEGF or suppress VEGF and other 
peptide growth factors e.g. IGF-1, epidermal growth factor, 
and platelet-derived growth factor post-receptor signalling 
pathways [51]. SST exhibits anti-angiogenic and neuro- 
protective properties as well, as in the case of PEDF [51, 55]. 
In PDR and DME the secretion of SST is decreased. In these 
diseases, low levels of intravitreal SST were noticed [51, 
56]. The decrease of SST secretion by the human retina is 
observed in very early phases of DR and is strictly connected 
with retinal neurodegeneration [51, 56]. Cortistatin (CST) is 
a structural and functional neuropeptide that is similar to 
SST. CST is also decreased in DR [27, 28]. Treatment with 
SST eye drops has a strong effect in preventing ERG damage, 
glial cell activation, apoptosis, and abnormal proportions 
between pro-apoptotic and survival signalling described in 
rats with STZ-DM. The next observations indicated that SST 
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eye drops decreased glutamate accumulation in the retina 
inhibited glutamate transporter induction characterised by 
diabetes mellitus [51]. Topical therapies revolutionised the 
care of diabetic patients. The phase II-III randomised 
controlled clinical trial (EUROCONDOR-278040) assessed 
the efficacy of SST and brimonidine administered topically 
to prevent or arrest DR [56, 57]. 

2.3. PEDF-pigment-epithelial-derived Factor 

 The retinal production of pigment epithelial-derived 
factor (PEDF), is decreased in the retina of diabetic patients 
in comparison with non-diabetic subjects. 

 PDEF production probably has a neuroprotective effect 
and acts against neurotoxic factors caused by 
neurodegeneration. The retinal pigment epithelium (RPE) is 
the main source of PEDF in eye. This peptide is absolutely 
crucial in retinal homeostasis due to anti-angiogenic and 
neuroprotective properties. PEDF decreased oxidative stress 
and glutamate excitotoxicity [7, 57]. In diabetic patients, 
PEDF down-regulation is observed in the retina; it seems 
that the factor causes neurodegeneration and could also 
mediate early microvascular damage [57]. 

2.4. IRBP-interphotoreceptor retinoid-binding Protein 

 IRBP is a glycoprotein produced by photoreceptors and 
extruded into the interphotoreceptor matrix filling the 
subretinal space [58]. Besides participation in the visual 
cycle, IRBP is essential in fatty acid transport and plays a 
very important role in the care of photoreceptors [57-59]. 
Significantly decreased levels of IRBP have been noticed in 
the retinas of diabetic patients at the introduction phase of 
DR, and retinal neurodegeneration is strictly connected with 
IRBP down-regulation [56, 57]. 

2.5. EPO-erythropoietin 

 EPO and its receptor (Epo-R) are both produced by the 
human retina (especially in retinal pigment epithelium) [60]. 
In the vitreous fluid of diabetic eyes, a significant amount of 
EPO was found and its neuroprotective action was observed 
[60]. EPO is a strong natural stimulator for mobilisation of 
endothelial progenitor cells (EPCs) and migration to 
damaged retinal sites. These cells play an important role in 
the remodelling of injured retinas [60-64]. The elevated 
levels of VEGF and EPO are connected with the decreased 
secretion of neuroprotective substances. On the other hand, 
in advanced stages of DR, overexpression of VEGF or EPO 
causes neovascularisation. This process is involved in PDR 
development [61-63]. 

 EPO raises the influence of VEGF. It is described that the 
high activity of VEGF and EPO might play a role as 
protective (in the initial phase DR) and degenerative (in 
advanced phase DR) substations. 

2.6. Other Contributing Factors 

 Other neuroprotective factors e.g. insulin [64,65], 
neuroprotectin D1 (NPD1) [66], brain-derived neurotrophic 
factor (BDNF) [67], glial cell line derived neurotrophic 
factor (GDNF) [68], ciliary neurotrophic factor (CNTF) [69], 

nerve growth factor (NGF) [70], and adrenomedullin [71] 
might contribute to the pathogenesis of neurodegenerative 
processes in DR. 

