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Abstract: Flexible gel fibers with high stretchability were synthesized from physically cross-linked
agar and covalently cross-linked polyacrylamide networks. Such gel material can withstand the
temperature required for thermal curing of polydimethylsiloxane (PDMS), when the water in the
gel was partially replaced with ethylene glycol. This gel template supported thermal replica
molding of PDMS to produce high quality microchannels. Microchannels with different cross
sections and representative 3D structures, including bifurcating junction, helical and weave networks,
were smoothly fabricated, based on the versatile manipulation of gel templates. This gel material
was confirmed as a flexible and reliable template in fabricating 3D microfluidic channels for
potential devices.
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1. Introduction

Three-dimensional (3D) microfluidic systems have demonstrated diverse advantages in
micro-total analysis systems and bio-systems [1–3], chaotic micro-mixing [4,5] and optical
manipulation [6,7]. Among many available methods, lithography is the most common approach
to fabricate 3D microfluidic structures [8,9], where two-dimensional (2D) patterns are first generated
and then assembled by aligning, stacking and sealing [2,4,10]. Although it allows various channel
networks and interconnections, this fabrication technique always involves tedious and time-consuming
multi-layer assembling. Frequent misalignment and sealing failures at the interface also make the
process very challenging. The second common method is to combine 2D systems with flexible
tubes [11] in which mechanical connections are usually long and not feasible for precise and
compact interconnection. Stereolithography has been reported to overcome problems associated
with conventional lithography techniques, providing a wide variety of channel shapes [12]. However,
this process remains restricted by the high cost of instruments, the limited availability of photoactive
materials, the sensitivity of light path to scattering and absorption media, and the strict requirement
for competent operation skills.

Another challenge associated with microfluidic channel fabrication is the wide range of
cross-sectional shapes. The microchannels prepared by lithography are usually restricted to
rectangular cross sections. This geometry significantly disturbs the internal flow behavior of
liquids [13], confining inertial particles to the sidewall under the domination of the corner effect [14].
Unlike rectangular channels, circular cross-sectional geometry allows radial focusing due to its
symmetrical velocity profile, which proves the feasibility in vascular replication and flow simulation
for biomedical engineering.
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Microchannels with circular cross-section have been fabricated by modifying the photoresist
masters via rapid prototyping [15], melting [16] or reflow baking [17]. Although these methods make it
possible, the circular channel fabrication remains poor in quality control. Another strategy is to reshape
rectangular channels by additional silicone oligomers polymerization [13,18,19], which provides only
round corners without good symmetry.

To date, a number of reports have utilized the template molding technique to achieve a
circular channel. Nylon thread [20], metallic wire [21,22] or optical fiber [23] were embedded in
a polydimethylsiloxane (PDMS) platform as a template for well-defined microchannel fabrication.
After molding, these templates can be removed mechanically to form well-constructed channels.
However, these template materials are usually stiff and less flexible, causing channel distortion
during template removal. Recently, a 3D printing technique to fabricate 3D microchannels has been
reported [1]. A sacrificial agarose gel template is used for manufacturing artificial vasculature in
photo-polymerized hydrogel. The gel template leads to complex microchannel patterns with minimal
channel distortion due to its inherent softness. However, this thermo-reversible gel has a low sol-gel
transition temperature of 32 ◦C, and is restricted to low-temperature operations. It only supports a
photo-polymerizing matrix and limits the thickness of 3D structures below 1.0 cm. Therefore, this gel
template technique still needs improvement to meet wide applications.

Herein, we introduce a new template material for PDMS molding: agar/polyacrylamide/ethylene
glycol (agar/PAAm/EG) gel fiber. This gel template can withstand the temperature required for
thermal curing and shows no adhesion to the surrounding PDMS. It can also be easily removed via
manual pulling without channel distortion. Some representative microfluidic structures, including
bifurcating junctions, helical and weave microchannels, were easily achieved. The presented
gel template allows fabricating large scale 3D microstructures in a single step without tedious
assembling processes.

2. Materials and Methods

2.1. Materials and Reagents

Agar was obtained from Fisher Scientific (Hong Kong, China); acrylamide (AAm),
ammonium peroxydisulfate (APS), N,N-methylenebisacrylamide (MBA), ethylene glycol (EG) and
tris(2,2′-bipyridyl)dichlororuthenium (II) hexahydrate (Ru(bpy)3) were purchased from Sigma-Aldrich
Co. (Hong Kong, China). Poly(dimethylsiloxane) elastomer kit (PDMS precursor, Sylgard® 184) was
obtained from Dow Corning Co. (Shanghai, China). All chemicals were used as received.

