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Abstract

The dysregulated host response and organ damage following systemic infection that characterizes 

a septic event predisposes individuals to a chronic immunoparalysis state associated with 

severe transient lymphopenia and diminished lymphocyte function, thereby reducing long-term 

patient survival and quality of life. Recently, we observed lasting production of reactive oxygen 

species (ROS) in mice that survive sepsis. ROS production is a potent mechanism for targeting 

infection, but excessive ROS production can prove maladaptive by causing organ damage, 

impairing lymphocyte function, and promoting inflammaging, concepts paralleling sepsis-induced 

immunoparalysis. Notably, we observed an increased frequency of ROS-producing immature 

monocytes in septic hosts that was sustained for greater than 100 days postsurgery. Recent 

clinical trials have explored the use of vitamin C, a potent antioxidant, for treating septic patients. 

We observed that therapeutic vitamin C administration for sepsis limited ROS production by 

monocytes and reduced disease severity. Importantly, we also observed increased ROS production 

by immature monocytes in septic patients both at admission and ~28 days later, suggesting a 
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durable and conserved feature that may influence the host immune response. Thus, lasting ROS 

production by immature monocytes is present in septic patients, and early intervention strategies to 

reduce it may improve host outcomes, potentially reducing sepsis-induced immunoparalysis.

INTRODUCTION

There is a substantial health (affecting 1.7 million and killing 270,000) and economic 

(costing >20 billion dollars) burden imposed by sepsis on Americans annually (1). Over the 

past 30 years, the sepsis mortality rate has declined because of early intervention strategies 

aimed at reducing the severity of the septic cytokine storm (2, 3). This cytokine storm 

manifests through exaggerated production of cytokines, effector molecules, and reactive 

oxygen species (ROS) with the intent of rapidly controlling the systemic infection, but it 

also has the unintended consequence of organ damage (1, 4, 5). Yet, even as the cytokine 

storm resolves, patients continue to experience lasting (> five years) immunologic deficits, 

termed immunoparalysis, which reduce an individual’s capacity to control subsequent 

secondary infection (unrelated to the septic event) and cancer (2, 3, 6–9) or even undergo 

autoinflammatory activity (10). Consequently, the majority of sepsis-associated mortality is 

now dominated by late deaths from secondary infection and other morbid conditions due to 

immunologic impairment (11, 12).

Sepsis-induced immunoparalysis is characterized by severe transient lymphopenia (13–15), 

reduced capacity to produce effector molecules, reduced target recognition, and elevated 

inhibitory receptor expression by several immune cell populations (e.g., T cells, dendritic 

cells, and NK cells) (16–22). In addition to these intrinsic deficits of lymphocytes, 

extrinsic impairment is also present (e.g., capacity of endothelia to promote chemotaxis 

and suppression by monocyte-derived cells) (23–25). Notably, these impairments are 

also observed during “inflammaging,” wherein chronic, sterile, low-grade inflammation 

predisposes the host to age-related disease pathogenesis (26–28). The parallels between 

sepsis-induced and age-associated immunologic impairments suggest sepsis accelerates 

immunologic aging. Thus, the defects observed during sepsis-induced immunoparalysis 

may more accurately reflect alterations in immune cell function, due in part to chronic 

inflammation. Indeed, there is an increase in inflammatory monocytes following sepsis, 

suggesting ongoing inflammatory responses due to persistent cellular stress (29–33).

Monocytes are of particular importance in the postseptic environment, as they rapidly 

fill much of the space created during the sepsis-induced lymphopenia phase leading 

to splenomegaly (29). Specifically, a robust increase in Ly-6C+ monocytes, which tend 

toward an inflammatory phenotype, is seen. Alternately, myeloid-derived suppressor cells 

also increase in the postseptic environment and produce ROS to promote the chronic 

immunoparalysis state (33). In either scenario, the functional consequences of myelopoiesis 

and the proposed associated ROS production present a particularly potent mechanism by 

which these cells may contribute to the chronic immunoparalysis state.

Recently, the therapeutic administration of high-dose vitamin C, a potent antioxidant, has 

demonstrated some promise in improving sepsis patient survival (34, 35). Vitamin C therapy 

for sepsis is suspected to limit cellular stress and extraneous free radical production (36, 
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37). It is also possible that vitamin C therapy would further benefit the septic host by 

alleviating any ROS-mediated immune suppression (38). However, recent clinical trials and 

meta-analysis of clinical trials have indicated that vitamin C does not significantly improve 

septic patient survival or time of hospital stay (34, 39), although it may lead to short-term 

early improvements in survival (40). Regardless of these and other potential mechanisms, 

the extent to which vitamin C intervention has any benefit on the chronic immunoparalysis 

state that develops during a septic event remains under-evaluated. Using both a cecal ligation 

and puncture (CLP) murine model of sepsis and patient samples we describe a long-lasting 

elevation in the basal production of ROS by monocytes in previously septic hosts. The 

increase in ROS is attributed to a dramatic increase in immature CD11blo monocytes among 

the ROS-producing cells. Intriguingly, we also observed that therapeutic administration 

of vitamin C substantially reduces sepsis severity and the frequency of ROS-producing 

monocytes after sepsis resolution.