3. LINKS OF RETINAL NEURODEGENERATION 
WITH MICROVASCULAR ABNORMALITIES 

3.1. Inflammation 

 A newly created aim in DR investigations is a problem 
with the connection between the activation of subclinical 
inflammation and neurodegeneration. It has been described 
that Müller cells indicate inflammation-linked reactions in 
diabetic patients [72-75]. It has recently been demonstrated 
that up-regulation of the receptor for AGEs (RAGE - 
receptor for advanced glycation end-products) is very 
important in the activation of Müller glia cells and cytokine 
production induced by hyperglycaemia in DR [73]. The 
mechanism of action of cytokines is not clearly explained. 
This cytokine probably participates in neural apoptosis and 
may contribute to the induction of excitotoxicity, oxidative 
stress, or mitochondrial dysfunction [75]. Previous investiga- 
tions indicate that activation of the renin–angiotensin system 
(RAS) may be crucial in the retinal neurodegeneration 
developed in diabetic milieu [76-78]. 

3.2. IGF1-Insulin-like Growth Factor 1 

 IGF-1 is secreted by numerous cells of the retina: 
vascular endothelial cells, pericytes, glial cells, retinal 
ganglion cells, and retinal pigment epithelium [79-81]. IGF-
1R (IGF-1 receptor) is expressed in retinal pigment 
epithelium cells and retinal endothelial cells. Activation of 
IGF-1R by IGF-1 stimulates the hypoxia-inducible factor 1a 
protein synthesis and increases the expression of VEGF. The 
IGF-1 participated in the activation of VEGF in human RPE 
cells [80, 81]. VEGF is a significant agent contributing to the 
formation of a novel capillary vessel. IGF-1 is involved in 
the regulation, growth, maturation and functioning of blood 
vessels [80, 81]. IGF-1 is a polypeptide hormone that is 
produced and secreted in the liver and fibroblasts and 
chondrocytes; it has a similar structure and function to 
insulin. Insulin increased the secretion of IGF-1 [79]. In 
healthy subjects, insulin is the main hormone regulating the 
level of glucose in the blood, and IGF-1 has a subsidiary 
function. 

 In diabetic patients, treatment with insulin or oral 
hypoglycaemic drugs should be a classical treatment for 
control of blood glucose levels. There were experimental 
therapies in which IGF-1 was applied in the case of extreme 
insulin resistance or insensitivity. It was hoped that 
recombinant IGF-1 treatment might be other method lead to 
decrease glycaemia and may prevent acute complications of 
diabetes [80-82]. Unfortunately, treatment with IGF-1 has 
significant complications: swelling of the optic nerve behind 
the eye and headaches. The observation of side effects 
prevent treatment with IGF-1 [81, 82]. The second cause of 
very careful treatment with IGF-1 and limitation of this is the 
mitogenic effect. Investigations have shown numerous 
incidences of proliferative DR as a result of treatment with 
IGF-1. Nowadays, it has been explained that IGF-1 has an 
important function in the pathogenesis of DR. IGF-1 during 



796    Current Neuropharmacology, 2016, Vol. 14, No. 8 Ben-Skowronek Iwona 

long-term treatment may exacerbate retinal deterioration by 
promotion of the proliferation of retinal endothelial cells. 
IGF-1 increased the secretion and action of vascular 
endothelial growth factor and erythropoietin. 

 By coupling IGF-1 with IGF-1 receptors, various 
signalling pathways associated with DR are activated - the 
phosphatidylinositol 3-kinase/protein kinase B pathway, 
mitogen-activated protein kinase pathway, and nuclear factor-
κB signalling pathway [83]. In animals, the administration of 
IGF-1 through intravitreal or intracorneal injections accelerates 
neovascular changes in the retina and cornea. In diabetic 
subjects with DR, increased levels of IGF-1 have been 
noticed in the vitreous fluid [84]. These investigations have 
shown the detrimental activity of IGF-1. 

 According to our knowledge, in the eye, IGF-1 receptors 
are found in numerous cells, and treatment with an IGF-1 
receptor antagonist [81, 82], with blockade of the action of 
IGF-1, impedes the development of microvascular changes 
in the retina [83-89]. Like the effect of IGF-1 on VEGF, 
IGF-1 induces hypoxia-inducible factor-1, resulting in 
elevated mRNA levels and the overproduction of EPO [90]. 
This process probably participates in the development of 
new blood vessels. The biological function of IGF-1 is to act 
on IGF-1R and activation of PI3K and several intracellular 
kinases. PI3K plays an important function in the induction of 
growth and proliferation of vascular smooth muscle cells. 
The inhibition of PI3K is caused by wortmannin. This 
process was observed by a reduction of the early replication 
of vascular smooth muscle cells (VSMCs) in rats [91]. In 
normal endothelial cells, IGF-1 might also be efficient in the 
prevention of apoptosis before new and abnormal capillary 
vessels are formed. 

