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Abstract: The development of non-noble metal hydrogen evolution catalysts that can replace Pt
is crucial for efficient hydrogen production. Herein, we develop a type of well-dispersed Ni2P
on N-doped nanomesh carbon (NC) electrocatalyst by a facile pyrolysis method, which shows
excellent hydrogen evolution reaction (HER) catalytic performance. It is rather remarkable that the
overpotential of Ni2P/NC prepared under optimal proportion is 108 mV at 10 mA·cm−2 current
density in 1 M KOH solution with the tafel slope of 67.3 mV·dec−1, the catalytic activity has no
significant attenuation after 1000 cycles of cyclic voltammetry (CV)method. The hydrogen evolution
performance of the electrocatalytic is better than most similar catalysts in alkaline media. The unique
mesh structure of the carbon component in the catalyst facilitates the exposure of the active site and
reduces the impedance, which improves the efficiency of electron transport as well as ensuring the
stability of the hydrogen evolution reaction. In addition, we prove that nitrogen doping and pore
structure are also important factors affecting catalytic activity by control experiments. Our results
show that N-doped nanomesh carbon, as an efficient support, combined with Ni2P nanoparticles is
of great significance for the development of efficient hydrogen evolution electrodes.
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1. Introduction

For the past several years, great changes have taken place in the environment due to the burning
of fossil fuels. As alternatives to fossil fuels, many new environment-friendly energy sources have
been developed, such as water energy, wind energy, hydrogen energy, and so on [1]. Hydrogen energy,
as a kind of energy with high energy density and no pollution, has attracted extensive attention [2–4].
It mainly comes from the following sources: coal gasification, natural gas reformation, organisms and
electrolysis of water. Among them, hydrogen production by water electrolysis has the advantages of
abundant raw materials, high purity and no emissions of polluting gas. Moreover, electrolysis of water
to produce hydrogen is regarded as an effective way to solve the current environmental pollution and
energy crises [5,6]. Electrolysis of water without catalyst needs to overcome a large energy barrier.
In order to reduce the energy consumption in the hydrogen evolution reaction (HER) process and
accelerate the rate of HER, platinum and other noble metal catalysts with low overpotential and Tafel
slope have been developed [7–9]. However, the scarcity and high cost of precious metal based catalysts
limit their commercial use. Therefore, the development of high-efficiency non-noble metal catalytic
electrodes for hydrogen evolution is of great significance.
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Transition metal compounds, such as carbides [10,11], sulfides [12], and phosphides [13,14],
are important catalysts for the HER. Among them Ni2P has proton-acceptor and hydride-acceptor,
combining the high thermostability of extended surfaces and the high catalytic activity of the
hydrogenase. In addition, the P sites provide moderate bonding to the HER intermediates, thus
enhancing the rate of the reaction [15].

In recent years, Ni2P with different structures has been widely studied and applied in hydrogen
evolution reactions, for example, MOF-derived Ni2P [16], Ni2P nanosheets [17], self-supported
Ni2P [18], which have been proven to show high hydrogen evolution catalytic activity. However,
there is still a gap between Ni2P and noble metal catalysts. Researchers have made many attempts to
improve the catalytic activity of Ni2P. It is widely known that the conductivity and specific surface
area of materials are important factors to promote electrocatalytic efficiency. However, some catalysts
developed at present have the disadvantages of poor conductivity and high impedance, so improving
the conductivity of materials is still a problem to be solved. Consequently, some carbon materials
become ideal supports for electrocatalytic reactions due to their high conductivity and specific surface
area [3,19–22]. Moreover, the addition of certain carbon materials can protect the catalytic activity center
and improve the catalytic stability [23–27]. Many researchers combine carbon materials with nickel
phosphide for hydrogen evolution reactions, and these composites show excellent catalytic properties,
stability, and electrical conductivity, such as Ni2P/NRGO (N-doped reduced graphene oxide) [28] and
Ni2P/CNS (carbon nanosheets) [29]. It is of great research value to develop a high-efficiency carbon
material as a support for HER.

