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ABSTRACT: Sulfonamides have played a defining role in the
history of drug development and continue to be prevalent today. In
particular, primary sulfonamides are common in marketed drugs.
Here we describe the direct synthesis of these valuable compounds
from organometallic reagents and a novel sulfinylamine reagent, t-
BuONSO. A variety of (hetero)aryl and alkyl Grignard and
organolithium reagents perform well in the reaction, providing
primary sulfonamides in good to excellent yields in a convenient
one-step process.

Nature has largely ignored sulfonamides when designing
natural products;1 however, humans have taken

advantage of their high stability, favorable physicochemical
properties, and three-dimensional shape, in a rich variety of
medicines since the advent of modern antibiotics. Among
these, primary sulfonamides have featured prominently. The
first sulfonamide drug, the antibacterial Prontosil,2 contains an
aryl-SO2NH2 unit (Figure 1). They have also found use in

treatments for epilepsy (Acetazolamide),3 high blood pressure
(Hydrochlorothiazide),4 arthritis (Celecoxib),5 and glaucoma
(Methazolamide).6 They remain popular to this day;
sulfonamides are present as active pharmaceutical ingredients
(APIs) in 16 out of 200 (8%) of the best-selling small molecule
drugs of 2018.7

Primary sulfonamides have also found numerous applica-
tions in synthetic chemistry. Most commonly, they can be
alkylated, acylated, or arylated to produce other sulfonamides.8

Notably, they are often the precursors to sulfonylureas,
commonly used in diabetes medication9 and as herbicides,10

by coupling with isocyanates. Their combination with
hypervalent iodine reagents enables relatively mild access to
sulfonyl nitrene-type species. These intermediates have been
exploited for the synthesis of amine derivatives by C−H
insertion and aziridination, along with many other applica-
tions.11 An NHC-catalyzed deamination of primary sulfona-
mides to sulfinates has recently been developed by chemists at
Merck, allowing them to act as precursors to sulfones, sulfonic
acids, and other sulfonamides,12 as well as enabling isotopic
labeling.13 The Cornella laboratory has recently reported
methods for the conversion of primary sulfonamides to the
corresponding sulfonyl chlorides and fluorides by activation
with pyrylium salts.14 There are also examples of their use as
directing groups15 for C−H functionalization.16 In the past few
years, some notable functionalizations which expand the utility
of primary sulfonamides have also appeared. These include
Knowles’ proton-coupled electron transfer process to generate
sulfonamidyl radicals under mild photoredox conditions, which
can then add in an anti-Markovnikov fashion to alkenes,17

Stradiotto’s nickel-catalyzed cross-coupling of sulfonamides
with (hetero)aryl chlorides,18 and MacMillan’s Ir/Ni photo-
catalytic coupling of sulfonamides with (hetero)aryl halides.19

A two-step nickel-catalyzed enantioselective reductive sulfona-
midation of ketones20 and the first reported application of
sulfonamides in the Petasis reaction21 were also recently
disclosed.
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Figure 1. Primary sulfonamide-containing drugs.
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The classical synthesis of primary sulfonamides involves the
reaction of activated sulfonyl electrophiles, usually sulfonyl
chlorides, with ammonia, or an ammonia surrogate with a
subsequent deprotection step (Scheme 1a). Although this

reaction is still widely used where the appropriate sulfonyl
chloride is easily available, it has some notable drawbacks.
Sulfonyl chlorides are moisture-sensitive and are not always
available due to limitations in both functional group tolerance
and available substitution patterns inherent in their synthesis
via harshly acidic and oxidizing chlorosulfonation conditions.22

Furthermore, the handling of gaseous ammonia can be
challenging, while the use of solid or liquid ammonia
surrogates necessarily leads to losses in atom and step
economy. For these reasons, the development of alternative
methods for sulfonamide synthesis in general, and primary
sulfonamide synthesis in particular, has received much
attention in recent years.
Two recent papers have redefined the state of the art of

sulfonamide synthesis. A copper-catalyzed direct synthesis of
sulfonamides23 from the SO2 surrogate DABSO,24 boronic
acids, and amines by our laboratory showed broad scope and
functional group tolerance, but failed when ammonia was used.
An elegant electrochemical synthesis of sulfonamides using
thiols and amines from the Noel̈ group25 did succeed in using
ammonia (Scheme 1b). However, only one example was
shown on a simple aryl scaffold, and electrochemistry has not
yet been widely adopted in academic synthetic chemistry
laboratories. The use of thiols as starting materials can also be
problematic due to their malodorous nature and tendency to
oxidize in air to form disulfides. Primary sulfonamides may also
be prepared from sulfinate salts by reaction with an
electrophilic nitrogen source such as O-mesitylenesulfonyl-
hydroxylamine (MSH) or hydroxylamine-O-sulfonic acid

