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Abstract
Patients with chronic kidney disease (CKD) are at higher risk for severe coronavirus disease 2019 (COVID-19). Such patients 
are more likely to develop “COVID-19-induced acute kidney injury (AKI)”, which exacerbates the pre-existing CKD and 
increases the mortality rate of the patients. COVID-19-induced AKI is pathologically characterized by acute tubular necrosis 
and the interstitial infiltration of proinflammatory leukocytes. In our rat model with advanced CKD, immunohistochemistry 
for angiotensin-converting enzyme 2 (ACE2) and transmembrane protease serine 2 (TMPRSS2) demonstrated their strong 
expression in the cytoplasm of damaged proximal tubular cells and the infiltrating leukocytes within the cortical interstitium, 
which overlapped with the lesions of COVID-19-induced AKI. Since ACE2 and TMPRSS2 are enzymes that facilitate the 
viral entry into the cells and trigger the onset of cytokine storm, the renal distribution of these proteins in advanced CKD 
was thought to be responsible for the development of COVID-19-induced AKI. Concerning such mechanisms, the pharma-
cological blockade of ACE2 or the use of soluble forms of the ACE2 protein may halt the entry of severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) into host cells. This would protect against the COVID-19-induced exacerbation of 
pre-existing CKD by preventing the development of AKI.

Keywords COVID-19-induced acute kidney injury (AKI) · Chronic kidney disease (CKD) · Angiotensin-converting 
enzyme 2 (ACE2) · Transmembrane protease serine 2 (TMPRSS2)

Coronavirus disease 2019 (COVID-19), caused by severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 
is still continuing to spread around the world [1]. Currently, 
due to the predominance of the highly transmissible omi-
cron variant, the number of COVID-19 patients is increas-
ing explosively [2]. However, the omicron variant causes 
no symptoms or only relatively milder symptoms than con-
ventional strains, such as sore throat, fever and runny nose, 
which are almost indistinguishable from those of common 
colds. Nevertheless, elderly people or those who have not 
yet been vaccinated are prone to develop severe COVID-19, 
featured by fatal pneumonia with acute respiratory distress 
syndrome (ARDS) and multiple organ dysfunction due to 
generalized thrombotic microangiopathy [3, 4]. Despite the 
recent development of novel anti-viral drugs for COVID-19 
[5], the booster vaccination for the virus is currently the 

most effective approach to reduce the severity of the dis-
ease [6], especially for those with risk factors for developing 
severe illness.

In addition to underlying health conditions, such as obe-
sity, heavy smoking and pregnancy, patients complicated 
with chronic diseases, such as cancer, diabetes, hyperten-
sion, cardiovascular diseases and respiratory diseases, are 
at higher risk of developing severe illness from COVID-
19 [3, 7]. In addition, recent clinical studies revealed that 
chronic kidney disease (CKD) is also one of the risk fac-
tors for severe COVID-19 [8, 9]. This is because patients 
with CKD, which progresses relentlessly to end-stage renal 
disease (ESRD), already have a weakened immune system 
and multiple comorbid conditions, such as diabetes, hyper-
tension and cardiovascular diseases [10]. These underlying 
medical conditions facilitate the invasion of SARS-CoV-2 
into the body and the subsequent onset of cytokine storm, 
eventually causing multiple organ dysfunction in severe 
COVID-19 [11].

When SARS-CoV-2 enters into host cells, its 
spike protein binds to the host cell surface receptor, 
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angiotensin-converting enzyme 2 (ACE2), which is a trans-
membrane protein predominantly expressed in the heart, 
lungs and kidneys [12]. Then, one of the transmembrane 
proteases of the host cells, transmembrane protease serine 
2 (TMPRSS2), activates and facilitates the entry of the 
virus by cleaving its spike proteins. Once entering the cells, 
SARS-CoV-2 stimulates the production of pro-inflamma-
tory cytokines from immune cells and triggers the onset of 
a cytokine storm [11]. In patients with chronic respiratory 
diseases or animal models of cardiovascular diseases, the 
expression of these proteins was increased in the pathologi-
cal lesions of damaged organs, which were clinically cor-
related with the development of severe COVID-19 [13, 14]. 
On the other hand, SARS-CoV-2 infection actually altered 
the expression or distribution of these proteins in the heart 
or aerodigestive tracts, which overlapped with the lesions of 
COVID-19-induced organ injury [15, 16].