MATERIALS AND METHODS

Mice and infections

Inbred C57BL/6 (B6; Thy1.2/1.2) were purchased from the National Cancer Institute 

(Frederick, MD) and maintained in the animal facilities at the University of Iowa at 

the appropriate biosafety level. P14 C57BL/6-Tg mice were bred and maintained at 

the University of Iowa. Lymphocytic choriomeningitis virus (LCMV)–immune specific 

pathogen–experienced (SPExp) mice were generated as previously described (17, 23, 41–45). 

Briefly, LCMV-Armstrong (LCMV-Arm) infections were administered by i.p. injection with 

2 × 105 PFU.

Institutional setting and institutional review board approval

Patients were recruited at the University of Iowa Hospitals and Clinics, an 811-bed academic 

tertiary care center. Blood sample acquisition, patient data collection, and analysis were 

approved by the University of Iowa Institutional Review Board (identification number 

201804822). Informed consent was obtained from patients or their legally authorized 

representatives.

Sepsis patient selection and data collection

Subjects 18 y of age or older meeting sepsis-3 criteria for sepsis or septic shock (46) 

secondary to intra-abdominal infection, soft tissue infection, bloodstream infection, or 

pneumonia were enrolled. Exclusion criteria were infection requiring antibiotics in the past 

month, hospitalization for infection in the past year, and chemotherapy or radiation within 

the past year. Demographics and baseline characteristics, including age, gender, race, acute 

physiology and chronic health evaluation II (APACHE II) score, sequential organ failure 

assessment (SOFA) score, and presence of septic shock were collected. EDTA-treated blood 

samples were collected within 24 h of presentation and at 30 plus or minus 5 d.

Healthy control patient selection and data collection

Healthy volunteers 25 to 80 y of age were recruited from University of Iowa faculty, 

staff, and graduate/professional students. Exclusion criteria were signs or symptoms of 
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active infections, infection requiring antibiotics within the past month, infection requiring 

hospitalization in the past year, and chemotherapy or radiation in the past year. Demographic 

data, including age, gender, and race were collected. EDTA-treated blood samples were 

collected at a visit to our research clinic.

CLP model of sepsis induction

Sham and CLP surgeries were performed as previously described (47, 48). Briefly, mice 

were anesthetized with ketamine/xylazine (Office of Animal Resources, University of Iowa), 

the abdomen was shaved and disinfected with Betadine (povidone-iodine; Purdue Products), 

and a midline incision was made. The distal third of the cecum was ligated with PERMA-

HAND Silk (Ethicon), punctured once using a 25-gauge needle, and a small amount of 

fecal matter was extruded. The cecum was returned to abdomen, the peritoneum was closed 

with 641G PERMA-HAND Silk (Ethicon), and the skin was sealed using surgical Vetbond 

(3M). Following surgery, 1 ml of PBS was administered s.c. to provide postsurgery fluid 

resuscitation. Lidocaine was administered at the incision site, and flunixin meglumine 

(Phoenix Scientific) was administered for postoperative analgesia. This procedure created 

a septic state characterized by loss of appetite and body weight, ruffled hair, shivering, 

diarrhea, and/or periorbital exudates with 0–10% mortality rate. Sham mice underwent 

identical surgery, excluding CLP.

Evaluation of disease severity

Disease severity for specific pathogen–free (SPFree) mice was rated as follows: 1) healthy; 

2) ruffled fur; 3) ruffled fur and reduced mobility; 4) ruffled fur, reduced mobility, and cold 

to the touch; and 5) moribund/dead. Clinical signs of disease for SPExp mice were rated as 

follows: for grooming, 0) normal, 1) fur that has lost shine/become matted (dusty), 2) fur 

becomes erect or bristling (ruffled); for mobility, 0) mobile without stimulation (normal), 

1) mice are less responsive/mobile to stimuli (reduced), 3) mice are unresponsive to stimuli 

(immobile); for body position, 0) body is fully extended (normal), 1) back is arched/curved 

(hunched), 2) laying on side at rest (on side); and for food intake, 0) normal food intake has 

been adjusted, to allow for surgery-specific weight loss to be mitigated because of minimal 

weight loss that occurs in sham controls (0–9.9%), 1) moderate weight loss (10–14.9%), 

2) severe weight loss (15–19.9%). After giving one score for each category, the sum of all 

categories indicates disease score. Dead mice are given the highest score (8) on the day 

of death and thereafter removed from scoring. Healthy scores range from 0 to 2; moderate 

disease scores range from 3 to 5; and severe disease scores range from 6 to 8.