 The mitotic effect of IGF-1 is the main cause of the 
growth and proliferation of vascular endothelial cells. In this 
situation, the use of recombinant IGF-1 as a therapeutic 
agent may cause complications of DM with DR [83]. IGF1 
and IGF1R are involved in the pathogenesis or progression 
of proliferative vitreoretinal disorders [92]. 

3.3. VEGF-Vascular Endothelial Growth Factor 

 VEGF is necessary for physiological vascular 
development and has an important function in maintaining 
the integrity of endothelial cells, because it is involved in 
anti-apoptotic signalling. It is a main pathogenic factor for 
DME and PDR. Moreover, VEGF may have neuroprotective 
effects. In recent research, following the injection of an antibody 
that blocks all VEGF isoforms in rats, a dose-dependent 
decrease in ganglion cells has been reported [93-98]. Other 
authors of experimental studies have not described any 
significant neural damage in VEGF knockout mice after 
blocking the phosphorylation of VEGF receptors in 
transgenic mice with the sustained expression of VEGF in 
the photoreceptors [98, 99]. The influence of VEGF on 
retinal neuroprotection should be clarified in further 
investigations. Angiogenesis, a process of the development 
of new capillary networks from pre-existing vessels is a 
characteristic process of proliferative diabetic retinopathy 
[94]. Numerous investigations show that vasculogenesis, i.e. 
de novo formation of blood vessels from circulating bone 

marrow-derived endothelial progenitor cells (EPCs), can 
participate in neovascularisation [94, 95]. The circulating 
bone marrow-derived EPCs that migrate to the ischaemic 
region differentiate into mature endothelial cells in situ, 
leading to neovascularisation [93]. In many investigations, it 
was shown that bone marrow-derived CD133 EPCs are 
involved in new vessel formation in PDR fibrovascular 
epiretinal membranes [94, 95]. In angiogenesis and vasculo- 
genesis, several cytokines/chemokines and their associated 
tyrosine kinase receptors contribute. A pivotal factor in both 
of these processes is VEGF [96, 97]. 

 VEGF binds with high affinity and activates two tyrosine 
kinase receptors, VEGFR-1 (Flt-1) and VEGFR-2 (KDR in 
humans/Flk-1 in mice) [98]. These receptors participate in 
the regulation of physiological and pathological angio- 
genesis. VEGFR-2 is expressed mainly on vascular endothelial 
cells [98]. VEGFR-2 is also expressed by bone marrow-
derived circulating EPCs. VEGFR-2 has intensive tyrosine 
kinase activity and is the main positive signal transducer for 
pathological angiogenesis in neoplasm and DR [98]. Activa- 
tion of VEGFR-2 stimulates endothelial cell proliferation, 
migration and survival, angiogenesis and microvascular 
permeability [98]. VEGFR-2 has a short soluble form 
(sVEGFR-2) that has been reported in mouse and human 
plasma [99, 100]. Recent evidence shows that the decrease of 
VEGF, sVEGFR-2, and SCF concentration in the vitreous 
fluid from patients with PDR are associated with 
angiogenesis and vasculogenesis in DR [101]. 