2.2. Gel Fiber Template Preparation

Agar/PAAm/EG gel fiber was synthesised by one-step free-radical polymerization of AAm in an
agar solution of water and EG (H2O/EG = 100/0 − 30/70). Briefly, agar of 0.30 g, AAm of 0.034 mol
and MBA (0.05 mol % of AAm) were dissolved in H2O/EG mixture at 85 ◦C under continuous
stirring. A predefined amount of APS (0.2 mol % of AAm) was added into the above solution.
The obtained mixture was transferred into a PTFE tube of round channel (Bohlender™, I.D. × O.D.
= 1.0 × 2.0 mm, or 0.5 × 1.0 mm) (tubes of special cross-section shapes were self-made by folding
book-covering polyester film of 0.15 mm thickness). The tubes were sealed tightly with clay to avoid
water evaporation. AAm polymerization was carried out at 65 ◦C for 6 h. The resultant gel fiber was
removed from the tube and used as a microchannel template.

To fabricate the junction gel template, photo-polymerizable AAm precursor was used as a glue for
template connection. Briefly, AAm of 7.034 mmol, predefined amounts of MBA (0.9 mol % of AAm),
APS (0.7 mol % of AAm), and Ru(bpy)3 (0.5 mol % of AAm) were dissolved in 4.5 mL water at room
temperature under sonication. The obtained mixture was maintained in a dark environment to avoid
reaction. The photo-polymerization of the as-prepared precursor was achieved under the Maxlite
F25T8/850 XL daylight light tube (Distance: 10 cm, time: 5 min).
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2.3. Microchannel Fabrication Using Gel Fiber Templates

The microchannel was fabricated by the template molding technique, as shown in Figure 1.
The gel fibers were positioned in desired orientations to present different channel patterns.
After template shaping in a petri-dish, PDMS precursor with a base-to-curing agent ratio of 10:1
was casted into the petri-dish, degassed and cured at 65 ◦C for 2 h. The molded PDMS was demounted
from the petri-dish and immersed in ethanol for 20 min, in which template shrinkage and channel
swelling were performed. The embedded gel template was removed by manual pulling from the
PDMS matrix, leaving behind a smooth microchannel. The PDMS was then air-dried and thus restored
to its original state.
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Figure 1. Schematic illustration of straight microchannel fabrication via template molding: (A) The gel
fiber template with desired orientation; (B) Thermal curing of polydimethylsiloxane (PDMS) precursor
casted over the gel template; (C) Pulling out the gel template from the PDMS matrix; (D) Resultant
circular microchannel.

2.4. Characterization

Tensile strain at break (%), stress at break (MPa) and Young’ modulus (MPa) of gel fibers with
different EG contents, from 0 to 50 wt %, were measured using a universal mechanical testing machine
(Instron 5566, Shanghai, China) with a 10.0 N load cell. Samples (n = 6) were tested at a strain rate of
50.0 mm/min and a starting clamp distance of 10.0 mm [24].

The surface morphology of microchannels was observed using an optical microscope
(Leica M165C, Hong Kong, China, with CCD camera Leica DFC290 HD). A scanning electron
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microscope (SEM, HITACHI TM 3000 Tabletop, Hong Kong, China, with ion sputter HITACHI E-1010)
was also applied to check the smoothness of channel inner surface. For weave pattern observation,
the channels were perfused with 0.01% (w/v) solutions of Levafix yellow and Levafix blue and were
imaged with a digital camera (Canon A630, Hong Kong, China) to illustrate the channel separation.

3. Results and Discussion

3.1. Agar/PAAm/EG Gel Template Selection and Removal

This study aimed to introduce a new template material for microchannel fabrication within a
PDMS matrix. Double network (DN) hydrogels based on covalently crosslinked PAAm have been
reported by our group [24,25]. Such DN gels are tough and highly stretchable, and constitute a possible
template for microfluidic channel fabrication.

Agar/PAAm DN hydrogel, composed of a physically cross-linked agar network and a covalently
cross-linked polyacrylamide network [26], offers excellent flexibility and extensibility, as shown in
Figure 2A. When the hydrogel template was incorporated in a PDMS matrix, it was ready to be
manually pulled out smoothly. However, in practice, part of the PDMS precursor in contact with
the hydrogel failed to polymerize under the normal curing process, resulting in groove-like defects
at the interface (Figure 3A). It was ascribed to the substantial amount of vapor diffusion through
the interface during thermal curing, since the water vapor can disturb the crosslinking of PDMS
precursors. Upon thermal curing, the hydrogel water starts to evaporate and to diffuse into the PDMS
matrix. Some of the Si–H groups in the precursor were consumed with water vapor through undesired
reactions, which restrict the proper curing of PDMS. Because the hydrosilylation reaction of PDMS
precursor is sensitive to water vapor that consumes the Si–H bond, the water vapor from the gel should
be avoided as much as possible [27,28].