Murine cell isolation

Single-cell suspensions from spleens were generated after mashing tissue through 70-μm 

cell strainer without enzymatic digestion.

Human cell isolation and cryopreservation

Human cell isolation was as adjusted from the previously described methodology (49). 

Briefly, whole blood was centrifuged, and serum was removed. RBC lysis buffer was 

then added to the cell pellet and rested for 5 min at room temperature. Cells were again 
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centrifuged, and supernatant was removed. Process was repeated one to two additional 

times. Cells were washed with PBS three times before being counted and resuspended in cell 

freeze media (90%FCS, 10%DMSO) and then stored at −80°C. When ready for use, frozen 

cells were rapidly thawed and placed into warmed complete media. Cells were then washed 

three times with warmed media, and aggregates were filtered prior to use.

Adoptive transfer of P14 cells

Adoptive transfer (AT) of TCR-transgenic CD8 T cells was performed as previously 

described (9). Briefly, a small amount of blood was collected from Thy1.1/Thy1.1 P14 

mice. RBCs were lysed, and the frequency of naive CD8 T cells was determined by flow 

cytometric analysis of a portion of the samples. Remaining cells were then enumerated and 

then adjusted to transfer 5 × 103 naive CD8 T cells per mouse. Cells were transferred via 

retro-orbital injection.

Flow cytometry and intracellular protein detection

Flow cytometry data were acquired on a FACSCanto (BD Biosciences, San Diego, CA) and 

analyzed with FlowJo software (Tree Star, Ashland, OR). To determine expression of cell 

surface proteins, mAb were incubated at 4°C for 20–30 min, and cells were fixed using 

BD Cytofix/Cytoperm solution (BD Biosciences). The following anti-mouse mAb clones 

were used: CD3 (17A2; BioLegend), CD11a (M17/4; BioLegend), Ly-6C (AL-21; BD 

Biosciences), KLRG1 (2F1; BioLegend), CD127 (SB/199; eBioscience), CD8a (53-0.67; 

BioLegend), Thy1.1 (HIS51; eBioscience), CD11b (M1/70; eBioscience), F4/80 (BM8; 

eBioscience), Ly-6G/C (RB6-8C5; BioLegend). The following anti-human mAb clones 

were used: CD14 (61D3; Tonbo Biosciences) and CD11b (ICRF44; Tonbo Biosciences). 

ROS-producing cells were determined via a CellROX Deep Red Kit according to the 

manufacturer’s instructions (Thermo Fisher Scientific). Briefly, cells were labeled with 

CellROX Deep Red dye for 30 min at 37°C in complete media prior to Ab labeling.

Vitamin C administration

Stock solutions of vitamin C (pH 7) were prepared in the Electron Spin Resonance Core 

Facility (University of Iowa) under argon and stored in screw-top sealed test tubes at 4°C. 

Ascorbate concentration was verified using ε265 = 14,500 M−1cm−1 (50). Vitamin C was 

administered (bolus, i.p.) at a dosage of 0.1 mg/1 g mouse every 12 h, beginning 6 h after 

surgery for the first 3 d and then every 24 h for the next 6 d. Vitamin C was diluted to 

a volume of 100 μL/mouse immediately prior to injection using dH2O. dH2O was used as 

control treatment.

Statistical analysis

Unless stated otherwise, data were analyzed using Prism 8 software (GraphPad), using a 

two-tailed Student t test (for two individual groups; if unequal variance, a Mann–Whitney 

U test was used), one-way ANOVA with Bonferroni post hoc test (for >2 individual groups; 

if unequal variance, a Kruskal–Wallis with Dunn post hoc test was used), two-way ANOVA 

(for multiparametric analysis of two or more individual groups; pairing was used for samples 

that came from the same animal), and a Fisher exact test (for categorical data from two 
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individual groups) with a confidence interval of >95% to determine significance (*p ≤ 0.05). 

Data are presented as SEM.