(HOSA, Scheme 1c).26 This strategy is limited by the
explosive risk of such reagents.27 Sulfinate salts can also
undergo halogenation followed by the addition of an ammonia
source.28 The low commercial availability of sulfinate salts is an
issue, although new methods have further expanded access to
these compounds, including by C−H activation (via
thianthrenium salts and Pd catalysis)29 and using inexpensive
nickel catalysts with DABSO and boronic acids.30 Useful
oxidative syntheses of primary sulfonamides from thiols have
also been developed,31 notably including a recent paper by Bull
using iodobenzene diacetate and ammonium carbonate as an
ammonia equivalent (Scheme 1d).32 Disadvantages of these
methods include the use of thiols and lack of tolerance of some
functional groups such as amines and thioethers to strong
oxidants. Considering all these factors, a bespoke approach to
primary sulfonamides starting from widely available alkyl and
aryl halides would likely be welcomed by the synthetic
community; the work reported in this Letter describes such an
approach (Scheme 1e).
Our group has pioneered the use of sulfinylamine33 reagents

(R(O)−NSO) for the preparation of synthetically and
medicinally valuable high oxidation state sulfur compounds.
Using organometallic nucleophiles generally derived from alkyl
and aryl bromides, such as Grignard and organolithium
reagents, we have designed one-pot syntheses of sulfonimida-
mides,34 sulfilimines (precursors to sulfondiimines),35 and
sulfoximines.36 During our investigation into the synthesis of
sulfoximines we developed a new class of sulfinylamines, N-
sulfinyl-O-arylhydroxylamines, containing a cleavable N−O
bond. When reacted with organometallic reagents at −78 °C,
these compounds form highly electrophilic sulfinyl nitrenes;37

these reactive intermediates could then be reacted with a
second carbon nucleophile, or amine, to give sulfoximines or
sulfonimidamides, respectively. Our initial intention at the
outset of this project was to develop a variant of this reaction
which could be performed at noncryogenic temperatures. We
therefore set out to design a reagent with a stronger N−O
bond, reasoning that this would raise the barrier to N−O
cleavage. We decided that replacing the aryl group on oxygen
with an electron-releasing tert-butyl group would be optimal.
The synthesis of this reagent, N-sulfinyl-O-(tert-butyl)-
hydroxylamine (t-BuONSO, 1), was conveniently achieved in
one step using commercially available O-tert-butylhydroxyl-
amine hydrochloride, thionyl chloride, and triethylamine, with
a simple distillation (under reduced pressure) delivering the
pure reagent 1 (Scheme 2a). The reaction was scalable and
could be performed on 200 mmol scale to afford 15 g of t-
BuONSO, as a stable, colorless nonviscous liquid.38

When we reacted t-BuONSO 1 with the commercially
available Grignard reagent 4-fluorophenylmagnesium bromide
and morpholine, in sequence at −78 °C, our standard reaction
conditions for the preparation of sulfonimidamides using our
original BiPhONSO reagent, we were frustrated to observe
only 10% of the sulfonimidamide product in the crude reaction
mixture (Scheme 2b). Similar reactions using two organo-
metallic reagents as nucleophiles did not result in appreciable
sulfoximine formation. Curiously, precipitation of a white solid
was observed in both reactions when deuterated chloroform
was added to the crude sample after aqueous workup. The
solid did, however, dissolve in deuterated acetone, and we were
surprised to find the 1H NMR spectra matched that of the
primary sulfonamide 2a. Indeed, when the reaction was
performed without the addition of a second nucleophile,

Scheme 1. Common Methods to Prepare Primary
Sulfonamides: (a) Reaction of Sulfonyl Chlorides with
Ammonia or Ammonia Surrogates; (b) Noel̈’s
Electrochemical Approach; (c) Reaction of Sulfinates with
NH2