The porous carbon materials that are synthesized by chemical vapor deposition (CVD) method
using MgO-templated can be used for hydrogenation of nitroarenes [30], aerobic oxidative coupling of
amines [31], and lithium-ion batteries [32] with high performance, due to their high specific surface
area and abundant active sites. In addition, this type of carbon material can also be used as an
efficient support with Pd/PdO nanoparticles attached for methanol oxidation [33]. However, composite
materials produced by this method have never been used in catalysis of hydrogen evolution reactions.
Herein, the N-doped nanomesh carbon with well-dispersed Ni2P (Ni2P/NC) is developed for the first
time by a facile pyrolysis method with cost-effective NiCl2·6H2O and NaH2PO2 [34]. Different N-doped
nanomesh carbon (NC) content, as a vital variable, is used to adjust the morphology of the material.
Furthermore, we have made intensive studies of linear sweep voltammetry, electrochemical impedance
spectroscopy, cyclic-voltammetry, and so on. The appropriate content of this N-doped material as the
substrate can significantly reduce the hydrogen evolution overpotential of nickel phosphite and reduce
the impedance in the reaction process, which is high-efficiency due to its huge specific surface area,
abundant active sites and excellent electrical conductivity.

2. Materials and Methods

2.1. Materials

All reagents were used as received.
Ethanol (Sinopharm Chemical Reagent Beijing Co., Ltd., Beijing, China), Sodium Hypophosphite

(NaH2PO2, 99%, Innochem Technology Co., Ltd., Beijing, China), Nickel chloride hexahydrate
(NiCl2·6H2O, 99.9%, Sigma-Aldrich, Shanghai, China), Potassium hydroxide (KOH, Sinopharm
Chemical Reagent Beijing Co., Ltd., Beijing, China), Light magnesium oxide (MgO, Sinopharm
Chemical Reagent Beijing Co., Ltd., Beijing, China), 1,10-Phenanthroline (C12H8N2, J&K Scientific,
Beijing, China), Nafion solution (Sigma-Aldrich, Shanghai, China), Triphenylmethane, (C19H16, J&K
Scientific, Beijing, China), 20 wt % Pt on Vulcan XC-72R (Johnson Matthey Corporation, Beijing, China).

2.2. Synthesis of NC

The MgO template was first synthesized according to a standard method [31]. Then 3 g 1, 10
-phenanthroline was dissolved in 100 mL ethanol and continuously stirred at room temperature and
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pressure for 30 min. Subsequently, 5 g template MgO was added into the solution and stirred overnight.
After the solvent was removed by rotary evaporation, the mixture was annealed in Ar atmosphere and
kept at 750 ◦C for 2 h with a 10 ◦C/min heating rate. Finally, the black powder was washed with 1 M
diluted hydrochloric acid and then with deionized water several times until pH = 7.

2.3. Synthesis of Bulk Ni2P

First, 1 mmol NiCl2·6H2O and 1.5 mmol NaH2PO2 were dissolved in 25 mL deionized water, the
mixture stirred for 4 h and dried under 90 ◦C for 12 h. The mixture was annealed in Ar atmosphere
and kept at 300 ◦C for 30 min with a 5 ◦C/min heating rate. Finally, the powder was washed with
deionized water and ethanol several times and dried under 120 ◦C for 3 h [31,34].

2.4. Synthesis of Ni2P/NC

First, 1 mmol NiCl2·6H2O and 1.5 mmol NaH2PO2 were dissolved in 25 mL deionized water.
Then NC in different amounts (20 mg, 40 mg, 60 mg, 80 mg) were added, and the mixture was stirred
for 4 h. Then the mixture was put in an ultrasonic bath for 60 min and freeze-dried for 18 h. The
mixture was annealed in Ar atmosphere and kept at 300 ◦C for 30 min with a 5 ◦C/min heating rate.
Finally, the powder was washed with deionized water and ethanol several times, and dried under
120 ◦C for 6 h. We define the names of materials according to the amount of NC added, which are
Ni2P/NC-20, Ni2P/NC-40, Ni2P/NC-60 and Ni2P/NC-80, respectively. For comparison, Ni2P/C-60 and
Ni2P/NG-60 catalysts were prepared by using triphenylmethane and NG [35] as carbon sources in the
same way.