Surface smoothness is a crucial factor in microfluidics. In order to eliminate the side effect of
hydrogel on PDMS curing, EG was introduced into the agar/PAAm templates to replace H2O. The gel
has been successfully synthesized at a low H2O/EG ratio of 50/50. When the H2O/EG ratio became
lower than 50/50, the EG evidently hindered the polymerization of AAm and caused the precipitation
of agar, and thus resulted in the failure of DN hydrogel synthesis. Figure 3 shows the microscopy and
SEM images of microchannels fabricated with the EG varying from 0 to 40%. With the EG introduction,
a smoother inner wall surface was observed with less defects. Compared with water, EG has a
considerably higher boiling point of 197 ◦C. The addition of EG raises the boiling points significantly
and reduces evaporation during the thermal curing process. Elevated amount of EG in the template
reduced water evaporation and suppressed the effect of water vapor on PDMS curing.
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Figure 3. Microscopic (Top) and SEM (Bottom) images of microchannels fabricated using gel templates
with different ethylene glycol (EG) contents: (A) 0 wt %, (B) 20 wt % and (C) 40 wt %, showing undesired
defects on the inner surfaces (Red arrow).

Hydrogel flexibility and stretchability are essential for the template removal. Figure 2A shows
the tensile stress-strain curves of gels with different EG contents. The gels exhibited similar yielding
strain after EG introduction. The fracture toughness of gels appeared to be affected by the presence of
EG. The highest fracture toughness was obtained at an EG content of 20 wt %, with its tensile stress
and strain at break values of 0.43 MPa and 1640%, respectively. Meanwhile, as indicated in Figure 2B,
increase in EG content had lowered the Young’s modulus of the gel. When the EG content exceeded
20 wt %, the gel shows a significantly lower fracture toughness: Upon stretching, the samples exhibited
obvious cracks and ruptured quickly at low strains. The introduction of EG may interrupt the AAm
polymerization and thus deteriorate the gel mechanical properties. Acceptable modulus was observed
for the gel with 20 wt % EG.

Since a flexible gel with high stretchability is preferred for template shaping and removal,
only the agar/PAAm/EG hydrogel with 20 wt % EG was further used for the subsequent experiments.
This tough gel material facilitated the convenient fabrication of microchannels at the thermal curing
condition, and allowed easy removal of the template from the construct without damaging the
channel surface.

3.2. Microchannel Morphology

When the thermal curing of PDMS precursors was completed, the gel template was removed after
immersing in ethanol, where the gel fiber shrinkage and the PDMS swelling (swelling ratio of 1.04) [29]
facilitated easy template removal by reducing the frictional resistance inside the channel. The removal
of gel template from the PDMS matrix generated an empty channel, which was smoother than those
prepared using nylon threads [20] or metallic wires [22]. Channels with circular cross-section of various
diameters (≥15 µm) were achieved by using the proposed gel templates, as shown in Figure 4A,B.
Gel diameters can be reduced by gentle stretching to suitable length or immersing into ethanol for
a certain time. Special attention should be paid to avoid undesirable over stretching that may result
in cracks on the gel template and affect channel evenness. The gel template can also be used for
channel shape control. Several other channels of different cross-section shapes have been designed
and easily achieved as demonstrated in Figure 4C,D, including triangle, rhombus, pentagon, hexagon
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and pentacle shapes. In order to make the channel easier to observe, all the following channels will be
made into 1000 µm diameter without special notation.

Polymers 2019, 11, x FOR PEER REVIEW 6 of 10 

 

channel easier to observe, all the following channels will be made into 1000 μm diameter without 
special notation. 

 
Figure 4. Microscopic images of the straight channels. (A) Microchannels with diameters of 1000 μm 
(Left) and 15 μm (Right). (B) Cross section of a microchannel showing the circular contour (Red 
dashed line). (C) Oblique view of polyester tube templates with hydrogel inside, showing shapes of 
triangle, rhombus, pentagon, hexagon and pentacle (left to right). (D) Cross sections of 
microchannels resulted from the above gel templates in polydimethylsiloxane (PDMS) matrix. 

Furthermore, the proposed gel exhibited reversible swelling-shrinking properties in response 
to water content, which is advantageous to fabricate a microchannel with various diameters. 
Various geometrical changes, which are capable of continuous sampling, can be achieved by 
partially controlling its shrinkage rate. 

Our gel template allowed the fabrication of various microchannel orientations, which were 
difficult to prepare using the conventional templates. The versatility of the template was 
demonstrated by fabricating a T- and Y-junction (Figure 5). Gel templates are connected via 
photo-polymerization of aqueous glue. The glue precursor was absorbed into the gel tip by 
tip-dipping. When the gel tip with glue came into contact with another gel fiber, the glue diffused 
through the interface. By exposing the interface to visible light of 532 nm for a few minutes, 
spontaneous joining was achieved by photo-polymerization without external force. With this 
approach, other types of interconnection between gel fibers can also be easily obtained. This joining 
is strong enough to survive the PDMS curing process. After template molding, the gel fibers were 
easily separated and removed by gently pulling them at the same time. 

