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Background: In the interrupted time series (ITS) approach, it is common to average the 
outcome of interest at each time point and then perform a segmented regression (SR) 
analysis. In this study, we illustrate that such ‘aggregate-level’ analysis is biased when 
data are missing at random (MAR) and provide alternative analysis methods.
Methods: Using electronic health records from the UK, we evaluated weight change over 
time induced by the initiation of antipsychotic treatment. We contrasted estimates from 
aggregate-level SR analysis against estimates from mixed models with and without multiple 
imputation of missing covariates, using individual-level data. Then, we conducted 
a simulation study for insight about the different results in a controlled environment.
Results: Aggregate-level SR analysis suggested a substantial weight gain after initiation of 
treatment (average short-term weight change: 0.799kg/week) compared to mixed models 
(0.412kg/week). Simulation studies confirmed that aggregate-level SR analysis was biased 
when data were MAR. In simulations, mixed models gave less biased estimates than SR 
analysis and, in combination with multilevel multiple imputation, provided unbiased esti-
mates. Mixed models with multiple imputation can be used with other types of ITS outcomes 
(eg, proportions). Other standard methods applied in ITS do not help to correct this bias 
problem.
Conclusion: Aggregate-level SR analysis can bias the ITS estimates when individual-level 
data are MAR, because taking averages of individual-level data before SR means that data at 
the cluster level are missing not at random. Avoiding the averaging-step and using mixed 
models with or without multilevel multiple imputation of covariates is recommended.
Keywords: interrupted time series analysis, segmented regression, missing data, multiple 
imputation, mixed effects models, electronic health records, big data

Introduction
Interrupted time series (ITS) is a widely used quasi-experimental approach that 
evaluates the potential impact of an intervention over time, using longitudinal 
observational data.1 It has frequently been used to evaluate intervention effects in 
longitudinal population studies; for example, to evaluate the impact of policies 
and social interventions on clusters, such as districts, cities and countries.2,3 

While ITS comes from social science literature, it is becoming more widespread 
in health research.4,5 ITS may be used to address causal questions that are not 
feasible for a randomised controlled trial, but with stronger assumptions.6 The 
methodology for the analysis of ITS studies is well developed,1,7,8 and typically 
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uses segmented regression (SR) analysis.4,5 Given a time 
point, for example the initiation of treatment, we may 
observe a change in the values of a variable before and 
after that time point, and then compare the trajectories of 
change at the intervention. The pre-treatment trajectory 
is regarded as the control ‘period’ and the post-treatment 
trajectory as the intervention ‘period’, so that each indi-
vidual acts as their own control. The difference between 
mean trajectories at the intervention time is then used to 
estimate the effect of the intervention.1

In SR analysis, when individual-level data are avail-
able, a typical approach is to average the data at each of 
the predefined time points/units (eg, months or years) and 
then model the time series over these time points.5,9–11 In 
other words, all outcome variable measurements available 
from individuals are averaged at each time point, and then 
these averages are used as population-level data for per-
forming the SR analysis. This approach is reasonable if the 
same people provide data at each time point, but in obser-
vational data this is rarely the case. For example, in clin-
ical practice, younger women are more likely than younger 
men to have weight recorded when they consult their 
family physician (general practitioner).12 In other words, 
the distribution of missing data in weight depends on the 
individual’s sex, so weight is missing at random (MAR) 
given sex. The same will apply to other partially observed 
outcomes that are MAR. With such data, the average 
points will be biased – and so will the intercept of the 
trajectories estimated by SR models – because they will 
include more measurements from women than men, and 
women will typically weigh less than men. Moreover, if 
the proportion of women and men with observed weight 
varies at each time point, the slope of the trajectories can 
also be biased.