2.5. Characterizations

The obtained products are characterized by scanning electron microscopy (SEM, Gemini 300, ZEISS,
Oberkochen, Germany), transmission electron microscopy (HRTEM, Tecnai G2 F20, FEI, Hillsboro, OR,
USA) combined with an energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD, Bruker D8
Advance, and the data is collected on a Shimadzu XD-3A diffractometer using Cu Ka radiation, Bruker,
Karlsruhe, Germany), X-ray photoelectron spectroscopy (XPS, Thermo Fisher K-Alpha American with
an Al K X-ray source, Thermo Scientific, Waltham, MA, USA), and Raman spectroscopy (532 nm laser,
Jobin Yvon T6400, Horiba Scientific, Kyoto, Japan).

2.6. Electrochemical Measurements

All electrochemical performance tests are performed in a classical glass cell (100 mL, Shanghai
Yueci Electronic Technology Co., LTD, Shanghai, China) using the electrochemical workstation CHI
760E (Shanghai Chenhua Instrument Co., LTD, Shanghai, China). The device is composed of a
standard three-electrode system: A glassy carbon electrode (diameter D = 3 mm) for the working
electrode; a graphite column electrode for the counter electrode; and a Hg/HgO electrode for the
reference electrode. The catalyst ink is prepared by dispersing 5 mg of catalyst into 1 mL of the mixed
solvent containing water, ethanol, and Nafion solution with a volumetric ratio of 650:300:50. For the
preparation of the catalytic electrodes, 5 µL of the catalyst ink is loaded onto a glassy carbon electrode.
The GC electrodes are naturally dried at room temperature. All tests are performed in a 1 M KOH (pH
= 14) solution. Before the test, we use high purity N2 to remove dissolved oxygen. The temperature of
the testing process is 25 ◦C. The conversion formula of the potential between the reference electrode
and the working electrode is RHE = E (Hg/HgO) + 0.098 V + 0.059 pH [36]. All the HER results
are IR-corrected.

3. Results and Discussion

The preparation process of Ni2P/NC is shown in Scheme 1. The NC is synthesized by typical
MgO-templated chemical deposition (CVD) with phenanthroline as the nitrogen source and the carbon



Nanomaterials 2019, 9, 1022 4 of 12

source. Then we add the nickel source and the phosphorus source, and the mixture is annealed in Ar
atmosphere. Ni2P/NC is finally obtained after washing and drying.
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Scheme 1. Illustration of the synthesis of Ni2P/NC.

Firstly, NC is successfully synthesized by magnesium oxide template, its mesh structure is
observed by SEM (Figure S1). Ni2P/NC-60 maintains a relatively complete lamellar appearance
(Figure 1). It can be seen from Figure 1 that when the appropriate amount of NC is added, the load of
Ni2P particles can be placed inside without damaging the original morphology of NC. Figures S1–S5
show the SEM images of a series of products. It is obvious that Ni2P is blocky when NC is not added.
With the increase of NC addition, the morphology of the catalyst changed regularly, and the existing
state of Ni2P on NC changed accordingly. Meanwhile, we use triphenylmethane and NG obtained by
a typical hydrothermal method as the carbon source to prepare Ni2P/C and Ni2P/NG, for which the
SEM images are shown in Figure S6a,b. It is obvious that the results showed that Ni2P particles are
evenly distributed on the surface of C and NG.
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Figure 1. SEM images (a,b) of Ni2P/NC-60.

The morphology and structure of Ni2P/NC-60 samples are further observed by high resolution
transmission electron microscopy (HRTEM), as shown in Figure 2a. It can be seen that the addition of
NC can disperse the Ni2P particles evenly, as there is no obvious aggregation of Ni2P particles. It is
observed that the spacing between the lattice fringes is 0.22 nm, corresponding to the (111) crystal
surface of Ni2P [37]. The energy dispersive X-ray (EDX) elemental mapping images (Figure 2b–g)
further demonstrate that C, N, P and Ni elements are evenly distributed in the entire NC layer.
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Figure 2. High resolution transmission electron microscopy (HRTEM) image (a) and energy dispersive
X-ray spectroscopy (EDS) elemental mapping images (b–g) of Ni2P/NC-60.