3.4. Fibroblasts Growth Factor (FGF) 

 The fibroblast growth factor in normal tissue is detected 
in basement membranes and in the subendothelial 
extracellular matrix of blood vessels [102]. It is suspected 
that the action of heparan sulphate-degrading enzymes 
activates bFGF, and inducing the formation of new blood 
vessels (angiogenesis) may have an important role in wound 
healing of normal tissues and during tumour development 
[102, 103]. FGF is produced by human adipocytes and a 
correlation between the levels of bFGF and BMI was 
observed in blood samples. Moreover, bFGF also 
contributed to the proliferation of preosteoblasts [102, 103]. 
The fibroblast growth factor family consists of 22 members 
with a wide range of biological functions in organisms, such 
as cell growth, development, angiogenesis, and wound 
healing [104] FGF21 is a member of the endocrine FGF 
subfamily, which is expressed predominantly in the liver and 
stimulates glucose uptake through the induction of GLUT1 
in adipocytes [105]. The application of FGF21 leads to 
decreased glucose levels and modulates lipid metabolism in 
both murine and nonhuman primate models of diabetes and 
obesity [106]. These investigations have shown that FGF21 
has an essential function in the regulation of glucose and 
lipid metabolism. FGF21 may be used for the effective 
treatment of diabetes and obesity in the future. Latest 
investigations have indicated increased serum concentrations 
of FGF21 in obese subjects and patients with metabolic 
syndrome and type 2 diabetes mellitus [107, 108]. FGF21 is 
probably involved in the pathogenesis of retinopathy in 
diabetic patients but its role is unclear. In patients with  
type 2 diabetes, increased serum FGF21 levels were noticed, 
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which are higher in patients with diabetic retinopathy than in 
those without it and connected with the development of 
diabetes and DR. The prospective studies with greater 
numbers of patients can explain the relationship between 
serum FGF21 concentrations and the severity of vascular 
complications [109, 110]. 

3.5. Arginase 

 Vascular epithelial cells contain endothelial nitric oxide 
synthase (eNOS), an enzyme that hydrolyses L-arginine to 
form L-citrulline and NO [111]. NO contributes to healthy 
vascular function as a main signalling molecule [111]. NO 
induces blood flow by activating guanylyl cyclase within the 
vascular smooth muscle cells, which leads to the dilation of 
vessels [112]. The normal production of NO by eNOS is 
required for the metabolism of healthy vessels, proper blood 
flow, prevention of leucocyte adhesion and platelet 
aggregation, and control of smooth muscle cell growth [112]. 
A decrease in bioavailable NO is a major factor of 
endothelial cell dysfunction and its implications are shown in 
diabetic vascular disease [112]. NOS produces NO from its 
substrate L-arginine. If the level of L-arginine is insufficient, 
uncoupling of the NOS homodimer can stimulate it to 
produce superoxide [113]. Superoxide can react with NO to 
form peroxynitrite, thus reducing levels of NO and 
increasing oxidative stress [114]. 

 Two isoforms have been described: arginase I is localised 
in the cytosol and arginase II exists in the mitochondria. 
Arginase is expressed in epithelial cells. The increase of 
arginase protein levels and/or activity influenced vascular 
dysfunction in hypertension, ischaemia reperfusion, ageing, 
and diabetes [115]. The function of arginase in the DR 
pathway has not been investigated. Excessive arginase 
activity has been found to reduce NO production by reducing 
the L-arginine supply for eNOS [116-118]. Ornithine is a 
metabolite of arginase activity. It can be further metabolised 
into polyamines and proline, which are necessary for cell 
proliferation and collagen synthesis, respectively. Increases 
in their levels have been connected with vascular remodelling 
and stiffness [119, 120]. 

 The most recognised feature of retinopathy is retinal 
neovascularisation, but neuronal dysfunction is also 
observed. Alterations in polyamine metabolism are involved 
in neurodegeneration in various diseases. Polyamines 
participate in the pathogenesis of ischaemic brain damage 
[121-123]. Arginase activity is increased in various 
pathologies characterised by vascular dysfunction: diabetes, 
hypertension and ischaemia-reperfusion injury [122, 123]. 
High arginase activity and polyamine overproduction have 
been connected to retinal ganglion cell death due to 
excessive activation of excitotoxic NMDA receptors and 
hyperoxia-mediated neuronal death [124-130]. The deletion 
of arginase strongly reduces retinal degeneration and 
improves retinal function following hyperoxia treatment in 
the mouse model of oxygen retinopathy [131]. The 
mechanism of this neuroprotective effect has been described: 
deletion of arginase II reduces neuro-glial damage and 
significantly improves retinal function [131, 132]. Arginase I 
is a potential therapeutic target for the treatment of DR using 

arginase inhibitors [133]. Arginase has been linked to DR 
and is the enzyme with increasing interest in endothelial 
dysfunction [133]. 