RESULTS

Sepsis leads to ROS-dependent tandem fluorophore degradation

Recently, we described the sepsis-induced degradation of tandem fluorophores mediated by 

ROS production [Fig. 1, adapted from Jensen et al. (51)]. A demonstration of how tandem 

fluorophore degradation can lead to the initial erroneous interpretation of flow cytometric 

data obtained from sham (control) and septic hosts is demonstrated in Fig. 2. Recently, 

Huggins et al. (52) demonstrated that immunologic experience influenced susceptibility to 

sepsis-induced mortality and the severity of the cytokine storm. Given that the majority of 

septic patients are elderly, with a high frequency of infection or vaccine-induced memory 

CD8 T cells, we had been seeking to better understand how sepsis may alter memory CD8 

T cells number, function, and subset representation. Importantly, the number and type of 

memory CD8 T cells influence the capacity of memory CD8 T cells to provide protection 

during a pathogen rechallenge (41, 53), and sepsis leads to a dramatic numerical loss of 

memory CD8 T cells (9, 19, 54–56). Yet, how sepsis influences the loss and recovery of 

defined memory CD8 T cell subsets remains unknown (43, 44).

To investigate this important question, sham or CLP surgery was performed on mice 

bearing a defined population of memory CD8 T cells. To accomplish this, we used the well-

established model of AT of naive TCR-transgenic CD8 T cells combined with experimental 

pathogen infection (9). Briefly, a small number of naive TCR-transgenic P14 CD8 T cells 

were transferred into congenically distinct naive C57BL/6 mice and then infected a day 

later with LCMV-Arm to elicit an Ag-specific response by the P14 CD8 T cells as well 

as endogenous GP33-specific CD8 T cells (41). At 30 d post-LCMV infection, an early 

memory timepoint, mice then underwent CLP surgery to induce acute peritonitis or sham 

control surgery (Fig. 2A). The extent to which sepsis influences the subset composition of 

virus-specific memory CD8 T cells was addressed by flow cytometry at >9 d after surgery 

(Fig. 2). Day >9 postsurgery was chosen, as it is a point at which numeric recovery of 

splenocytes is achieved following sepsis-induced lymphopenia. Importantly and relevant to 

this project, the error in interpretation of flow cytometric data occurred when the Thy1.1 

P14 CD8 T cells were labeled by tandem dye (allophycocyanin–eFluor 780; Fig. 2B, 2E), 

and the degradation of the tandem fluorophore (i.e., allophycocyanin–eFluor 780) led to a 

“phantom” parent dye signal (in this case in the allophycocyanin channel). Because KLRG1 

was labeled by allophycocyanin in the first set of experiments (Fig. 2C), the subsequent 

degradation of the Thy1.1-allophycocyanin-eFluor 780 caused an artificial increase in the 

percentage of KLRG1+ P14 CD8 T cells obtained from septic but not sham hosts (Fig. 

2D). Because KLRG1 was labeled with a different fluorophore (PE) in the second set of 

experiments (Fig. 2F), the potential degradation of the allophycocyanin–eFluor 780 did not 

influence the perceived expression of KLRG1 (Fig. 2G). Thus, the KLRG1+CD127+ CD8 

T cell population in the first experiment reflects the degradation of the tandem fluorophore 

(Fig. 2C, 2D). So, whereas sepsis did not alter the subset composition of memory CD8 

T cell subsets early after sepsis induction, the fluorophore tandem degradation suggested 
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increased ROS production >9 d after the septic insult (51). Based on these data, we 

refocused our attention to define the cellular source of this ROS production, its relevance 

to sepsis host recovery, and whether increased ROS production is a conserved feature with 

sepsis patients.

Sepsis leads to a lasting increase in ROS-producing monocytes in mice

To maintain the relevance to immunologically experienced hosts, we continued to use mice 

that had undergone LCMV infection, in this study forward referred to as SPExp mice. 

To determine the cellular source of the ROS that is mediating the tandem fluorophore 

degradation seen in Fig. 2, SPExp mice underwent either sham or CLP surgery 30 d 

postinfection. Ten days after surgery, a time when tandem fluorophore degradation was 

observed, ROS-producing cells were analyzed by flow cytometry (Fig. 3A). Although 

degradation of tandem fluorophores indicates the presence of increased ROS production it 

does not define which cell population is producing the elevated ROS. Thus, CellROX Deep 

Red dye was used in combination with nontandem conjugated Abs to further phenotype 

the ROS-producing cells (Fig. 3B). Notably, the frequency and number of ROS-producing 

cells was increased in splenocytes from CLP mice (Fig. 3C, 3F); the primary population of 

ROS-producing cells were Ly-6C+, suggestive of either monocytes or neutrophils (Fig. 3D, 

3G). Conversely, T cells, which can produce free radicals during high metabolic activity, did 

not contribute to the increased ROS production (Fig. 3E, 3H); thus, myeloid cells are the 

predominate producers of ROS in the postseptic environment.

