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Abstract
We consider matrix games with two phenotypes (players): one following a mixed
evolutionarily stable strategy and another one that always plays a best reply against the
action played by its opponent in the previous round (best reply player, BR). We focus
on iterated games and well-mixed games with repetition (that is, the mean number of
repetitions is positive, but not infinite). In both interaction schemes, there are conditions
on the payoff matrix guaranteeing that the best reply player can replace the mixed
ESS player. This is possible because best reply players in pairs, individually following
their own selfish strategies, develop cycles where the bigger payoff can compensate
their disadvantage compared with the ESS players. Well-mixed interaction is one of
the basic assumptions of classical evolutionary matrix game theory. However, if the
players repeat the gamewith certain probability, then they can react to their opponents’
behavior. Our main result is that the classical mixed ESS loses its general stability in
the well-mixed population games with repetition in the sense that it can happen to be
overrun by the BR player.
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1 Introduction

In game theory, the Nash equilibrium is an optimal situation where neither player
can benefit by changing strategy while her opponent keeps hers unchanged. A more
general concept of game theoretical solution is the correlated equilibrium (Aumann
1974, 1987). It is basedon the assumption that players choose their actions according to
their observation of the value of the same public signal, e.g., theymay keepmonitoring
their opponent’s past performance. This raises the question whether reactive players
can overcome Nash players, from the view point of evolutionary game theory.

Consider a sufficiently large asexual population with nonoverlapping generations,
where the interaction is well mixed (i.e., in each round, the probability of interactions
is proportional to the relative frequency of the phenotypes). For this selection situation,
based on theDarwinian tenet,Maynard Smith and Price (1973) introduced the intuitive
definition of monomorphic evolutionary stability: a phenotype is evolutionarily stable
if a rare enoughmutant cannot invade the residentmonomorphic population displaying
this phenotype. For pairwise interactions, the general formalization of this verbal
definition reads as follows. Let W (X ,Y ) denote the average benefit of phenotype X
when interacting with phenotype Y , Then resident phenotype X is said evolutionarily
stable, if for arbitrary mutant phenotype Y with sufficiently small relative frequency
ε ∈ (0, 1) we have

(1 − ε)W (X , X) + εW (X ,Y ) > (1 − ε)W (Y , X) + εW (Y ,Y ), 0 < ε < ε0. (1)

Note that the smallness bound ε0 may vary with Y .
Starting from a symmetric matrix game, let S = {s1, . . . , sd} denote the set of pure

strategies, then the phenotypes are described by mixed strategies, i.e., by probability
distributions over S. In this case, the phenotype using the mixed strategy p will also be
denoted by p if it does not lead to misunderstanding. Suppose that the average benefit
of the interaction between individuals is given by amatrix game, i.e.,W (p, q) = pAq,
where A ∈ R

d×d and p, q run over the (d − 1)-dimensional simplex �d = {
x ∈

R
d : ∀xi ≥ 0,

∑d
i=1 xi = 1

}
. In this model, the above general definition of ESS (1)

reads as follows: p∗ is an evolutionarily stable strategy (ESS) if a small enough size
of mutant population implies that for every possible mutant strategy q we have

(1 − ε)p∗Ap∗ + εp∗Aq > (1 − ε)q Ap∗ + εq Aq, 0 < ε < ε0, (2)

which yields the well-known definition of ESS for matrix games (see Maynard Smith
and Price 1973; Hofbauer and Sigmund 1998).

We emphasize that here we only concentrate on symmetric games, where each
player has the same strategy set and the same payoff matrix, since, as it is well known,
there is no mixed ESS in asymmetric games (Selten 1980, 1983).

Remark 1 Although Maynard Smith and Price (1973) considered well-mixed interac-
tion in (2), their idea can be used for iterated games too. (By iterated game, we mean
that the same opponents play the samematrix game in a huge number of times.) Indeed,
if each individual is paired randomly with another individual from the population (i.e.,
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the pair formation is well mixed), each pair plays a large but the same number of games
with each other (i.e., the payoffs are defined as the limit of the average payoffs per
round), and each player can only use a genetically fixed mixed or pure strategy in all
rounds, then the definition of ESS (2) remains valid. We emphasize that there is an
essential difference between the well-mixed (fixed) pair formation and the well-mixed
interaction, since in the latter case each player gets a new random opponent from the
whole population from round to round, so there is no possibility to either synchronize
their actions or react to the partner’s strategy.

However, it is well known that the properties of iterated games are very differ-
ent from those of one-shot games (van Damme 1987). On the one hand, Cressman
(1992) discussed the twice repeated one-shot game where there are two strategies. By
analyzing the ESSs of this eight-strategy two-round game, he found that using the
one-shot ESS in each round was seldom an ESS in the two-round game. In fact, if the
one-shot ESS is a mixed strategy, it is never an ESS of the two-round game (personal
communication). Based on that, here we consider repetitive games of randomly paired
individuals, and only concentrate on the one-shot mixed ESS in the hawk-dove game.

On the other hand, pair formation can also be a behavior. Pacheto et al. (2006a;
2006b) studied the consequences of dynamical linking,where the number of repetitions
of the interactions between two individuals depends on the payoff from the given
interaction, and they found the natural selection to favor cooperation over defection.