In order to characterize the crystal structure, X-ray diffraction (XRD) tests are carried out on the
materials (Figure 3a). The main diffraction peaks at 40.8◦, 44.6◦, 47.3◦, 54.2◦ are matching well with
the standard card of Ni2P (PDF 03-0953). It has been proven that Ni2P crystals can be successfully
synthesized under experimental conditions [38]. In addition, a broad peak at 23.6◦ is also observed,
which proves the formation of NC [31]. The intensity of Ni2P diffraction peaks in the figure decreases
with the gradual increase of NC content, showing an obvious change trend. We speculate that the
lower diffraction peaks are due to the small size and low content of Ni2P particles [34].

Nanomaterials 2019, 9, x FOR PEER REVIEW 6 of 14 

 

 
Figure 2. High resolution transmission electron microscopy (HRTEM) image (a) and energy 
dispersive X-ray spectroscopy (EDS) elemental mapping images (b–g) of Ni2P/NC-60. 

In order to characterize the crystal structure, X-ray diffraction (XRD) tests are 
carried out on the materials (Figure 3a). The main diffraction peaks at 40.8°, 44.6°, 
47.3°, 54.2° are matching well with the standard card of Ni2P (PDF 03-0953). It has 
been proven that Ni2P crystals can be successfully synthesized under experimental 
conditions [38]. In addition, a broad peak at 23.6° is also observed, which proves the 
formation of NC [31]. The intensity of Ni2P diffraction peaks in the figure decreases 
with the gradual increase of NC content, showing an obvious change trend. We 
speculate that the lower diffraction peaks are due to the small size and low content 
of Ni2P particles [34]. 

 
Figure 3. XRD patterns (a) and Raman spectra (b) of different components of materials. 

In addition, Raman spectroscopy (Figure 3b) is used to characterize the samples. 
There are two very distinctive D and G bands at about 1300 and 1600 cm−1, 
respectively. The D band arises from structural defects in the graphitic plane, 
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In addition, Raman spectroscopy (Figure 3b) is used to characterize the samples. There are two
very distinctive D and G bands at about 1300 and 1600 cm−1, respectively. The D band arises from
structural defects in the graphitic plane, whereas the G band is related to the E2g vibrational mode of
the sp2-bonded graphitic carbons [39]. The strength ratio ID/IG of the D peak and the G peak indicates
the defect degree of the material, the ratio of the Ni2P/NC material is all around 1.00, proving that
the prepared material has abundant defect sites to provide sufficient reaction sites [40]. In addition,
the weak and broad peaks at around 2700 cm−1 can be attributed to the combination of 2D band
and D + G band of the NC [41]. Pure Ni2P has no obvious Raman peak, which is consistent with
the results reported previously [42,43], which presumably has something to do with its particular
molecular symmetry.
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N2 adsorption-desorption measurement is used to further study the surface physical structures.
The Brunauer-Emmett-Teller (BET) specific surface area (SSA) of pure Ni2P is 2.4 m2

·g−1, indicating
that the particle accumulation is relatively dense and there is almost no pore structure in the material.
However, the BET SSA of the NC is 1340 m2

·g−1 (Figure S7a,b). This result proves that the NC has
large specific surface area and a porous structure, which is conducive to uniform dispersion of Ni2P
particles. Besides, the BET SSA of the Ni2P/NC-60 is 633.5 m2

·g−1, indicating that Ni2P is dispersed in
the NC and occupies some of the pore structure [44]. The average pore radius is about 3 nm (Figure
S8c), confirming the nanoporous structure of the Ni2P/NC [45].

In order to characterize the chemical state of the catalyst surface, X-ray photoelectron spectroscopy
(XPS) measurements were carried out, the results for which are shown in Figure 4a–d. Figure S8
revealed the presence of the elements C, N, P, Ni and O, which further indicates the formation of
Ni2P/NC-60.
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By using a Gaussian fitting method, the C 1s spectrum (Figure 4a) shows three peaks at 284.6,
285.8 and 287.5, which can correspond to graphite-like sp2C, N-sp2C and N-sp3C of the NC [46,47].
As for the N 1s spectra (Figure 4b), they are decomposed with four peaks. The binding energy at
398.9 eV, 400.2 eV, 401.1, 402.9 can be consistent with pyridinic N, pyrrolic N, graphitic N and oxidized
N in the catalyst [28,48]. The peak centered at 853.3 eV accompanied by a satellite peak at 859.0 eV
corresponds to Ni 2p 3/2, and the peak at 871.3 eV together with a satellite peak at 877.1 eV is in line
with Ni 2p 1/2 (Figure 4c), which are in good consistence with the characteristic peaks of Ni signals
in Ni2P [17,28,49]. Besides, the binding energy of P 2p at 129.40 eV in Figure 4d is typical of metal-P
bonds (i.e., Ni2P) [38]. The binding energy at 133.10 eV can be attributed to the phosphorus with a
higher oxide state of phosphate at the surface [49–51]. In addition, XPS results also reveal that the
mass ratio of Ni2P is about 21% in Ni2P/NC-60 (Table S1).