To further delineate the identity of the ROS-producing cells, additional flow cytometric 

profiling of SPExp mice was performed 10 d after sham or CLP surgery (Fig. 4A). 

Macrophages, Ly-6Chi monocytes, Ly-6Clo monocytes, and neutrophils were identified 

among the ROS-producing cells (Fig. 4B). The preponderance of the increase in ROS 

production (Fig. 4C) was among Ly-6Chi monocytes, with a trending increase among 

neutrophils as well (Fig. 4D, 4E). These data suggest the majority of the Ly-6C+ cells 

contributing to the increased ROS production among CLP hosts are Ly-6Chi monocytes.

ROS-producing monocytes from CLP hosts are long lasting and have an immature 
phenotype

Given that the sepsis-induced chronic immunoparalysis state is defined by both its extended 

duration and cellular recovery through emergency hematopoiesis, we interrogated the 

phenotype of these ROS+ Ly-6C+ cells both 10 and >100 d postsurgery (Fig. 5A). The 

increase in ROS-producing monocytes (Fig. 5B) observed in CLP hosts was attributed to 

an expansion in CD11blo monocytes (Fig. 5C, 5D). Splenic CD11blo monocytes are a 

less matured population of cells (57), and expansion of the CD11blo monocytes suggests 

this population arises as a result of emergency myelopoiesis following the septic-induced 

lymphopenia and impact on bone marrow progenitors (29). Valdes-Ferrer et al. (30) 

described a long-lasting population of phenotypically similar monocytes after sepsis. To 

address whether these cells were also contributing to ROS production late after sepsis, 

similar analysis was performed >100 d after surgery. Strikingly, the frequency of ROS-

producing monocytes remained elevated at this extended timepoint post-CLP (Fig. 5E) 

because of a sustained increase in CD11blo ROS-producing monocytes (Fig. 5F, 5G). These 
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data suggest the sepsis-induced change is highly durable, corresponding to a state of chronic 

immunoparalysis.

Therapeutic vitamin C administration reduces sepsis disease severity and prevents 
sepsis-associated lasting ROS production

The persistent production of ROS observed potentially signifies a state of ongoing cellular 

stress. One of the stressors that can arise following a septic event is a vitamin C (ascorbate) 

deficiency similar to scurvy (58–60). Vitamin C serves as a donor antioxidant to reduce 

oxidizing free radicals and serves many other biochemical functions as a one-electron 

reducing agent (61, 62). Recently, clinical trials also indicate that therapeutic vitamin C 

administration may reduce early mortality (34, 40). Given the potential for vitamin C to 

limit the production of ROS, either through direct free radical reduction or indirect host 

support/limitation of cellular stress, its impact on ROS-producing cells was evaluated.

To assess the impact of vitamin C on ROS-producing monocytes as a potential clinically 

relevant therapeutic, we used dosages that were equivalent to those given to sepsis patients 

in recent clinical trials (34). A therapeutic administration strategy using i.p. administration 

was chosen, as vitamin C is not orally bioavailable at the concentrations supported by the i.v. 

trial injections but is achievable through i.p. injection (63, 64). Thus, the following dosing 

strategy was implemented: beginning 6 h after either sham or CLP surgery, SPFree mice 

received either dH2O or vitamin C every 12 h for the first 3 d and then every 24 h for 

the subsequent 6 d. Readily available SPFree mice were used to address the feasibility of 

therapeutic vitamin C treatment. ROS-producing cells were then assessed a day after the 

final dose (10 d postsurgery; Fig. 6A). CLP mice receiving vitamin C had significantly 

reduced disease severity, as assessed by clinical scoring, when compared with dH2O-treated 

animals (Fig. 6B, 6C), suggesting benefits to disease outcome can be seen/achieved early. 

Importantly, vitamin C treatment also reduced the frequency of ROS-producing cells and 

monocytes in particular (Fig. 6D, 6E). These data suggest vitamin C treatment may lead 

to a lasting benefit by reducing the frequency of ROS-producing monocytes. Based on 

the promising results observed in the SPFree mice, we next sought to address whether this 

therapy also benefited the immunologically experienced hosts. Critically, when the same 

treatment strategy was used in SPExp mice (Fig. 6F), there was also a significant reduction in 

clinical disease severity (Fig. 6G, 6H).

In summary, these data demonstrate a beneficial effect of vitamin C treatment in reducing 

sepsis severity in immunologically naive and experienced hosts. The efficacy of this 

therapeutic strategy in hosts with differential immunologic experience may prove critical 

in the translational capability of this strategy. Further, this change in disease severity 

was observed early after sepsis induction and may translate into a reduction in the 

immunoparalysis state, thereby improving both long-term host immunity and survival.