Furthermore, there are other types of mutation than the strategy mutant. In the
resident population of the standard behavior (“maximization of own payoff”), the
mutants may have different other regarding preferences (e.g., “to be better than the
average,” see Garay and Varga 2005), morality (e.g., “to do the right thing,” see Alger
and Weibull 2012, 2013, 2019; Weibull 1997), or amorality (e.g., envy “punish the
successful,” see Garay and Móri 2011). In these papers, the evolution operates on the
different “player types” and not on different strategists only. Now, we also consider
two different types of player: the resident is able to use mixed strategy, while the
mutant can use the best reply strategy. We care which one will win on evolutionary
time scale (i.e., we are looking at the “end of evolution” across generations), and this
is the reason why we consider the uninvadability inequality (1) the foundation of the
present paper.

Iterated games are widely used in economics and evolutionary game theory. Firstly,
remember that the notion of mixed strategy is built on iterated games between two
players. Secondly, there exist important studies on evolutionary stability in iterated
games. In particular, from the literature of the iterated prisoner’s dilemma game (e.g.,
Axelrod and Hamilton 1981; Hilbe et al. 2013), it is well known that the iteration of
the one-shot ESS in the prisoner’s dilemma is not an ESS in the iterated prisoner’s
dilemma (e.g., Bendor and Swistak 1995; Boyd and Lorberbaum 1987; Farrell and
Ware 1989; García and van Veelen 2016). Another example is the iterated survival
game, where the altruism is evolutionarily stable (Garay and Varga 2011;Wakeley and
Nowak 2019). Thirdly, the iterated hawk–dove game has already been studied (e.g.,
Houston and McNamara 1991; Wolf et al. 2011; Morrell and Kokko 2003, 2005;
Van Doorn et al. 2003). But, according to our knowledge, our selection situation,
where best reply players compete with classical mixed ESS players, has not been
investigated so far.

123



23 Page 4 of 21 J. Garay, T. F. Móri

A mixed strategy is not reactive in the sense that a mixed strategy user randomly
uses a pure strategy from game to game, independently of what her partner has done.
Unlike a mixed strategy user, living things respond to stimuli, and if in the repetitive
games a “reactive player” can consider her partner’s earlier used pure strategy as a
stimulus, then the reactions of a reactive player can form a deterministic time series. In
otherwords, reactive player does not necessarily use amixed strategy. In general sense,
firstly, in the framework of iterated prisoner’s dilemma game, e.g., the well-known
“tit for tat” strategy (for other strategies see, e.g., Kendall et al. 2007) and the social
norms (e.g., Ohtsuki and Iwasa 2006) belong to the set of reactive strategies. Secondly,
the reactive player can imitate or learn (e.g., Hofbauer and Sigmund 1998; Szabó and
Hódsági 2016), when she can compare her payoff with other players’ payoff. In the
second case, the reactive player’s behavior is given by a game dynamics.1 Now, we
focus on the dynamical player as a special case of the reactive player, and our general
question arises: Can amutant dynamic player invade a population ofmixed ESS users?

In population games when each player plays many rounds, there are two extreme
interaction schemes, namely well-mixed interactions and iterated ones. The former
is the basic assumption of the classical ESS. If the population size is large enough
(say infinite), the probability that a fixed pair repeats the game is negligible. On the
contrary, in an iterated game the two players keep on playing the game exclusively
with each other for a very long (virtually infinite) time. However, there is another
possibility halfwaybetween these two extreme schemes,where the interaction between
two players is repetitive (i.e., the mean number of repetitions between two players is
positive but finite), but when the two players finish the interaction, they form new
pairs with other players at random, in a well-mixed way.We will call this a well-mixed
game with repetition.

One of the possible biological examples for awell-mixed gamewith repetition is the
territorial behavior (Morrell and Kokko 2005), when the neighbors are fixed while the
floaters randomly arrive to fight for the owners’ territory (Varga et al. 2020). Clearly,
the game repetition opens lots of questions if the players can collect information about
their partners and they have memory. For instance, if there is physical difference
between players, after fight the loser can accept hierarchy (Van Doorn et al. 2003),
which creates asymmetry in the game, based on different fighting abilities of players.
Since we would like to avoid asymmetric conflicts, we consider the simplest kind
of memory: in the next repeated game each BR player can only remember the pure
strategy used by her opponent in the preceding game, but cannot recall the payoff
or the outcomes of previous games2 Furthermore, all players have the same fighting
ability (Morrell and Kokko 2003).

In what follows, we first concentrate on the iterated game, and then we are going
to deal with well-mixed population games with repetition.

1 For the “dynamical player” a game-dynamics solution concept is the following: a strategy pair (or a
behavior cycle) is a dynamic solution if it is a locally asymptotically stable rest point with respect to a game
dynamics describing the behavior of the players (Garay et al. 2015).
2 The simplest one step memory excludes the possibility of considering more sophisticated reaction rules
(see, e.g., Ohtsuki and Iwasa 2006; Wolf et al. 2011).
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2 Model and Results

2.1 Iterated Games

Here, we consider best reply (see, e.g., Hofbauer and Sigmund 1998) as a reaction
rule: this is the strategy yielding the most favorable outcome against the opponent’s
move in the preceding game. The present question is whether a best reply player can
invade a monomorphic classical mixed ESS population. Let us consider a symmetric
2 × 2 game (anti-coordination, hawk–dove) with payoff matrix

A =
(
a11 a12
a21 a22

)
=

(
c b

c + a 0

)

(a, b > 0) with the ESS p∗ = ( b
a+b , a

a+b ). The average payoff against p∗ is

W (p∗, p∗) = p∗Ap∗ = (Ap∗)1 = (Ap∗)2 = (c + a)b

a + b
.

Now assume the game is played repeatedly, and consider the strategy for the
repeated game that starts with a uniform random action and then plays in every round
a best reply against the action of the opponent in the previous round. Call this strategy
β. Then the (expected) payoff (per round) for β against p∗ (playing in every round
action i with probability p∗

i , independently of the past) is again

W (β, p∗) = (c + a)b

a + b
.