3.6. SDF-1-Stromal Cell-derived Factor-1 

 Stromal cell-derived factor-1 (SDF-1) is a CXC-
chemokine which participates in haematopoiesis. Mice 
lacking SDF-1 or its receptor CXCR4 die in the foetal 
period, after developing defects in various organs including 
the heart, brain, large vessels, and bone marrow. In bone 
marrow, endothelial cells and stromal cells showed the 
expression of SDF-1. This protein recruits hematopoietic 
stem cells to the bone marrow niche, but also supports  
their survival and proliferation [134, 135]. SDF-1 and the 
receptor CXCR4 stimulate bone marrow-derived cells to 
neovascularisation and regeneration sites in the heart, liver 
and eye [136, 137]. SDF-1 levels are increased in the 
vitreous in ischaemic ocular diseases, such as proliferative 
diabetic retinopathy (PDR) and retinopathy of prematurity, 
retinal vein occlusion [138, 139]. This factor induces the 
expression of VCAM-1 adhesion molecules in the eye 
epithelial cells and reduces expression of intramembrane 
occludin proteins. The level of SDF-1 and its receptor 
CXCR4 is regulated by VEGF [140]. SDF-1/CXCR4 
contributed to the ocular inflammation process by enrolling 
CD4 T-cells, and is potentially engaged in the formation of 
proliferative membranes in patients with proliferative 
vitreoretinopathy [141]. SDF-1 has both beneficial and adverse 
effects in DR, such as neuro-protection or inflammatory cell 
accumulation, respectively. Endogenous SDF-1 is a tissue-
protective role in RD. Elucidation of the mechanisms 
underlying the role of SDF-1 in neural protection will 
support the development of safe and effective treatments 
[142]. 

3.7. EGFR-Epidermal Growth Factor Receptor 

 Inactivation of A disintegrin and metalloproteinase 17 
(ADAM17), a membrane-anchored metalloproteinase, which 
is involved in cleaving ligands of the epidermal growth 
factor receptor (EGFR) and regulating EGFR signalling, 
reduces neovascularisation [143-145]. The tissue inhibitor of 
metalloproteinases-3 (TIMP3) acts as a natural inhibitor of 
ADAM17 [146-149] and inhibits the release of ligands of 
EGFR [146-149]. TIMP3 belongs to the family of tissue 
inhibitors of matrix metalloproteinases (TIMPs) and can be 
immobiliszed in the extracellular matrix [150]. Mice lacking 
TIMP3 develop pathologies that can be explained by an 
increase in the activity of ADAM17, e.g. an enhanced 
inflammatory response with increased TNFα activity [150, 
151]. TIMP3 with ADAM17 regulates angiogenesis in three-
dimensional tissue culture assays [151]. The inactivation of 
ADAM17 in endothelial cells prevents pathological retinal 
neovascularisation and the growth of heterotopically-injected 
tumours in mice [152, 153]. The investigations with 
Timp3−/− mice have demonstrated that TIMP3 regulates 
choroidal neovascularisation, as well as VEGF-induced corneal 
neovascularisation and laser-induced choroidal neovas- 
cularisation. In these mice, the delivery of TIMP3 by adeno-
associated viral vectors has been shown to ameliorate 
ischaemia-induced neovascularisation [152-154]. In addition, 
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TIMP3 may regulate angiogenesis by binding directly to the 
VEGF receptor 2 (VEGFR2) [152-154]. Moreover, the 
impact of intravitreal injection of the EGFR inhibitor 
erlotinib on neovascularisation in the OIR model in wild-
type mice has been described [154, 155]. The intravitreally 
injected TIMP3 probably blocked tuft formation by reducing 
ADAM17 activity [152-155]. VEGF-A has a very intensive 
effect in mouse OIR, [156-160] and investigations have 
shown that VEGF-A/VEGFR2 signalling activates ADAM17 
to induce EGFR and stimulate the migration of endothelial 
cells [154, 155]. Since the injection of TIMP3 might also 
affect the binding of VEGF-A to VEGFR2, the injection of 
IMP3 treats pathological neovascularisation by the inhibition 
of two pivotal components of this pathway: binding  
of VEGF-A to VEGFR2 and the activation of ADAM17 
[161, 162]. 