+ Sources; (d) Chemical Oxidation−Amination of
Thiols; (e) Our Alkyl/Aryl Halide Based Approach
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product 2a was isolated in 80% yield. In the event, changing
the structure of the sulfinylamine reagent did not result in
different conditions for our previous reaction, but instead
enabled a new, unusual primary sulfonamide synthesis.
Increases in temperature and equivalents of Grignard reagent
resulted in lower yields, confirming −78 °C and 1 equiv of the
organometallic reagent as optimal (Scheme 2c). Importantly,
the reactions could also be performed on preparative scale. For
example, a reaction using 1 mmol of t-BuONSO delivered
sulfonamide 2a in 71% yield (862 mg). A reaction using 1.098
g of t-BuONSO (8.0 mmol) provided sulfonamide 2a in 62%
yield.
We were curious to see if this new reaction would prove

general. Varying the aryl organometallic nucleophile confirmed
that para-, meta-, and ortho-methyl substituents were all
tolerated, with a minor drop in yield for the bulky o-
tolylmagnesium bromide (2d) (Scheme 3). Using aryl
nucleophiles with electron-donating and -withdrawing aryl
groups delivered primary sulfonamides in high yields. A basic,
and oxidatively sensitive tertiary amine could also be
incorporated in excellent yield (2j). Turning to more
medicinally relevant basic nitrogen heterocycles, we were
pleased to find that 2- and 3-pyridyl sulfonamides, as well as a
fused imidazopyridine, could all be prepared in synthetically
useful yields (2k−2n). Five-membered heterocycles were also
amenable to the reaction, with organometallic nucleophiles
containing 2-thienyl, 2-benzofuranyl, and even the highly base-
sensitive 4-isoxazolyl39 moiety all giving the desired primary
sulfonamides (2o−2q). Alkyl organomagnesiums proved to be
competent nucleophiles; steric factors did not affect the
reaction significantly, with phenethyl, benzyl, isopropyl, and

tert-butyl Grignard reagents all delivering product in moderate
to good yields (2r−2u). Cyclopropylmagnesium bromide gave
a higher yield of 72% (2v), and allylmagnesium bromide
delivered the potentially sensitive sulfonamide 2w in 50% yield.
The final two examples demonstrate that medicinally relevant
structures can be readily prepared, with substituted tetrahydro-
isoquinoline 2x, a motif exploited by UCB in their dopamine
receptor program,40 and celecoxib (2y), both obtained in
workable yields.
Preliminary mechanistic investigations have provided some

insight into the mechanism of this unusual transformation, and
our working model is shown in Scheme 4. Addition of the
Grignard reagent to t-BuONSO 1 gives sulfinamide
intermediate I, which then converts into sulfonimidate ester
anion II, either via a sulfinyl nitrene intermediate36 or from a
concerted N → S O-migration.41 An intramolecular proton
transfer to the nitrogen atom proceeds to eliminate isobutene
and give sulfonamide anion III, which is quenched upon
workup to give the final sulfonamide product 2a. This proposal
is supported by the lack of 18O incorporation when the
reaction was quenched using 18O-labeled water at either −78
°C or room temperature, and by the observation of 1H NMR
signals corresponding to isobutene in an aliquot of the crude
reaction mixture (see Supporting Information for details).

Scheme 2. Synthesis of t-BuONSO, 1, and Initial Reaction
with Amine Leading to Reaction Discovery and
Optimization

aYield determined by 19F NMR spectroscopy. 0.3 mmol of t-
BuONSO. bIsolated yields.

Scheme 3. Scope of the Direct Primary Sulfonamide
Synthesis

aCommercial solution of Grignard reagent used. bOrganolithium
reagent formed from aryl bromide and n-butyllithium. cTurbo
Grignard reagent formed by coupling of aryl halide and i-
PrMgCl.LiCl. dOrganolithium reagent formed by deprotonation
with n-butyllithium.
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These preliminary experiments are consistent with both
oxygen atoms of the sulfonamide originating from the t-
BuONSO reagent.
In summary, the development of the novel sulfinylamine

reagent t-BuONSO 1 has led to a new synthesis of primary
sulfonamides. Simply combining t-BuONSO with (hetero)aryl
or alkyl organometallic nucleophiles such as Grignard reagents
or oganolithiums gives rapid and convenient access to a broad
range of medicinally relevant primary sulfonamides. We believe
this method will find use as a straightforward way to install
polarity and dramatically alter the physicochemical properties
of molecules, starting from common alkyl and aryl halides.
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