Remind that, against the mixed ESS, all mutants are neutral in the sense that mutants
receive the same payoff as the ESS strategist does. Since β against p∗ uses (in the long
run) action 1 with probability p∗

2 = a
a+b and action 2 with probability p∗

1 = b
a+b , we

get

W (p∗, β) = cp∗
2 + a p∗

2
2 + bp∗

1
2 = ca

a + b
+ a3 + b3

(a + b)2
.

Finally, β against β either alternate between 11 and 22, or play 12 forever, or 21
forever. Thus

W (β, β) = 2c + a + b

4
. (3)

For c = 0, we have

W (p∗, β) = a3 + b3

(a + b)2
≥ W (β, β) = a + b

4

with strict inequality if a �= b. In this case β cannot invade p∗.
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Now let a < b and c > 0 large. Then

W (p∗, β) < W (β, β).

Indeed, by elementary calculation we obtain that

W (β, β) − W (p∗, β) = [
c − 3

2 (b − a)
] b − a

2(a + b)
,

thus, if a < b and c > 0, thenW (p∗, β) < W (β, β) holds if and only if c > 3
2 (b−a).

In this case

W (p∗, p∗) − W (β, β) = [
c − 1

2 (b − a)
] b − a

2(a + b)
> 0.

For a numerical example, let a = 1, b = 3 and c = 6. We note that if c is allowed to
be negative, then b < a and c < 3

2 (b − a) will also enable β to invade p∗.
Hence, thememoryless ESS p∗ loses against thememory one strategyβ. According

to (1), the mutant best reply phenotype can replace the classical mixed ESS phenotype
p∗, since, independently of the relative frequency ε of the mutant, the average fitness
of p∗ is lower than that of the best reply phenotype β (cf. Cressman et al. 2020).

Remark 2 What will change if a small probability of error is allowed? By error, we
mean that the player fails to use the strategy she is expected to: her strategy specifies to
use pure strategy si but she uses another s j ( j �= i) instead. Itmay have several reasons;
for example, the player intends to use a certain strategy, but, by error, uses another
one, or the BR player may erroneously perceive the strategy used by her opponent in
the preceding round. The source of error is irrelevant: the only requirements are that
(i) the random event of error has to be of sufficiently small probability, and (ii) it has
to be independent of the past and present of the process. Particularly it cannot depend
on the strategy she otherwise would use.

Let β ′ denote the best reply strategy with an error of probability δ, i.e., in every
game, independently, error occurs with the prescribed probability. In our 2×2 example
erroneous best reply means changing to ESS when playing with an ESS player, and
to another cycle when the opponent is another BR player. Indeed, when her oppo-
nent is an ESS player, the BR player virtually uses the mixed strategy q∗ being
just the opposite of the ESS in the sense that the probabilities (or equivalently,
the pure strategies) are interchanged: q∗

1 = p∗
2 and q∗

2 = p∗
1 . Thus, an erroneous

action means that the probabilities are restored: in that anomalous game the per-
turbed BR player actually uses the ESS. The case of BR opponent can be treated
analogously. In the latter case W (β ′, β ′) = W (β, β), because the strategies of the
two best reply opponents remain independent and uniform. By the properties of the
mixed ESS, W (β ′, p∗) = W (p∗, p∗) = W (β, p∗). Finally, in the repeated games
W (p∗, β ′) = (1 − δ)W (p∗, β) + δW (p∗, p∗). This is a little bigger than W (p∗, β),
but still less thanW (β, β) = W (β ′, β ′) if δ is sufficiently small. Thus, the dominance
of the best reply strategy can be preserved.
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Fig. 1 Well-mixed game with repetition. In the figure γ denotes the probability that the given pair repeats
the game being a matrix game with payoff matrix A = (ai j )2×2, where a11 = c, a12 = b, a21 = c + a,
a22 = 0. If γ = 0, then no repetition takes place, that is, pair formation is governed by random mixing.
If γ = 1, then the game is iterated, that is, the pairs repeat the game arbitrarily many times. In this case,
if c > 3

2 (b − a), the best reply (BR) player phenotype replaces the mixed evolutionarily stable strategist
(ESS) phenotype. If the game is repetitive, that is, playing pairs can, but not necessarily have to, repeat the
game, and c >

(
1 + 1

2γ
)
(b − a), then for every γ ∈ (0, 1) the parameters a, b, c of the payoff matrix can

be chosen in such a way that BR players can replace those following a mixed ESS. In order that the cases
of iterated and repeated games can easily be compared we suppose that the players cannot distinguish their
opponents, they only know if the next game will be played with the same opponent, and, in that case, what
strategy was used by the old-new opponent in the preceding round. Thus, if a BR–BR pair splits up, but they
get together again during the well-mixed pair formation process, then both BR players consider the other
one a newcomer. This simplifying condition obviously favors the ESS players, as it decreases the number
of cycles in BR–BR pairs

Observe that in the present case, the best reply player has two-step behavior cycles;
thus, if each pair repeats the interaction with its opponent only once again, then the
advantage of best reply players can already occur. Thus, if the one-shot ESS is a mixed
strategy, it is not necessarily evolutionarily stable in the two-round game. This advan-
tage may even remain in the case where the average number of (random) repetitions
is arbitrarily small as shown in the next section.