4. THERAPY STRATEGIES 

 A classical treatment method in diabetes retinopathy is 
laser therapy. Immunotherapy targeting VEGF was 
revolutionary in the treatment of DR. Trials of these 
immunotherapies documented that intraocular injections of 
anti-VEGF agents are better than laser therapy in preserving 
and improving vision in DME patients [57]. The anti-VEGF 
agents ranibizumab, bevacizumab, pegaptanib, and 
aflibercept have recently been used. Both laser treatment and 
anti-VEGF antibodies-intraocular injections could be 
aggregated. In patients receiving combined ranibizumab and 
laser therapy, the best long-term visual improvement could 
be achieved with the initiation of injections followed by laser 
therapy [57]. Currently, nationwide studies by groups such 
as the Diabetic Retinopathy Clinical Research Network 
(DRCRnet) explained the role of ocular anti-VEGF therapy 
for PDR. Intravitreous injections of anti-VEGF agents is an 
invasive procedure and could even have harmful effects on 
healthy retina. Besides local side effects, anti-VEGF agents 
can produce systemic complications due to their capacity to 
pass into systemic circulation [57]. 

 Neuroprotective factors such as PEDF, SST, NGF, 
BDNF, and EPO have been applied in experimental DR. 
Intraocular gene transfer of PEDF significantly increases 
neuroretinal cell survival after ischaemia-reperfusion injury 
[163]. In early DR, intravitreal injections of PEDF prevent 
neuronal derangements and vascular hyperpermeability 
[164]. SST and SST analogues administered intravitreally 
protect the retina from AMPA-induced neurotoxicity [165]. 
Treatment of diabetic rats with NGF prevented apoptosis of 
ganglion cells and Müller cells [166]. Probably, growth 
factors can be involved in the regeneration of ganglion cells 
from stem cells [170]. 

 These results suggest that the increased expression and 
function of neuroprotective factors synthesised by the retina 
could be a therapeutic target in DR. Intravitreal or 
intraperitoneal administration of exogenous EPO and EPO-
derived peptides acts against neuroglial and vascular 
degeneration in diabetic rats [167-169]. EPO or EpoR 
agonists used in the treatment of DR have neuroprotective 
properties, cause vessel stability, and increase in tissue repair 
by the recruitment of EPCs toward the pathological area 
[168-169]. Nevertheless, in advanced stages, the elevated 

levels of Epo EPO could enhance the effects of VEGF, thus 
contributing to neovascularisation and PDR worsening [114, 
115]. Probably the next step in this field is the active 
prevention of neurodegeneration in patients before clinical 
symptoms. At present, we can diagnose retinal neuro- 
degeneration in a very early stage in children with diabetes 
[171]. 

5. CONCLUSIONS 

 For patients with the early identification of neuro- 
degeneration, implementing an early treatment based on 
drugs with a neuroprotective effect will be pivotal. The 
possibility of using biological treatment against neuro- 
degenerative factors and special therapy for the activation of 
neuroprotective growth agents is based on a new and safe 
strategy for treatment of the early stages of diabetic 
retinopathy. Therefore, investigations into growth factors in 
the process of retinal neurodegeneration have important 
practical aspects. The explanation of the important role of 
neurodegeneration in the pathogenesis of DR is the basis for 
new treatment methods. Neuroprotection is an effective 
method for treating, preventing or arresting DR. 

LIST OF ABBREVIATIONS 

ADAM17 = metallopeptidase domain 17 also called 
TACE (tumour necrosis factor-α-converting 
enzyme) 

AM = adrenomedullin 

AMPA = α-amino-3-hydroxy-5-methyl-4-isoxazole- 
propionic acid is a compound that is a 
specific agonist for the AMPA receptor, 
where it mimics the effects of the neuro- 
transmitter glutamate 

BDNF = brain-derived neurotrophic factor 

CNTF = ciliary neurotrophic factor 

DAG-PKC = diacylglycerol- protein kinase C 

DR = diabetic retinopathy 

EGFR = epidermal growth factor receptor 

EPO = erythropoietin, 

EPO-R = receptor of erythropoietin 

FGF = fibroblast growth factor 

GABA = gamma-aminobutyric acid 

GDNF = glial cell line derived neurotrophic factor 

IGF 1 = insulin-like growth factor 1 

IRBP = interphotoreceptor retinoid-binding protein 

NGF = nerve growth factor 

NO = nitric oxide, 

NPD1 = neuroprotectin D1 

PDGF = platelet-derived growth factor 

PEDF = pigment-epithelial-derived factor, 
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SDF-1 = stromal cell-derived factor-1 

SST = somatostatin, 

VEGF = vascular endothelial growth factor 
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