Furthermore, we used linear sweep voltammetry (LSV) to test the hydrogen evolution performance
of the composite in 1 M KOH solution [14,36,40]. Figure 5a shows the polarization curves of Pt/C, Ni2P,
Ni2P/NC-20, Ni2P/NC-40, Ni2P/NC-60, Ni2P/NC-80 and NC in 1 M KOH solution. Obviously, the
commercial Pt/C (20 wt %) catalyst shows superior catalytic activity, as the initial potential of hydrogen
evolution only needs to reach 20 mV. The catalytic activity of pure Ni2P has poor performance, the
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overpotential is 210 mV at the current density of 10 mA·cm−2, which is basically consistent with
the previously reported measurement values [52]. With the addition of NC, the catalytic activity
first increased and then decreased. Under the current density of 10 mA·cm−2, the overpotential of
Ni2P/NC-20, Ni2P/NC-40 and Ni2P/NC-60 are 180 mV, 137 mV and 108 mV, respectively. Thus, we
can see that Ni2P/NC-60 has the best catalytic activity among them. The catalytic performance of the
material is better than that of most of the previously reported Ni2P combined with carbon substrates
catalysts for hydrogen evolution reaction (Table S2). Due to the different electronegativity of C and N,
nitrogen doping can change the electronic state of carbon material structure, providing a resistance-free
way for electrons to pass quickly through the layers of carbon material [48,53]. NC and Ni2P particles
form a synergistic effect, which is conducive to accelerating the catalytic reaction kinetics of the HER on
its surface. However, when the additive of NC reaches 80 mg, the catalytic activity begins to deteriorate;
the overpotential is 143 mV at the current density of 10 mA·cm−2 due to the reduced amounts of
Ni2P. For comparison, we also conducted a series of control experiments. The overpotential of pure
NC at 10 mA·cm−2 current density is 260 mV, proving that NC is a kind of material with excellent
catalytic performance. As mentioned above, we have prepared Ni2P/C and Ni2P/NG. At the current
density of 10 mA·cm−2, the catalytic performance of both samples is poorer than that of Ni2P/NC-60
(Figure S9). It indicates that N element doping is an important factor affecting catalytic activity, and
the unique porous nanomesh structure is conducive to full contact between materials and solutions,
thus effectively promoting the kinetics of the hydrogen evolution reaction.Nanomaterials 2019, 9, x FOR PEER REVIEW 9 of 14 
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of Pt/C, Ni2P, Ni2P/NC-20, Ni2P/NC-40, Ni2P/NC-60, Ni2P/NC-80 and NC electrodes in 1 M KOH
solution. (b) Tafel plots of Pt/C, Ni2P, Ni2P/NC-20, Ni2P/NC-40, Ni2P/NC-60, Ni2P/NC-80 and NC.
(c) Nyquist plots of the Ni2P, Ni2P/NC-20, Ni2P/NC-40, Ni2P/NC-60, Ni2P/NC-80 and NC electrodes
in 1 M KOH with a fitted equivalent circuit (inset). (d) LSV curves of Ni2P/NC-60 before and after
1000 cycles, the inset is the time dependence of current density curve at the potential of −105 mV vs.
RHE in 1 M KOH.
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Tafel slope is also an important parameter to study the catalytic properties of the hydrogen evolution
reaction. According to electrode kinetics, the relation between hydrogen evolution overpotential and
reaction current density is proposed by the Tafel formula [54]:

η = a + b log |j|, (1)

Figure 5b shows the Tafel slopes measured and calculated by Pt/C (20 wt %), Ni2P, Ni2P/NC-20,
Ni2P/NC-40, Ni2P/NC-60, Ni2P/NC-80 and NC under the same condition of tests, they are 36 mV·dec−1,
120.5 mV·dec−1, 99.3 mV·dec−1, 67.3 mV·dec−1, 85.7 mV·dec−1 and 168.9 mV·dec−1, respectively.
Ni2P/NC-60 has the lowest slope of Tafel curve except Pt/C, proving that Ni2P/NC-60 has higher catalytic
activity and higher reaction rate, which corresponds to the Volmer-Heyrovsky mechanism [55–57].