Weemphasize that theBRbehavior is one of the simplest action-reaction rules, since
the BR player can only remember the opponent’s pure strategy used in the previous
game, but cannot remember who won, for example. Therefore, phenomena such as
the loser-winner effect leading to some kind of “asymmetry” (like dominance) cannot
emerge in our iterated game (Morrell and Kokko 2003). Consequently, our game is
symmetric, since all players either use the mixed ESS or the BR strategy, and there
are no more differences among them.

2.2 Well-Mixed Games with Repetition: A Particular Case

Aswe have already mentioned in Sect. 1, iterated games have properties very different
from those of one-shot games. Now we are interested in the selection situation where
well-mixing interactions and game repetitions occur in a population at the same time
(see Fig. 1).

Suppose we have a population of size N , where N is a sufficiently large even
number. In the population, pairwise interactions take place; in these interactions a
matrix game is played by the pair (the same game at every instance). For the sake of
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simplicity, we focus on the 2×2 example we dealt with in Sect. 2.1. Time is considered
discrete; that is, the history of the population evolves in separate turns. There are two
phenotypes present in the population. They are characterized by the strategy they use
in the matrix game: phenotype p∗ follows a mixed ESS strategy (which is assumed
to exist), and phenotype β is the best reply player. There are (1 − ε)N and εN of
them, respectively (these numbers are even integers). In every turn, there may be pairs
who randomly stick together for a repeated game. All the other pairs split up, and the
free individuals are to be organized in new pairs for the next round. Pair formation is
supposed to be completely random and independent of the past. The event that a given
pair keeps together is independent of the past and also of other pairs. The probability
of repetition is denoted by γ ∈ (0, 1).

When a pair plays their first game, a best reply player choses her strategy uniformly
at random, but in the subsequent repetitions she applies the pure strategy being a best
reply against the action of the opponent in the previous round. Even if a pair splits,
they can happen to reunite in the next turn. Should it be the case, the best reply player
is supposed to forget the last turn and randomize their strategy as if a new opponent
were met. Note that this possibility is very unlikely for large N ; thus, the effect of this
choice is negligible.

Theorem 1 Let I denote the open interval with endpoints a and a + c, and let Ī be its
closure. Moreover, define

Q = b − a

2[c − (b − a)] .

(a) If b ∈ I , and γ > Q, then the best reply strategy displaces the ESS if N is large
enough.

(b) On the other hand, if b /∈ Ī or b ∈ I but γ < Q, then the ESS displaces the best
reply strategy.

Note that b ∈ I implies Q > 0. With γ = 1, we get back the result of Sect. 2.1. In
the numerical example of Sect. 2.1 as small as γ = 1/3 already ensures the best reply
player’s domination. This only means half a repetition on average.

Proof We will prove that in the limit as N → ∞ the average payoff of a BR player is
greater or less than that of an ESS player, independently of the relative frequency ε of
BR players, according that the conditions in (a) or (b) are satisfied, resp.

Let Zn denote the number of (β, β) pairs in round n. Then, (Zn, n = 1, 2, . . . ) is
a homogeneous Markov chain with state space

S = {
k ≥ 0 : (

ε − 1
2

)
N ≤ k ≤ 1

2εN
}
.

The state space can be obtained in the following way. Clearly, 2k ≤ εN on the one
hand. On the other hand, in addition to these k pairs, there are εN − 2k of BR players
and (1−ε)N of ESS players to be coupled. Then (1−ε)N ≥ εN−2k, or equivalently,(
ε − 1

2

)
N ≤ k is needed, otherwise further (β, β) pairs must be formed.
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It is thus clear that if there are k of (β, β) pairs, then the number of (p∗, β) pairs is
εN − 2k and we also have

( 1
2 − ε

)
N + k pairs of type (p∗, p∗). Since the number of

(β, β) pairs determines the composition of all pairs, and this composition determines
the joint distribution of the number of different pair types in the next round, theMarkov
property of the sequence Zn follows.

Formally, the transition probabilities can be found in Appendix. (These formulas
will not be needed in the sequel.)

ThisMarkov chain is irreducible and aperiodic, because all states communicatewith
each other in a single step: it can happen with positive probability that all pairs split
up and reunite in an arbitrarily prescribed way. Thus, there exists a unique equilibrium
distribution on S; this is the asymptotic distribution of the chain as the number of
turns tends to infinity, irrespectively of the initial distribution. For a Markov chain like
that the strong law of large numbers is valid, the time average of an arbitrary function
f : S → R of the states tends almost surely to the expectation of f in the stationary
regime.

Whenever two players meet, they play a random number of games, which is geo-
metrically distributed with mean 1

1−γ
. Let us denote the average per game payoff of

each participant of a (β, β) type game sequence by W (β, β). Considering a pair of
type (p∗, β), the average per game payoff for phenotypes p∗ and β will be denoted
byW (p∗, β) andW (β, p∗), resp. Finally, letW (p∗, p∗) denote the average per game
payoff of each player of a (β, β) pair during this sequence of repeated games. Then
W (β, p∗) = W (p∗, p∗) because the ESS p∗ is totally mixed, i.e., it assigns positive
probabilities to all pure strategies, as in this case q A p∗ = p∗A p∗ must hold for all
q ∈ �d .

Suppose we are in the stationary regime. Let z be equal to the expectation of the
stationary distribution, divided by N . Let the number of (β, β) pairs be equal to Z ,
then there are εN −2Z pairs of type (p∗, β) and

( 1
2 − ε

)
N + Z pairs of type (p∗, p∗).