Figure 1 presents a scenario where weight is constant 
over time for all individuals (half men, half women; men 
weigh 85kg, and women weigh 55kg, resulting in an over-
all average of 70kg). In this scenario, all individuals have 
a weight measurement at treatment initiation (t=0), but at 
different time points before and after treatment initiation 
the relative proportion of women and men with a weight 
record varies due to missing data. The average observed 
weight at each time point becomes biased, providing 
a false impression of weight change over time. Thus, the 
‘aggregate-level’ SR analysis performed with averages 
calculated at pre-defined time points can produce biased 
estimates due to missing data.

An alternative approach to the ‘aggregate-level’ SR ana-
lysis is to use mixed models, which are based on individual- 
level data, avoiding the averaging-step described above. 
Formally, these mixed models are also segmented models, 
but they include random intercept and slopes (random 
effects) that cannot be included by the ‘aggregate-level’ SR 
models due to the averaging-step. Mixed models estimate 
identical linear trajectories to ‘aggregate-level’ SR models 
under perfect balance (when all individuals are included at 
each time point). However, in contrast to ‘aggregate-level’ 
SR models, the mixed model approach can provide unbiased 
estimates when data in the outcome variable are MAR.13 

Following the same example as before, a mixed model 
directly uses weight measurements taken at different time 
points from the same individual, and models the population 
trajectory based on all individual trajectories, taking account 
of the longitudinal correlation. Thus, no initial averaging- 
step at each time point is needed. If individuals have missing 
weight records over time, the mixed model approach impli-
citly imputes those missing values, meaning that observa-
tions from all individuals – even those with just one record 
over time – contribute to the analysis.

Despite these advantages, mixed models cannot auto-
matically handle missing data in the covariates, and indi-
viduals with covariates missing are by default omitted 
from regression analyses in all standard software 
packages. One way to address this issue is to use multi-
level multiple imputation (MMI) for missing covariate 
data in conjunction with mixed models. MMI generates 
multiple datasets with missing covariate values replaced 
by imputed values (drawn from the conditional predictive 

Figure 1 Real weight trajectory (circle/solid line) and observed weight trajectory 
(diamond/dash line) following the averaging-step with different proportion of 
women and men observed at each time point in a recreated scenario.
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distribution of the missing data given the observed data). 
Then, MMI fits the substantive model of interest in each 
imputed dataset and, in the final step, combines the model 
estimates into an overall estimate, taking into account 
variation within and between the imputed datasets.14 In 
our setting, the substantive model fitted at the second step 
is a mixed model.

In this study, we demonstrate how standard ITS analy-
sis, based on average estimates at each predefined time 
point, gives biased results when data are MAR. 
Subsequently, we illustrate how the use of mixed models, 
with or without MMI of individual data, avoids this bias.

Our objectives are 1) to examine the potential problems 
arising from the ‘aggregate-level’ SR analysis when out-
come data are missing, evaluating mixed models as an 
alternative approach; 2) to compare the performance of 
mixed models with and without MMI for handling missing 
data on covariates.

The rest of this article is structured as follows. In 
Section 2 we present a motivating example of ITS to 
estimate the effect of initiating antipsychotic drugs (olan-
zapine) on weight gain, showing that the standard 
approach of aggregating the data and then using SR 
gives clinically different results to using mixed models 
(with and without MMI). Section 3 presents a simulation 
study, which demonstrates that this difference is because 
the standard ‘aggregate-level’ approach is biased when 
data are MAR. We conclude in Section 4 by discussing 
the practical and methodological implications of our find-
ings. Stata and R codes for reproducing our results are 
provided in the Appendices. It should be noted that this 
study did not cover ITS modelled on consecutive cross- 
sectional samples (eg, incidence trajectories modelled with 
data from different individuals over time).

Motivating Example: ITS for Effect 
of Antipsychotic Drugs on Weight
In this motivating example, as well as in the later simula-
tion study, we focus on assessing estimators for the regres-
sion coefficients of pre- and post-treatment weight 
trajectories.