Meanwhile, electrochemical impedance spectroscopy (EIS) is considered as an important tool for
studying electrode kinetics in catalytic processes (Figure 5c) [58]. The illustration in Figure 5c shows
a fitted simplified equivalent circuit diagram, in which Rct represents the alternating impedance of
the electrolyte interface. With the increase of NC content, the semicircle radius presented a gradually
decreasing trend, indicating that the addition of NC could lead to higher electron transfer rate and
faster catalytic kinetics of the catalyst [59].

Stability is another important criterion for evaluating the catalytic performance of electrodes [60].
Figure 5d is the LSV scanning diagram of Ni2P/NC-60 before and after the cyclic-voltammetric (CV)
measurement with 1000 cycles in 1 M KOH solution. As can be seen from the figure, after 1000
cycles the overpotential of Ni2P/NC-60 at the current density of 10 mA·cm−2 increases by only 3 mV,
indicating that Ni2P/NC-60 electrode has excellent electrochemical stability in the process of the
hydrogen evolution reaction in alkaline solution. The illustration is the time dependence of the
current density curve at constant potential. After 24 h of testing, the current density does not decrease
significantly. The results show that the activity of the catalyst is stable under the constant voltage
test [60].

In order to study the catalytic activity of Ni2P/NC-60 in the alkaline solution of the HER, we
carried out CV scanning tests of pure Ni2P (Figure S10) and Ni2P/NC-60 (Figure 6a) at different
scanning rates [14]. As shown in the figures, each curve presents a regular rectangle without obvious
Faraday reaction. The result of electrochemical double layer capacitance (Cdl) is shown in Figure 6b.
On the basis of the calculation, the Cdl value of Ni2P/NC-60 is 19.81 mF·cm−2, while that of pure Ni2P
is 1.97 mF·cm−2. The large ECSA value indicates that Ni2P/NC-60 has a large electrochemical active
surface area, which is another reason for the high catalytic activity [14,42].
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4. Conclusions

In conclusion, a series of novel Ni2P/NC catalysts were successfully designed and prepared
by a facile pyrolysis method. Electrochemical tests show that by adding NC, hydrogen evolution
overpotential, Tafel slope and AC impedance can be significantly reduced, the stability of the catalyst can
be improved, the surface area of electrochemical activity can be increased. Among them, Ni2P/NC-60
has the most excellent hydrogen evolution performance, which is attributed to the fact that the addition
of NC changes the original blocky morphology of the catalyst, prevents the aggregation of Ni2P
particles, and exposes more active sites. In addition, the comparison experiment also proved that the
porous structure of carbon material and the doping of N element are also important factors to improve
its catalytic activity. Therefore, this work provides an effective method to prepare similar carbon-based
non-noble metal hydrogen evolution catalysts.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/9/7/1022/s1,
Figure S1: SEM image of NC, Figure S2: SEM image of Ni2P, Figure S3: SEM image of Ni2P/NC-20, Figure S4:
SEM image of Ni2P/NC-40, Figure S5: SEM image of Ni2P/NC-80, Figure S6: SEM images of (a) Ni2P/NG and
(b) Ni2P/C, Figure S7: (a) Nitrogen sorption isotherms. (b) SSA. (c) Pore diameters distributions, Figure S8: XPS
spectra of Ni2P/NC-60, Figure S9: LSV of Ni2P/NC-60, Ni2P/NG and Ni2P/C in 1 M KOH, Figure S10: CV scanning
of Ni2P in 1 M KOH at 50–500 mV s−1, Table S1: XPS Elemental analysis of Ni2P/NC-60, Table S2: Comparison of
catalytic performance of different HER electrocatalysts in 1 M KOH.
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