Introduce z = 2E(Z)/N . The average payoff for an ESS player is

W (p∗) =: 1

1 − ε

[
(ε − z)W (p∗, β) + (1 − 2ε + z)W (p∗, p∗)

]
. (4)

Furthermore, the average payoff for a best reply player is

W (β) =: 1
ε

[
(ε − z)W (β, p∗) + z W (β, β)

]
. (5)

Let us compute z, at least asymptotically as N → ∞. We remark here that Benaïm
andWeibull (2003) deal with the goodness of deterministic approximations of Marko-
vian stochastic population processes that arise from individual strategy adaptation in
finite but large populations. Their general results support the validity of our large N
approximations. Note, however, that in their paper the term best reply strategy is used
in another sense: not in the context of pairwise interactions, but rather as best reply to
the current population state which is supposed to be observable by the player.

If in a round there are Z pairs of type (β, β), an average number Nzγ /2 of them
will stay together. On the other hand, N (ε − z)(1− γ ) pairs of type (p∗, β) will split
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up on the average. Thus, there will be N (1 − γ ) free individuals seeking a pair in
the next round, with Nε(1 − γ ) of them belonging to phenotype β. Now, the mean
number of (β, β) pairs they form is asymptotically equal to Nε2(1 − γ )/2 for large
N . Being in equilibrium, one obtains the following equation for z:

z = zγ + ε2(1 − γ ),

whence z = ε2. Plugging it back into (4) and (5), we get that the average payoff for
an ESS player is

W (p∗) = 1

1 − ε

[
(ε − ε2)W (p∗, β) + (1 − 2ε + ε2)W (p∗, p∗)

]

= ε W (p∗, β) + (1 − ε)W (p∗, p∗),

while the same for a best reply player is

W (β) = 1

ε

[
(ε − ε2)W (β, p∗) + ε2W (β, β)

] = (1 − ε)W (β, p∗) + ε W (β, β).

Since W (β, p∗) = W (p∗, p∗), we obtain that

W (p∗) < W (β) if and only if W (p∗, β) < W (β, β). (6)

In Sect. 2.1, we have already seen that

W (β, β) = a + b + 2c

4
.

In this case, the average payoff does not vary during the sequence of repeated games.
The case of W (p∗, β) is somewhat different. The payoff for phenotype p∗ in a pair
of type (p∗, β) is

w′(p∗, β) =: ac + bc + a2 + b2

2(a + b)

in the first game, and

w′′(p∗, β) =: ca

a + b
+ a3 + b3

(a + b)2
= ac − ab + a2 + b2

a + b

in further games. Altogether this is
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W (p∗, β) = (1 − γ )

[
w′(p∗, β) + w′′(p∗, β) · γ

1 − γ

]

= (1 − γ ) · ac + bc + a2 + b2

2(a + b)
+ γ · ac − ab + a2 + b2

a + b

= ac + bc + a2 + b2

2(a + b)
+ γ · (b − a)(c + a − b)

a + b

on the average.
Thus, the BR strategy is more fruitful than the ESS if

ac + bc + a2 + b2

2(a + b)
+ γ · (b − a)(c − b + a)

a + b
<

a + b + 2c

4
.

Multiplying this inequality by 4(a + b) and rearranging, we get the condition

2γ (b − a)(c − b + a) > (b − a)2.

If (b − a)(c − b + a) < 0, that is, b /∈ Ī , then the left-hand side is negative while the
right-hand side is positive, thus the opposite inequality holds: the ESS outperforms
the BR strategy. If (b−a)(c−b+a) > 0, that is, b ∈ I , then we can divide both sides
by it, and the condition for the dominance of the BR strategy reads γ > Q. Again,
the opposite inequality implies the dominance of the ESS.

This was obtained by replacing z with ε2, which, in fact, is the limit of z as N → ∞.
If inequality γ > Q (or the opposite inequality) holds, then the limit of W (p∗) is
strictly less than (or greater than) that of W (β), therefore the same inequality must
hold whenever N is sufficiently large. ��

We have performed simulations to illustrate the speed of convergence of empirical
data to the theoretical results in the numerical example of Sect. 2.1. The program codes
were written in R. In Fig. 2, four diagrams illustrate the effect of the parameters γ and
ε on the difference between ESS and BR players the per game average payoff. Two
values of the repetition probability (γ = 0.3 and γ = 0.6) are combined with two
values of the BR density (ε = 0.1 and ε = 0.5). In all four cases the population size
is equal to 1000, and the number of rounds (games) is 20000. The payoff matrix is
A = (

6 3
4 0

)
. The green histogram illustrates the distribution of per game average payoffs

for the ESS players. The red one is the same for BR players. The two histograms are
getting further and further apart as the probability of repetition or the proportion of BR
players grows, implying that the advantage of the best reply strategy is getting more
and more significant. Note that a repetition probability as small as γ = 0.3 already
ensures the best reply player’s dominance. This means less than half repetitions on
average. When γ = 0.6, the expected number of repetitions is γ

1−γ
= 1.5, still rather

small.
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Fig. 2 Simulations. In the diagrams two values of the repetition probability γ are combined with two values
of the density ε of the BR players. In all four cases the population size is equal to 1000, and the number of
rounds is 20000. The payoff matrix is also fixed: a11 = 6, a12 = 3, a21 = 4, a22 = 0. The green (light
gray) histogram illustrates the distribution of per game average payoffs for the ESS players. The red (dark
grey) one is the same for BR players. The two histograms diverge more and more as the probability of
repetition or the proportion of BR players grows, implying that the advantage of the best reply strategy is
getting more and more significant (Color figure online)
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2.3 Well-Mixed Games with Repetition: The General Case

Theorem 1 can easily be generalized to more complex games with larger matrices.
Suppose the matrix game is defined by an d × d nonnegative invertible matrix A and
there exists a totally mixed ESS p∗, i.e., every coordinate of p∗ is positive.