Elevated ROS production persists in patients who survive sepsis

Given that several disparities exist between mouse and human disease states, there is a 

strong need to translate findings from mice to humans to identify those findings with the 

most clinical relevance (56). Given the apparent relevance of these immature ROS-producing 
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monocytes in our murine model, we sought to address both whether this population is also 

present and persists in septic patients. Thus, ROS-producing monocytes were examined in 

the peripheral blood of both septic patients and healthy controls. The “early” septic patient 

sample was taken within the first 12 h of admission, whereas the “late” samples were 

taken 30 plus or minus 5 d after the initial sample from the septic patients and compared 

with samples taken from healthy controls. We did not observe significant differences in 

demographic data between the septic patients and healthy controls (Fig. 7A). As anticipated, 

septic patients had severe disease, with 40% of septic patients developing septic shock. 

Notably, significant elevation in ROS production was present in early septic patient samples 

and persisted at the late timepoint (Fig. 7B, 7C). Similar to the mouse studies, the primary 

ROS producers were monocytes (CD14+ cells) (Fig. 7D) and was further associated with 

an increase in representation of CD11blo monocytes among ROS-producing cells (Fig. 7E). 

These data suggest that persistent ROS production by immature monocytes is a conserved 

feature of sepsis and may be relevant to the sepsis-induced immunoparalysis state.

DISCUSSION

The sepsis-induced cytokine storm remains a critical hurdle in improving patient survival. 

However, if full recovery of patients is to be achieved, attention should also be placed on the 

lasting impact of sepsis. Our description of chronic production of ROS by immature splenic 

monocytes after CLP-induced sepsis extends previous reports describing sepsis-induced 

phenotypic changes in monocytes (30). This ROS production has the potential to impair 

lymphocyte function and thereby contribute to the immunoparalysis state seen in septic 

patients (56). Importantly, an increase in ROS production lasting ~28 d in samples from 

our septic patient cohort was observed, suggesting this has applicability for understanding 

clinical outcomes. These data parallel the observation that LPS-tolerized monocytes retain 

their capacity to produce ROS (65). Although our cohort of sepsis patients was small, the 

data obtained suggests the increase in ROS production may be a durable and conserved 

phenomenon. Future evaluation should use larger patient cohorts to determine how sepsis 

severity influences the magnitude and duration of ROS production by these immature 

monocytes. Additionally, there was a population on non-monocyte-producing ROS in septic 

patients, which may be neutrophils and another population that should be analyzed in more 

detail. Further, attention should also be given to whether the presence of ROS-producing 

CD11blo monocytes corresponds to enhanced suppression of lymphocyte functions as an 

index of sepsis-induced immunoparalysis. With respect to the cause of this ROS production, 

we have anecdotally observed that ROS production decreases with time after tissue harvest, 

suggesting that ROS production is maintained by environmental cues within the septic host. 

Future analyses delineating how well these monocytes subsequently respond to various 

triggering agents may help define how sepsis may be altering their overall function. If 

these cells are robust indicators of ongoing immunoparalysis, more targeted interventions to 

improve patient outcomes should be investigated.

A notable aspect regarding the reduced ROS production following vitamin C treatment 

is that early intervention conferred long-term benefit and possibly alleviates the chronic 

immunoparalysis state. The potential of vitamin C having both an early and lasting impact 

on decreasing sepsis severity and increased survival would be extremely important for a 
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number of reasons. High-dose vitamin C treatment has demonstrated clinical efficacy in 

promoting tumor regression (62, 63, 66), suggesting the feasibility of a similar approach for 

septic patients. Despite the reasons for further investigation of vitamin C therapy for sepsis, 

some important counterpoints must also be discussed. In particular, the inability to achieve 

sufficient plasma concentration through oral administration means i.v. administration of 

vitamin C is the most feasible option to achieve the needed concentrations in patients (64). 

Because of the rapid clearance of high blood levels of vitamin C by the kidneys, patients 

may need to remain in the hospital to continue deriving its benefits (67). Moreover, long-

term vitamin C administration would also require numerous i.v. injections or continuous 

i.v. delivery to maintain the elevated plasma levels needed to see a therapeutic effect. 

Special handling is also required because of the high rate at which vitamin C is oxidized. 