Using human samples or those from animal models of 
CKD, previous studies examined the renal expression ACE2 
in some pathological conditions [17–19]. However, the 
results have been controversial depending on the species of 
experimental animals or the affected areas of the kidneys. 
A rat model with 5/6 nephrectomy followed by a 4–8-week 
recovery period was originally developed as a model of 
progressive glomerulosclerosis [20–22]. Later, we further 
revealed in our basic studies that the kidneys from rats that 
underwent 5/6 nephrectomy were additionally characterized 
by diffuse renal fibrosis after as long as a 14-week recov-
ery period [23], and the progression of fibrosis was deeply 
associated with the over-proliferation of proinflammatory 
leukocytes [24]. In the present study, using these rats as 

the model of advanced CKD, we examined the histopatho-
logical features of the kidneys and the protein expression 
of ACE2 and TMPRSS2 at 9- or 14-week recovery period 
following 5/6 nephrectomy (Fig. 1). With the progression 
of CKD, proximal tubular cells became flattened as a result 
of tubular atrophy (Fig. 1Ab and c vs. a). In advanced CKD 
kidneys, there were numerous infiltrating leukocytes and 
diffuse fibrosis within the cortical interstitium (Fig. 1Ac). 
In sham-operated control kidneys, consistent with previous 
findings [25, 26], immunohistochemistry for both ACE2 
(1:50; Santa Cruz Biotechnology, Inc., Dallas, TX, U.S.A.) 
and TMPRSS2 (1:50; Santa Cruz Biotechnology, Inc.) dem-
onstrate positive expression in the brush border or apical 
membrane of proximal tubules (Fig. 1Ba and Ca). Then, 
with the progression of CKD, the expressions of both pro-
teins were gradually redistributed into the cytoplasm of dam-
aged proximal tubular cells (Fig. 1Bb and Cb). In advanced 
CKD, the expressions of these proteins were additionally 
observed in the infiltrating leukocytes within the cortical 
interstitium (Fig. 1Bc and Cc).

Patients with severe COVID-19 are frequently compli-
cated with acute kidney injury (AKI), which is recognized 
as “COVID-19-induced (or COVID-19-associated) AKI” 
[27, 28]. It is caused by the direct invasion of the virus, 
renal hypoxia due to secondary hypoperfusion and, mainly, 
by generalized thrombotic microangiopathy as a result of 
the cytokine storm with hyper-inflammation. Therefore, the 
pathological features of COVID-19-induced AKI are typi-
cally characterized by acute tubular necrosis in the proximal 
tubules and the infiltration of proinflammatory leukocytes 
within the interstitium [27, 28] (Fig. 2). Among individuals 

Fig. 1  Histological features 
of rat kidneys with advanced 
chronic kidney disease 
(CKD) and the expression 
of angiotensin-converting 
enzyme 2 (ACE2) and trans-
membrane protease serine 2 
(TMPRSS2). A Hematoxylin 
and eosin (H&E) staining in 
control (sham-operated; a) and 
advanced CKD rat kidneys at 
9 weeks (b) and 14 weeks (c) 
after 5/6 nephrectomy. B Immu-
nohistochemistry for ACE2 
(brown) in control (sham-
operated; a) and advanced CKD 
rat kidneys at 9 weeks (b) and 
14 weeks (c) after 5/6 nephrec-
tomy. C Immunohistochemis-
try for TMPRSS2 (brown) in 
control (sham-operated; a) and 
advanced CKD rat kidneys at 
9 weeks (b) and 14 weeks (c) 
after 5/6 nephrectomy. Magnifi-
cation, X20 (color figure online)
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infected with SARS-COV-2, those with pre-existing CKD 
are more likely to develop COVID-19-induced AKI than 
those without CKD [29] (Fig. 2). COVID-19-induced AKI 
further deteriorates the pre-existing CKD and increases the 
mortality rate of these patients [10, 30]. From our results, 
the distribution of ACE2 and TMPRSS2 in advanced CKD 
kidneys almost completely overlapped with the lesions 
of COVID-19-induced AKI (Fig.  1). Since ACE2 and 
TMPRSS2 are enzymes that facilitate the viral entry into 
the cells and trigger the onset of a cytokine storm [12], the 
renal distribution of these proteins in advanced CKD was 
thought to be responsible for the development of COVID-
19-induced AKI (Fig. 2).

To reduce the risk of mortality in CKD patients, the 
development of AKI must be prevented [8]. Concerning 
the proposed mechanisms of COVID-19-induced AKI in 
patients with CKD (Fig. 2), targeting ACE2 would be the 
most useful approach. In such patients, in addition to the 
pharmacological blockade of ACE2 (angiotensin-converting 
enzyme inhibitors; ACE inhibitors or angiotensin receptor 
1 blockers; ARBs), the use of soluble forms of the ACE2 
protein may halt the entry of SARS-CoV-2 into host cells 
[31, 32]. This would protect against the COVID-19-induced 
exacerbation of pre-existing CKD by preventing the develop-
ment of AKI (Fig. 2). In addition, suppressing the cytokine 
storm may also be useful, since this would ameliorate the 
progression of generalized thrombotic microangiopathy that 

causes AKI [27, 29]. In our series of patch-clamp studies, 
we have revealed the inhibitory properties of nonsteroidal 
anti-inflammatory drugs (NSAIDs), anti-hypertensive drugs, 
anti-cholesterol drugs and anti-allergic drugs on lympho-
cytes Kv1.3-channels [33–35]. Taking such pharmacological 
properties into account, these commonly used medications 
may also be beneficial in the prevention of COVID-19-in-
duced AKI, because the channel inhibition decreases the 
cytokine production and thus suppresses the onset of the 
cytokine storm [4].
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