For j = 1, . . . , d let σ( j) be the row of the maximal element in column j (one of
them, if there are more), i.e., max1≤i≤d ai, j = aσ( j), j . In other words, pure strategy
sσ( j) is a/the best reply to pure strategy s j . Let σ 0( j) = j for all j = 1, . . . , d, and
for k = 1, 2, . . . define σ k = σ ◦ σ k−1.

When a BR player is paired with a new partner, in the first game she selects from the
pure strategies uniformly at random, then in every repeated game chooses her strategy
according to the function σ .

Theorem 2 Let e = (1, . . . , 1) ∈ R
n. Suppose

(1 − γ ) · 1
d

p∗A e + γ

d∑

i=1

d∑

j=1

p∗
i p

∗
j ai,σ ( j) <

1

d2

∞∑

k=0

γ k(1 − γ )

d∑

i=1

d∑

j=1

aσ k (i),σ k ( j) (7)

holds. Then, the best reply strategy displaces the ESS if N is large enough. On the
other hand, if in (7) the opposite (strict) inequality is valid, then the ESS displaces the
best reply strategy for every sufficiently large N.

Proof The proof of Theorem 1 up to the formula (6) does not utilize the particular
form of the payoff matrix A, hence (6) remains true in the present case. What we only
need is to compute W (p∗, β) and W (β, β).

When an ESS player is paired with a BR player, in the first game the latter chooses
her action uniformly at random; therefore, the average payoff of the ESS player is
1
d p

∗A e. In every subsequent round, if the ESS player chooses strategy si and in the
preceding round she chose s j , then her opponent plays sσ( j) and thus her payoff is
ai,σ ( j). This occurs with probability p∗

i p
∗
j . Hence, the average payoff per game is

d∑

i=1

d∑

j=1

p∗
i p

∗
j ai,σ ( j),

and the expected number of such games is γ /(1 − γ ). Thus, the left-hand side of (7)
is just the per game average payoff of the ESS player.

When two BR players form a pair, in the first game they choose their strategies
independently and uniformly at random. Suppose they choose si and s j . Then, in the
k + 1-st game they play sσ k (i) and sσ k ( j), resp., if k is even, and sσ k ( j), sσ k (i) if k is
odd. Thus, each receives an average payoff of

1

d2

d∑

i=1

d∑

j=1

aσ k (i),σ k ( j),
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provided they are still together in the k + 1-st game. This happens with probability
γ k . The multiplier 1 − γ appearing in the right-hand side of (7) performs averaging
per game. ��

Condition (7) is not so convenient to check in general. However, in the follow-
ing special case it becomes very simple. Remember that the ESS p∗ is supposed
to be totally mixed. In this case thus the row sums of A−1 are all positive and
p∗ = (e A−1e)−1A−1e.

Corollary 3 Suppose that

(i) σ is a permutation of {1, 2, . . . , d}.
(ii) e Ae > d2(p∗A q∗), where q∗

σ(i) = p∗
i , 1 ≤ i ≤ d.

(iii) γ >
d−1 p∗A e − d−2eA e

d−1 p∗A e − p∗A q∗ = d p∗A e − eA e

d p∗A e − d2 p∗A q∗ .

Then, the BR strategy eventually replaces the ESS if N is large enough.

Proof Since p∗ is a totally mixed ESS, d−1 p∗A e > d−2e A e must hold. Combining
this with condition (ii) we can see that the fraction in the right-hand side of (iii) has
positive numerator and denominator.

By the definition of q∗,

d∑

i=1

d∑

j=1

p∗
i p

∗
j ai,σ ( j) =

d∑

i=1

d∑

j=1

p∗
i q

∗
j ai, j = p∗A q∗.

Moreover, σ k is a permutation for every k = 0, 1, . . . , hence

d∑

i=1

d∑

j=1

aσ k (i),σ k ( j) =
d∑

i=1

d∑

j=1

ai, j = e A e.

Thus condition (iii) is equivalent to (7). ��
Note that the right-hand side of (iii) is less than 1 by condition (ii), hence conditions

(i)–(ii) always make it possible for the best reply player to outperform the ESS in a
finite mean random number of repetitions.

2.4 Modification of the Best Reply Strategy

Finally, the following question also arises: If in the game considered above the inter-
action is well mixed, can the best reply player invade a monomorphic classical mixed
ESS population? Clearly, when each best reply player has a randomly chosen new
opponent from round to round, then the deterministic behavior cycle of a pair of best
reply players does not occur, and the ESS strategy remains better than the uniform
random strategy used by the best reply players.
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Let us modify the best reply behavior in such a way that the best reply player’s next
strategy always depends on the strategy her random opponent used in the previous
round, even if her opponent has changed. Let us denote this modified strategy (and the
corresponding phenotype) by β ′′. This time we suppose that the pair formation is well
mixed: all pairs split up and the players reunite in a completely random way. In the
very beginning the modified BR players choose their strategies uniformly at random.
Like we did in Sect. 2.3, let us fix σ(i) again for every pure strategy si ∈ S in such a
way that sσ(i) is a best reply to si . The modified BR player uses strategy sσ(i) if si was
the strategy her partner used in the previous game. The modified BR strategy β ′′ is
better than the ESS if the per game and player average of the payoff of β ′′ strategists
exceeds that of the ESS players in the long run. In that case the modified BR strategy
can replace the ESS.

Theorem 4 In a sufficiently large population, the modified best reply strategy cannot
displace the (totally) mixed ESS.