Data and First Analysis
We used data from The Health Improvement Network 
(THIN) database, which includes electronic health records 
from ~12 million individuals registered with 711 UK gen-
eral practices.15 In the UK, more than 95% of people are 

registered with a general practice (GP), and THIN is 
roughly representative of the general population.16 THIN 
data include demographics (eg, sex, age, social depriva-
tion) and clinical records (eg, drug treatments, diagnoses, 
health outcomes). In this study, we only included data 
from general practices that met quality criteria for compu-
ter usage17 and whose reported mortality rate is consistent 
with national statistics.18

We performed an ITS analysis to investigate the long- 
term effects of the initiation of antipsychotic drug treat-
ment on people’s body weight. It is known that specific 
antipsychotic treatments are likely to increase body weight 
substantially over a relatively short period,19 but we have 
less information on potential long-term effects.20 In this 
study, the exposure of interest was the initiation of olan-
zapine (a second-generation antipsychotic), and the out-
come was body weight (in kilograms). We modelled the 
development of weight over time using linear splines with 
two knots. In other words, our model estimated how 
weight changed in three time periods: 1) pre-treatment: 
from 4 years before treatment initiation up to treatment 
initiation; 2) short-term: from treatment initiation to 6 
weeks (short-term), and 3) long term: from 6 weeks to 4 
years post-treatment. We adjusted for sex, age at initiation 
(in years) and smoking at initiation of treatment (smoker 
vs non-smoker). We included individuals who were aged 
between 18 and 99 years, with data available between 1st 
January 2005 and 31st December 2015, and who initiated 
their first olanzapine treatment within this period. All had 
a diagnosed psychotic disorder before treatment initiation 
and at least one further prescription of olanzapine within 
three months following the first prescription. We included 
this criterion as there may some individuals who received 
just one prescription, but never used the medication. 
However, if they had at least two prescriptions it seems 
more likely that they initiated treatment. We excluded 
individuals who initiated other antipsychotics than olanza-
pine, as well as those with no available data for 12 months 
before the treatment initiation.

In addition to the inclusion and exclusion criteria given 
above, we restricted our data to those with complete data 
on sex, age and smoking at treatment initiation. As these 
are observational data, weight measurements did not fol-
low any fixed schedule. For example, if we look for 
a weight measurement every two weeks for every indivi-
dual, we will find that >90% of weight measurements are 
missing. In other words, the weight has been irregularly 
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recorded over the observation period (416 weeks), as it is 
expected for most electronic health records.

Centring each patient’s follow-up time (in weeks) at 
their treatment initiation, we fitted the following mixed 
model to these data [Equation 1]:

weightij ¼ β0 þ u0j þ β1 þ u1j
� �

timeij

� 1 timeij<0
� �

þ β2 þ u2j
� �

timeij

� 0 � timeij � 6
� �

þ β3 þ u3j
� �

timeij

� timeij>6
� �

þ 2ij 

u0j
u1j
u2j
u3j

0

B
@

1

C
A,N

0
0
0
0

; �

0

B
@

1

C
A; εij,N 0; σ2� �

;

where i denotes the follow-up time and j denotes the 
patient, and 1[] is an indicator for the event in square 
brackets. We then fitted the same model adjusting for 
sex, age and smoking at treatment initiation (as fixed 
effects). These mixed intercept and slope models were 
fitted by Restricted Maximum Likelihood, and hereafter 
we call them just mixed-effects models (MEM).

We also fitted an ‘aggregate-level’ SR model by aver-
aging available weight records at each time point (across- 
individuals average), and then fitting the standard 
regression version of [Equation 1] – ie, omitting the per-
son-specific random effects-. Because this model is fitted 
to data aggregated over individuals, no adjustment for sex, 
age or smoking was possible.

Finally, we fitted a similar model, but now weighting 
by the inverse of the number of bodyweight values 
observed at each time point. We called this model the 
‘aggregate-level’ SR-W1, which may help to improve 
standard errors by including a more accurate sample size 
information at each time-point.