A bifurcating junction is a necessary structure for microfiber production by manipulating 
fluid-on-chip. The device with intersected circular channels assists the passive optimization of 
flow-focusing in 2D configuration, facilitating the control over the coaxial fluid flow [30]. With our 
gel templates, a multi-junction device can be easily fabricated without any bonding or aligning. 

Figure 4. Microscopic images of the straight channels. (A) Microchannels with diameters of 1000 µm
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line). (C) Oblique view of polyester tube templates with hydrogel inside, showing shapes of triangle,
rhombus, pentagon, hexagon and pentacle (left to right). (D) Cross sections of microchannels resulted
from the above gel templates in polydimethylsiloxane (PDMS) matrix.

Furthermore, the proposed gel exhibited reversible swelling-shrinking properties in response to
water content, which is advantageous to fabricate a microchannel with various diameters. Various
geometrical changes, which are capable of continuous sampling, can be achieved by partially
controlling its shrinkage rate.

Our gel template allowed the fabrication of various microchannel orientations, which were
difficult to prepare using the conventional templates. The versatility of the template was demonstrated
by fabricating a T- and Y-junction (Figure 5). Gel templates are connected via photo-polymerization
of aqueous glue. The glue precursor was absorbed into the gel tip by tip-dipping. When the gel tip
with glue came into contact with another gel fiber, the glue diffused through the interface. By exposing
the interface to visible light of 532 nm for a few minutes, spontaneous joining was achieved by
photo-polymerization without external force. With this approach, other types of interconnection
between gel fibers can also be easily obtained. This joining is strong enough to survive the PDMS
curing process. After template molding, the gel fibers were easily separated and removed by gently
pulling them at the same time.

A bifurcating junction is a necessary structure for microfiber production by manipulating
fluid-on-chip. The device with intersected circular channels assists the passive optimization of
flow-focusing in 2D configuration, facilitating the control over the coaxial fluid flow [30]. With our gel
templates, a multi-junction device can be easily fabricated without any bonding or aligning.
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Figure 5. (A) Photo of the T-junction gel fiber template and microscopic images of (B) T- and
(C) Y-junction microchannel.

A flexible template is particularly advantageous to complicated network fabrication.
Various orientations can be accomplished by template bending. This process, however, causes
deformation on common solid materials. Elongation occurs at the outer edge of the bend, causing a
distortion of its cross section. At the inner edge of the bend, wrinkles are formed at a certain point
due to compression. Therefore, a good template should resist deformation during bending. Our gel
material possesses high elasticity and softness, which helps maintain its original dimension without
surface wrinkles (Figure 6). Even when the gel was bended into a 30◦ angle, its cross-section and
surface quality were well-maintained, thus supporting production of a smooth microchannel.
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Meanwhile, a good gel template should not be limited by any complicated 3D channel network.
Our gel was flexible enough for simple fabrication of complex structures, as schematically depicted
in Figure 7. A 3D pattern can be formed by fixing the fiber template on a punctured PDMS sheet.
A single helical channel and a weave network were obtained by threading the gel templates through
the hole-arrayed sheet, as shown in Figure 7. The resultant microchannels were completely separated
without fluid leakage, that was often caused by layer misalignment or sealing failure in lithography
methods. As shown in Figure 8D, colored solutions were introduced into the weave network through
two inlets to visualize the channel separation. No color mixing was found in the weave pattern,
indicating hermetical channels without leakage between each other.
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This molding strategy facilitated the fabrication of complex 3D microchannels, which are essential
to realize a 3D structure of chaotic fluidic mixer [31]. The 3D chaotic mixer was required to facilitate
multiple layer alignment in the lithography approach. Multiple layer alignment was required to achieve
3D channel structure via lithography. However, our gel material can create this complex structure in a
single molding step. Serpentine- [31] and helical-shaped [32] mixers were successfully demonstrated.
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This gel material exhibited high flexibility, stretchability and healability in microchannel
fabrication. It provides a promising template alternative and a straight-forward approach to create
microchannels for versatile microfluidic devices.

4. Conclusions

We successfully introduced a highly stretchable gel material for microfluidic channel fabrication
within the widely used PDMS matrix. The smooth curing of PDMS was guaranteed by partially
substituting water with EG in the gel template, which resulted in high quality channels of various
diameters and cross-sectional shapes. Based on flexible assembly and organization of these reliable
templates, representative 3D microfluidic structures were manufactured in a single molding step,
including junctions, helical, and weave patterns. This versatile gel material has potential applications
in microdevice fabrication and scaffold engineering.
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