Proof In course of the consecutivewell-mixed rounds, each best reply player’s strategy
series is a random sequence of not necessarily independent pure strategies. Since each
well-mixed round determines the next strategy distribution of the best reply players,
we can introduce a discrete time Markov chain to describe the strategy distribution of
the subpopulation of best reply players.

For a formal definition let H denote the set of indices of pure strategies si that are
best replies to certain pure strategies, and for i ∈ H let τi be any pure strategy against
which si is optimal. (They do not need to be all different.) Let N denote the size of
the population; we suppose that N is a sufficiently large even number. The states of
the discrete time stochastic process κ2, κ3, . . . are |H | dimensional vectors (ki )i∈H
with nonnegative integer coordinates summing up to εN , the number of modified best
reply players. Formally, the state space is

K =
{
k ∈ N

H : ∑
i∈H ki = εN

}
,

and κn is the random vector taking its values from K whose i-th coordinate is the
number of best reply players playing strategy si , i ∈ H in the n-th round. (n > 1 is
needed because in the first round best reply players still not necessarily use best reply
strategies.) We will show that this process is a homogeneous Markov chain.

Let μ2, μ3, . . . be another stochastic process with the d dimensional state space

M =
{
m ∈ N

d : ∑d
i=1 mi = (1 − ε)N

}
,

defined as follows. Let the i-th coordinate ofμn be the number of ESS players playing
strategy si , 1 ≤ i ≤ d in the n-th round. Then, μ1, μ2, . . . are identically distributed
according to the d-variate multinomial distribution with parameters (1 − ε)N and
p∗. Moreover, μn is independent of κ2, μ2, . . . , κn−1, μn−1, κn . The pair (κn, μn)

determines the strategy frequencies in the n-th round. It is clear that the process
(κn, μn), n = 2, 3, . . . , is a Markov chain.
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Wewill use the following elementary fact. Let C1,C2, . . . be a partition of random
events, which is independent of the event B. Then, by the law of total probability

P(A | B) =
∑

i

P(A | B ∩ Ci )P(Ci | B) =
∑

i

P(A | B ∩ Ci )P(Ci ).

By using this formula twice, we get

P(κn = kn | κn−1 = kn−1, . . . , κ2 = k2)

=
∑

m∈M
P(κn = kn | κn−1 = kn−1, . . . , κ2 = k2, μn−1 = m)P(μn−1 = m)

=
∑

m∈M
P(κn = kn | κn−1 = kn−1, μn−1 = m)P(μn−1 = m)

= P(κn = kn | κn−1 = kn−1),

as needed.
Now the question is whether this Markov process is irreducible or not. In our case

when ESS players use well-mixed strategies (that put positive weight on each possible
pure strategy), and the interaction is well mixed (that is, each pairing of individuals
for interaction is equally possible), this Markov process is irreducible and aperiodic,
provided ε ≤ 1/2. Indeed, the transition probability between every pair of states is
positive, because it can happen with positive probability that each best reply player
interacts with an ESS player, and these opponents follow strategy τi (i ∈ H) just
in as many occasions as needed for getting to the object state.3 Thus there exists
a unique stationary distribution; let us denote it by {πk,k ∈ K}. This is also the
asymptotic distribution of the Markov chain as the number of turns tends to infinity.
{πk} is a probability measure on the state space; |H |-variate, for the state space itself
is |H |-dimensional. If the number of turns tends to infinity, the average number of best
reply players following strategy i ∈ H is asymptotically

∑
k∈K kiπk. In the long run,

the vector of average proportions of pure strategies followed by best reply players is
just the expectation of the stationary distribution, divided by the number εN of such
players. Denote this vector by q∗ ∈ �|H |, thus q∗

i is the average proportion of best
reply players playing strategy si . That is,

q∗
i =

∑
k∈K kiπk∑
k∈K ki

= 1

εN

∑

k∈K
kiπk.

This is a probability distribution on H , because

∑

i∈H
q∗
i = 1

εN

∑

i∈H

∑

k∈K
kiπk = 1

εN

∑

k∈K
πk

∑

i∈H
ki =

∑

k∈K
πk = 1.

3 If the ESS is not well mixed though the interaction is well mixed, the above proof of irreducibility breaks
down. What can be said in that case is an open problem.
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Let us extend q∗ to the set of all pure strategies by setting q∗
i = 0 for i /∈ H .

The existence of this stationary strategy distribution gives an easy way to cal-
culate the average payoff of phenotypes; thus, we have W (p∗, p∗) = p∗A p∗,
W (p∗, β ′′) = p∗A q∗, W (β ′′, p∗) = q∗A p∗ and W (β ′′, β ′′) = q∗A q∗. Hence
(2) can be applied, consequently the mixed ESS p∗ remains stable. Note that in the
long run, the distribution of pure strategies followed by each individual β ′′ player is
also equal to q∗. ��

3 Discussion and Conclusions

In summary, strictly following the intuitive definition of evolutionary stability (1) by
Maynard Smith and Price (1973), we found the following results.

Firstly, we gave an example where the classical mixed ESS p∗ defined by (2) is
not evolutionary stable in the framework of iterated 2 × 2 matrix games. The novelty
of the present paper is that here the mixed ESS can be replaced by a BR player. The
mixed ESS is a Nash equilibrium which, when playing with a best reply opponent,
receives a larger payoff in every round than another best reply player. Nonetheless, we
have shown that best reply players can achieve a larger average payoff than players
following the ESS. This is possible because best reply players in pairs, individually
following their own strategies, develop cycles where the bigger payoff can compensate
their disadvantage compared with the ESS players. This phenomenon is independent
of the proportions of types in the population; that is, not affected by the frequencies
of different pair types. It can even occur when the mean number of repetitions is
arbitrarily small and it can also tolerate a small chance of mistake.