These models were used to examine the issues arising 
from the ‘aggregate-level’ SR analysis when outcome 
(weight measurements) data are missing, which was part 
of our first study objective.

Imposed Missing Data and Second 
Analysis
For our second objective, we wanted to explore the issues 
arising from covariate data missing at treatment initiation. 
Therefore, we intentionally set smoking records MAR on 
sex, and increased the amount of missing data on weight 
MAR on sex, to explore later the potential differences 
between estimates from complete case analysis (removing 
cases with smoking missing) and MMI (preserving those 

cases and imputing smoking). This controlled missing data 
generation scenario was used evaluate all analysis meth-
ods: ‘aggregate-level’ SR, ‘aggregate-level’ SR-W1, 
MEM, and MMI followed by a mixed-effects model (MI- 
JOMO with MEM).

In detail, we set weight values MAR dependent on sex 
and time from treatment initiation, so that a fraction of 
observed data was similar to that shown in Figure 1. In 
addition, we set smoking MAR on sex, randomly remov-
ing 80% of records from men and 20% from women. Both 
missing mechanisms are described in detail in 
Appendix A.

In our subsequent analyses, we first fitted the same 
MEM [Equation 1] to the incomplete data, adjusting for 
covariates (complete case analysis). Then, we used 
a substantive-model-compatible joint-modelling multilevel 
multiple imputation (MI-JOMO)21 to impute the missing 
smoking values and fitted the same substantive model 
(MEM adjusted) to each imputed data set and combined 
the results using Rubin’s rules. We generated 20 imputed 
datasets with MI-JOMO, and we used a burn-in of 1000 
iterations and then further 1000 iterations between each 
imputation. We name this model MI-JOMO with MEM.

Lastly, we fitted the ‘aggregate-level’ SR and ‘aggre-
gate-level’ SR-W1 models. Full details and codes for all 
models are given in Appendix A.

Results
Overall, there were 6522 individuals with at least one 
weight measurement and complete age, sex or smoking 
status data. Of these, 2954 (45.3%) were men and 3568 
(54.7%) were women. On average, there were 4.8 (sd 5.5) 
weight records per person over the observation period. 
Individuals were aged 50.2 (sd 18.9) years on average, 
and 2658 (40.8%) reported being current smokers.

There were substantial differences between estimates 
derived from MEM and SR (Table 1, section ‘THIN: Data 
Fully Observed’). For example, the short-term weight 
change (beta2) was 0.462kg/week from MEM (adjusted) 
and 0.816kg/week and 0.807kg/week from SR and SR- 
W1, respectively. Likewise, pre-treatment and long-term 
periods, weight change rates from SR and SR-W1 were 
more than double the MEM estimates. In general, all 
estimates of weight change from SR analyses were higher 
in magnitude than those from MEM, which also implies 
a more substantial ITS treatment effect.

After further removal of weight records, 6181 indivi-
duals remained with one or more weight records. There 
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were 4.3 (sd 5.3) average weight records per person over 
the observation period. The average age was 50.6 (sd 19) 
years, and 2613 (42.3%) were men. After removal of 
smoking records at baseline there were only 3379 indivi-
duals with a record of their smoking status and 1188 
(35.2%) of them were current smokers.

In general, estimates from MEM with and without MI- 
JOMO were similar for pre-treatment and long-term 
effects, and both close to those estimated under MEM 
with full data. However, the MI-JOMO with MEM for 
short-term were closest to those estimated under MEM 
with full data (Table 1). ITS estimates from SR differed 
substantially from the estimates from MEM with and with-
out MI-JOMO (Table 1, Figure 2), with SRs reporting 
a weight pre-treatment (beta1) and long-term trajectories 
(beta3) closer to zero. For SR-W1, the long-term treatment 
effect was similar to the MEM estimates, while the short- 
term effects estimates (beta2) were much higher than 
MEM estimates. For both the SR and SR-W1 models, pre- 
treatment and long-term effects were also different when 
fitted to data with and without imposed missing values.