However, if the impact of vitamin C on the host is durable, then these treatment feasibility 

concerns would be substantially alleviated. Another complicating facet is that murine cells, 

unlike human cells, have the capacity to synthesize their own vitamin C, albeit achieving 

substantially lower concentrations in blood than what is achieved through therapeutic 

administration (63). This difference could explain some of the discordance seen between 

murine models and septic patients, which could also influence whether the response to 

vitamin C is durable in humans. When all of these points are taken in sum, the extent 

to which vitamin C treatment durably reduces ROS or alleviates aspects of sepsis-induced 

immunoparalysis should be addressed in future studies.

Alternately, it is unclear whether the benefit of vitamin C is derived solely through indirect 

mechanisms, such as reducing cellular stress, directly reducing ROS, or some combination 

thereof. Interrogation into these mechanisms may further promote additional therapeutic 

strategies. For instance, if the vitamin C–derived benefit is to some degree associated 

with reduction of free radicals, then more specific inhibitors of particular mechanisms of 

free radical generation can provide for targeted therapies to address this problem (68). 

Similarly, more robust characterization of the ROS-producing immature monocytes should 

be performed. This is made difficult by the proclivity of these cells to promote tandem 

fluorophore degradation (51). However, undertaking methods of reducing free radicals, such 

as addition of reducing agent to the staining buffer, allows for better clarity (51). Finally, 

understanding why this seemingly less mature population of cells persists may give insight 

into how sepsis influences progenitor populations to hamper subsequent immune responses.

The description of a long-lasting production of ROS by immature monocytes potentially 

demonstrates the durability of the immunoparalysis state. The persistence of this population 

likely reflects both how sepsis shapes the immune system of those individuals that survive 

the septic insult and how this alteration may feed back into the immunoparalysis state (e.g., 

ROS-mediated lymphocyte suppression) (26–28, 38). In addition, the presence of these cells 

in both mouse models and septic patients lends credence to the diligent use of animal 

models in the evaluation of septic insults (56). Thus, these data demonstrate the capacity to 

evaluate the chronic immunoparalysis state and how early interventions, such as vitamin C 

administration, may influence its development (34, 35, 58).
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FIGURE 1. Model of sepsis-induced tandem fluorophore degradation.
(A) Ideal model of nondegraded tandem fluorophore, wherein only signal for 

allophycocyanin (APC)–eFluor 780 but not allophycocyanin is detected. (B) Model of 

how sepsis-induced tandem fluorophore degradation leads to detection of both a signal for 

allophycocyanin–eFluor 780 and allophycocyanin. Figure is adapted from Ref. 51.
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FIGURE 2. Sepsis leads to degradation of tandem fluorophores and impacts data interpretation.
(A) Experimental design. C57BL/6 (Thy1.2) mice received an AT of 5 × 103 naive 

TCR-transgenic P14 (Thy1.1) CD8 T cells by retro-orbital injection. The mice were 

infected 1 d later with LCMV-Arm (2 × 105 PFU i.p.). Mice then underwent sham 

or CLP surgery 30 d postinfection. Memory P14 CD8 T cells were evaluated >10 d 

postsurgery (> 40 d postinfection). Experiment 1: (B) representative gating of P14 T 

cells identified by allophycocyanin (APC)–eFluor 780 (Thy1.1) expression in sham and 

CLP hosts. Representative gating (C) and cumulative data (D) of PerCP (CD127) and 
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allophycocyanin (KLRG1) staining on P14 CD8 T cells in sham and CLP hosts. Experiment 

2: (E) representative gating of P14 CD8 T cells identified by allophycocyanin–eFluor 780 

(Thy1.1) expression in sham and CLP hosts. Representative gating (F) and cumulative data 

(G) of BV421 (CD127) and PE (KLRG1) staining on P14 cells in sham and CLP hosts. Data 

are representative of three repeated experiments with three to five replicates per group. Error 

bars indicate SEM. *p < 0.05.
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FIGURE 3. Sepsis leads to persistent ROS production by Ly-6C+ cells.
(A) Experimental design. SPExp mice were generated by infection with LCMV-Arm (2 × 

105 PFU i.p.) and then underwent sham or CLP surgery 30 d postinfection. ROS-producing 

splenocytes were assessed 10 d later by flow cytometry. (B) Representative gating of ROS-

producing cells. Frequency (C–E) and number (F–H) of (C and F) ROS-producing cells, 

(D and G) Ly-6C+CD3− ROS-producing cells, and (E and H) CD3+ CD8α+ ROS-producing 

cells among splenocytes. Data are representative of three repeated experiments with two to 

three replicates per group. Error bars indicate SEM. *p < 0.05.
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FIGURE 4. Persistent ROS production is by Ly-6Chi monocytes.
(A) Experimental design. SPExp mice were generated by infection with LCMV-Arm (2 