Secondly, based on the above observation, we also showed that in the well-mixed
population game with repetition the classical mixed ESS loses its overall evolutionary
stability. In more details, if there is but a small probability that two players repeat the
matrix game, then, depending on the payoff matrix, it can occur that the BR player
outperforms the classical mixed ESS.

Mixed or reactive strategy? Maynard Smith wrote in his book (1982): “Animals do
not have roulette wheels in their hands”, and he offered genetic and developmental
mechanisms, which can give rise to variable behavior. 4 We note that individual-based
simulations called the attention to the fact that if the behavioral strategies are either
implemented by a 1 : 1 genotype–phenotype mapping or by a simple neural net-
work, the evolutionary outcomes are different, largely depending on the behavioral
and genetic architecture (van den Berg and Weissing 2015). Moreover, it seems that
humans can generate random numbers that are uniformly distributed, independent of
one another and unpredictable (Persaud 2005). However, a number of studies have
shown that people often deviate slightly from the prediction of the classical game the-
ory (see Barraclough et al. 2004; Wright and Leyton-Brown 2010, and the references
therein). On the other hand, as we have mentioned in Sect. 1, when the individuals are
supposed to live in a small group, the iterated prisoner’s dilemma game is often used

4 There are some papers where a controversy arose if a mixed strategy can be an ESS. Maynard Smith
(1988) and Vickery (1987) were involved in the discussion. See also (Schaffer 1988).
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in evolutionary biology, where the evolutionary success of reactive strategies (like “tit
for tat” ) over the pure defector is investigated. Moreover, since real populations are
finite, the possibility of game repetition cannot be neglected, thus considering reactive
players seems reasonable against mixed ESS. The basic intuition behind both research
lines (pure or mixed ESS) rests upon the fact that in evolutionary game theory there is
no biological reason to consider only nonreactive mixed strategy users as phenotypes.
Finally, the overwhelming majority of biologists agree that living things can respond
to stimuli, thus considering reactive players is biologically reasonable.

Although our paper strictly belongs to evolutionary game theory, we would like to
call the attention to possible connections with classical game theory. The evolutionary
success of BR is based on the assumption that the games are iterated and well mixed
with repetition. In the iterated noncooperative games, the following question is quite
important (Camerer and Ho 1999): “Which models describe human behavior best?”
One possibility is the best-response (Camerer and Ho 1999), and the other one is the
learning (Camerer et al. 2003), and both models are based on the belief about what
others will do in the future based on past observation. Furthermore, the BR is not only
a possible human behavior, but it also give a method to answer another basic question
(Camerer and Ho 1999): “How does an equilibrium arise in a noncooperative game?”
The BR also help to reach the equilibrium (Ho et al. 1998). Although we only pointed
out that the mixed ESS can easily lose its stability against the reactive player, we hope
our result may be of interest to game theorists in the field of mathematical economics.

Based on Sects. 2.1 and 2.2, it seems that evolutionary stability of a mixed strategy
occurs when the interactions are well mixed in a large enough population (see also
Bendor and Swistak 1995; Boyd and Lorberbaum 1987; Farrell andWare 1989; Garay
and Varga 2011; García and van Veelen 2016). There are essentially two ways of
weakening this condition. In the first way, the interaction between the same phenotype
is more likely. Observe that here the repetition of a game is not a must. For instance, if
the probability of interaction between the same phenotype is small (e.g., game between
relatives Hines and Maynard Smith 1979), then the classical ESS changes but a little.
In other words, for a small change the mixed ESS is structurally stable. However, we
note that if the clonal interaction rate is high enough, then that phenotype will win
in the natural selection which maximizes the average fitness of its clone (Garay and
Varga 2011).

In the second way, the players can repeat the game with a certain probability. Our
main result is that in this way the classical mixed ESS loses its overall evolutionary
stability, since even a small change can make the BR player able to outperform it. This
is only true if the payoff matrix is not fixed: in a fixed game thewinning probabilities of
repetition are bounded away from zero, but for an arbitrarily small positive probability
of repetition one can find payoff matrices so that the classical mixed ESS loses its
advantage. This may be called weak structural instability.
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Appendix A

In this Appendix, we provide the transition probabilities of theMarkov chain (Zn). Let
�i (m) = (m

i

)
(1− γ )iγm−i ; the i-th term of the binomial distribution with parameters

m and 1 − γ . This is the probability that exactly i out of m pairs would split up. Let
κ(m) denote the number of all possible arrangements of 2m players into m pairs, i.e.,
κ(m) = (2m)!

2mm! . Finally, let λm(u, v) be the probability that, randomly arranging u red
and v white balls (u + v is even) in pairs, exactly m pairs of (red, red) type are formed
(m ≤ u

2 ). Then

λm(u, v) =
(

u

u − 2m

)(
v

u − 2m

)
(u − 2m)!κ(m)κ( v−u

2 + m)

κ( u+v
2 )

.

Let λm(u, v) = 0 if m < 0 or m > u
2 .

Suppose we have N1 = k pairs of (β, β) type, N2 = εN − 2k pairs of (p∗, β)

type and N3 = ( 1
2 − ε

)
N + k pairs of (p∗, p∗) type. They split up and rearrange at

random. Let i , j , and  denote the number of splitting pairs, respectively. Then,

P (Zn = m | Zn−1 = k) =
N1∑

i=0

N2∑

j=0

N3∑

=0

�i (N1)� j (N2)�(N3)λm−k+i (2i + j, 2 + j).
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