The immediate treatment effect, estimated as the dif-
ference between the negative and positive trajectories 
before and after olanzapine initiation, was highest for the 
SR approach (Table 1 and Figure 2). For example, the SR- 
W1 method suggested a cumulative short-term weight gain 
of 4.72kg, a long term of 2.13kg, and a total of 6.85kg. In 
contrast, the estimates based on MEM with MI-JOMO 
(short-term=2.47kg, long term=2.46kg, total=4.93kg) and 
without MI-JOMO (short-term=2.75kg, long term=2.70kg, 
total=5.45kg) were less for the short term and the total 
accumulated (see 95% CI in Appendix B).

In summary, individual-data models such as MEM 
[Equation 1] produced notably different results from SR 
models with ‘aggregate-level’ data. Further, if covariate 
values are MAR, use of MI-JOMO can recover informa-
tion by bringing individuals with these missing covariates 
back into the analysis, avoiding potential bias and increas-
ing precision. By contrast, the often-used SR ‘aggregate- 
level’ analysis cannot adjust for covariates and appears to 
be biased when weight data are MAR (depending on time 
and covariates). This may often be the case when analys-
ing health-care records.

Simulation Study
We now report the results of a simulation study, based on 
the motivating clinical example and designed to evaluate 
the performance of SR and MEM (with and without MMI) 

under controlled conditions. We are adding to this evalua-
tion another method called Prais-Winsten regression, 
which is similar to SR but is recommended by ITS guide-
lines to account for autocorrelation at the aggregate level.1 

In particular, we wish to determine whether the differences 
between the various analysis methods are due to the way 
they handle missing data.

Simulation Design
Study Model
For the simulation study, we designed an ITS dataset 
where the treatment of interest was the initiation of anti-
psychotic treatment, and we examined change in body 
weight (in kilograms) over time. The covariates were 
sex, age (years) and smoking status (yes/no), measured at 
initiation of treatment. The ITS impact model8 is a linear 
weight trajectory whose slope changes only once – at 
treatment initiation – ie, slightly simpler than our previous 
example. We included five time-units before and five after 
treatment initiation. We modelled the evolution of weight 
over time using two continuous linear splines, jointing at 
treatment initiation.

Data Generation
Each simulated dataset with 1000 observations was gener-
ated as follows:

1. Sex was generated as a random variable from 
a Bernoulli distribution with probability 0.5.

2. For each individual, weight observation times were 
fixed at the same 11 equally spaced times between 
−5 and +5, ie, centred at treatment initiation, which 
is at time 0.

3. Weight was generated from the following random 
intercept and slopes model [Equation 2]:

weightij ¼ 75þ u0j þ � 0:5þ u1j
� �

timeij
� 1 � 5 � timeij<0
� �

þ 3:4þ u2j
� �

timeij
� 0 � timeij � 5
� �

þ 10 � sexi þ εij;

u0j
u1j
u2j

0

@

1

A,N
0
0
0
;

5
0
0

0
1:1
� :7

0
� :7
1:1

0

@

1

A; εij,N 0; 2ð Þ;

where i denotes the follow-up time and j denotes the 
patient, and 1[] is an indicator for the event in square 
brackets. We referred to this as ‘Data Generation 
Mechanism Base’ (DGM-base). We also generated data 
from DGM-extended covariates [Equation 3]:
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weightij ¼ 75þ u0j þ � 0:5þ u1j
� �

timeij
� 1 � 5 � timeij<0
� �

þ 3:4þ u2j
� �

timeij
� 0 � timeij � 5
� �

þ 10 � sexi þ 0:05 � agei

� 0:0005 � age2
i þ 2:5 � smokingi þ εij 

Age was generated as a random variable from a normal 
distribution with mean 45 and sd 10. Smoking was binary 
and generated as follows:

logit P smokingi ¼ 1ð Þð Þ ¼ � 2þ 1:5 � sexi þ 0:04 � agei

� 0:0005 � age2
i :