× 105 PFU i.p.) and then underwent sham or CLP surgery 30 d postinfection. ROS-

producing splenocytes were assessed 10 d later by flow cytometry. (B) Representative 

gating of macrophages (MACs; F4/80+ cells), Ly-6Chi monocytes (F4/80−, CD11b+, Ly-6G/

Clo, Ly-6Chi), Ly-6Clo monocytes (F4/80−, CD11b+, Ly-6G/Clo, Ly-6Clo), and neutrophils 

(F4/80− CD11b+, Ly-6G/Chi, Ly-6Chi) among ROS-producing cells. Frequency (C–E) 

and number (F) of (C) ROS-producing cells, (D) MACs, Ly-6Chi and Ly-6Clo monocyte 

neutrophils, and undefined cells (F4/80− CD11b−) among ROS-producing cells, and (E and 

F) ROS-producing MACs, Ly-6Chi and Ly-6Clo monocytes neutrophils, and undefined cells 

(F4/80− CD11b−) among splenocytes. Data are representative of one experiment with three 

to four replicates per group. Error bars indicate SEM. *p < 0.05.
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FIGURE 5. Sepsis leads to long-lasting ROS production by immature monocytes.
(A) Experimental design. SPExp mice were generated by infection with LCMV-Arm (2 × 105 

PFU i.p.) and then underwent sham or CLP surgery 30 d later. ROS-producing splenocytes 

were assessed 10 or >100 d later by flow cytometry. 10 d postsurgery: (B) cumulative 

data of Ly-6C+ ROS-producing cells among total leukocytes; representative gating (C) and 

cumulative data (D) of CD11b expression by Ly-6C+ ROS-producing cells. More than 100 

d postsurgery: (E) cumulative data of Ly-6C+ ROS-producing cells among total leukocytes. 

Representative gating (F) and cumulative data (G) of CD11b expression by Ly-6C+ ROS-
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producing cells. Data are representative of two repeated experiments with five replicates per 

group. Error bars indicate SEM. *p < 0.05.
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FIGURE 6. Therapeutic vitamin C administration reduces sepsis severity and prevents sepsis-
associated ROS production.
(A) Experimental design. SPFree C57BL/6 mice underwent either sham or CLP surgery 

and then received 2.5 mg of vitamin C (Vit. C.; delivered i.p. in 100 μL dH2O i.p.)/25 g 

mouse beginning 6 h after surgery. Control mice received dH2O. Injections were repeated 

every 12 h for the first 3 d and then every 24 h for the subsequent 6 d. Disease severity 

was scored from 1–5 until recovery. ROS-producing splenocytes were assessed by flow 

cytometry 1 d after the last injection (10 d postsurgery). Average sepsis disease severity 
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(B) for all experimental groups. The cross indicates the single mortality in dH2O-treated 

CLP mice. (C) Area under the curve of the disease scores for CLP experimental groups. 

Cumulative data of (D) ROS-producing cells and (E) Ly-6C+ ROS-producing cells among 

total leukocytes. (F) Experimental design. SPExp C57BL/6 mice underwent either sham or 

CLP surgery and then received 2.5 mg of vitamin C (Vit. C.; delivered i.p. in 100 μL dH2O 

i.p.)/25 g mouse beginning 6 h after surgery. Control mice received dH2O. Injections were 

repeated every 12 h for the first 3 d and then every 24 h for the subsequent 6 d. Disease 

severity was scored from 1–5 until recovery. ROS-producing splenocytes were assessed 

by flow cytometry 1 d after the last injection (10 d postsurgery). Average sepsis disease 

severity (G) for all experimental groups. Area under the curve (H) of the disease scores for 

CLP experimental groups. (B)–(E) are representative from two repeated experiments with 

3-5 replicates per group and (F)–(H) are representative from a single experiment with 4–6 

replicates per group. Error bars indicate SEM. The cross indicates mortality at the indicated 

timepoint, and the mouse was excluded from further scoring. *p < 0.05.
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FIGURE 7. Sustained elevation in ROS production by immature monocytes from septic patients.
(A) Patient demographics, Age, sex, ethnicity, sample time interval, acute physiology and 

chronic health evaluation II (APACHE II) score, sequential organ failure assessment (SOFA) 

score, and percentage of patients experiencing septic shock. (B) Representative gating of 

ROS-producing cells. Cumulative data of (C) ROS-producing cells and (D) CD14+ ROS-

producing cells among total leukocytes. (E) Cumulative data of CD11b expression by 

CD14+ ROS-producing cells at early (<12 h after admission) and late (~28 d after initial 
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collection) timepoints. Data are representative of one independent experiment with five to 

eight unique patients per group. Error bars indicate SEM. *p < 0.05.
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