Having generated the full data, we made observations 
missing using two missing data mechanisms:

1. MAR-1: starting with the fully observed weight 
variable at treatment initiation (t0), pre- and post- 
treatment initiation values of weight at times t0�j 

were set to missing (j ¼ 1; 2; 3; 4; 5) dependent on 
the individual’s sex. For the missing sequence, pre- 
treatment setting of missing values was reverse- 
sequential (t� 1; t� 2; t� 3; t� 4; t� 5) and post-treatment 
setting was forward-sequential (t1; t2; t3; t4; t5). For 
both directions (� j) of MAR-1 mechanism, we 
defined the probability of being missing by:  

logit P weightij ¼ missing
� �� �

¼ � 2:5þ 5 � sexi

shaping the patterns of missing weight data and 
setting more weight records being observed for 
women than men. Both patterns and proportion of 
missing values are available in Appendix C. MAR- 
1 was applied on data generated under DGM-base 
only.

2. MAR-2: similar to MAR-1, but now the probability 
of weight being missing also depends on the indi-
vidual’s random intercept, age and smoking. As the 
random intercept is unobservable (as smoking will 
partially be), this mechanism is a mix between 
MAR and MNAR (missing not at random). 
Moving away from treatment initiation (in both 
directions), the probability of weight being missing 
is monotonically given by:

logit P weightij ¼ missing
� �� �

¼ � 0:25 � 2 � u0j � 1:5
� sexi � 0:05 � agei

þ 0:0005 � age2
i � 1:5

� smokingi;

where −0.25 helped to shape the overall proportion of 
missing data over time; -1.5 set more weight records to 
be observed for men (only for explicative purposes); −2 
set more weight records to be observed for individuals 
who are heavier at treatment initiation; −0.05 and 0.0005 
set more missing data for younger individuals, and −1.5 
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Table 1 Estimated Weight Change Over Time Before and After Olanzapine Treatment Initiation from the Example in Section 2,  
Which Also Describes the Various Analysis Methods

Estimate THIN: Data Fully Observed THIN: Data with Weight Records MAR on Sex and Time, and Smoking Records MAR on Sex and Time

MEM (Unadjusted) MEM (Adjusted) SR SR-W1 MEM (Adjusted) MI-JOMO with MEM (Adjusted) SR SR-W1

(N=6522 - Weight 
Records=31,153)

(N=6522 - Weight 
Records=31,153)

(N=418) (N=418) (N=3379 - Weight Records=16,709) (N=6181 - Weight Records=26,880) (N=418) (N=418)

Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p

t1 [β1] −0.0051 0.0012 <0.001 −0.0058 0.0012 <0.001 −0.0158 0.0030 <0.001 −0.0193 0.0030 <0.001 −0.0075 0.0017 <0.001 −0.0082 0.0013 <0.001 0.0008 0.0035 0.826 −0.0045 0.0032 0.158

t2 [β2] 0.4642 0.0289 <0.001 0.4617 0.0289 <0.001 0.8160 0.0875 <0.001 0.8071 0.0871 <0.001 0.4116 0.0412 <0.001 0.4576 0.0303 <0.001 0.7994 0.0998 <0.001 0.7863 0.0943 <0.001
t3 [β3] 0.0127 0.0015 <0.001 0.0125 0.0015 <0.001 0.0246 0.0032 <0.001 0.0279 0.0036 <0.001 0.0121 0.0021 <0.001 0.0133 0.0017 <0.001 0.0043 0.0036 0.234 0.0105 0.0044 0.017

sex [β4] - - - −12.9299 0.4173 <0.001 - - - - - - −13.7330 0.8075 <0.001 −13.1364 0.4471 <0.001 - - - - - -

Age [β5] - - - 0.9498 0.0589 <0.001 - - - - - - 0.8276 0.0832 <0.001 0.9126 0.0614 <0.001 - - - - - -
Age2 [β6] - - - −0.0096 0.0005 <0.001 - - - - - - −0.0085 0.0007 <0.001 −0.0093 0.0006 <0.001 - - - - - -

Smoking [β7] - - - −3.8524 0.4382 <0.001 - - - - - - −3.6762 0.6304 <0.001 −3.7532 0.5992 <0.001 - - - - - -

Intercept [β0] 73.5754 0.2630 <0.001 62.2883 1.5107 <0.001 75.0677 0.3688 <0.001 75.4822 0.3542 <0.001 66.4391 2.2499 <0.001 63.8191 1.6031 <0.001 71.7488 0.4207 <0.001 72.3779 0.3749 <0.001

Note: Beta estimates are in kilograms. 
Abbreviations: THIN, The Health Improvement Network Database; MAR, missing at random; SR, ‘aggregate-level’ segmented regression; SR-W1, ‘aggregate-level’ segmented  
regression weighted with the inverse of the number of observed weight records at each time point; MEM, random intercept and slope model with restricted maximum likelihood  
and unstructured covariance matrix; MI-JOMO, joint modelling multiple imputation using a similar MEM model; t1, time before treatment initiation (209 weeks); t2, short-term  
after treatment initiation (6 weeks); t3, long-term after treatment initiation (203 weeks).
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set more weight records to be observed for smokers. We 
also set about 30% of smoking values to be missing with 
probability:

logit P smokingi ¼ missingð Þð Þ

¼ � 3þ 3 � sexi � 0:01 � agei þ 0:0003 � age2
i 

MAR-2 was applied to data from DGM-extended- 
covariates only. For both described mechanisms (MAR-1 
and MAR−2), the proportion of missing weight data in the 
simulated sample was set to approximately 60% of indivi-
duals. In the other 40% of the data, we set only one weight 
record per individual at any time point, setting more indi-
viduals with only one weight record at treatment initiation 
(MAR dependent on the treatment initiation). This addi-
tional mechanism sought to emulate the missing data pro-
portions and patterns seen in the clinical data used for the 
illustrative example (see Appendix C).

We simulated 1000 full datasets for each of the two 
scenarios, and then applied the missing data mechanisms 
to obtain the partially observed data.

Analysis Methods Evaluated
We analysed the full and partially observed data using 
each of the following six methods (see summary in 
Appendix D):

1. SR: this averaged observed individual weight mea-
sures at each time point and then fits a linear regres-
sion on time (maximum likelihood estimator), with 
a knot at zero.

2. SR-W1: (weighted SR version 1) similar to SR but 
weighted by the inverse of the number of observed 
weight records at each time point.

3. SR-W2: (weighted SR version 2) similar to SR-W1 
but the number of observed weight records – used 
for weighting – were counted at each time point by 
sex and age. We categorised age using its quartiles 
(before averaging). When smoking data were 
incomplete, smoking was not included as 
a covariate for SR-W2.

4. Prais-Winsten: regression similar to SR but adjusted 
for serial correlation at the aggregate level by 
assuming errors that follow a first-order autoregres-
sive process,22 an approach typically used in ITS 
analysis for controlling the autocorrelation issue.1

5. MEM: we fitted the data generating model 
[Equations 2 and 3] using Restricted Maximum 
Likelihood with an unstructured covariance matrix 
for the random effects.

6. MI-JOMO (with MEM): We first imputed the missing 
covariate values, using multilevel substantive-model- 
compatible joint modelling multiple imputation, with  

Table 1 Estimated Weight Change Over Time Before and After Olanzapine Treatment Initiation from the Example in Section 2,  
Which Also Describes the Various Analysis Methods

Estimate THIN: Data Fully Observed THIN: Data with Weight Records MAR on Sex and Time, and Smoking Records MAR on Sex and Time

MEM (Unadjusted) MEM (Adjusted) SR SR-W1 MEM (Adjusted) MI-JOMO with MEM (Adjusted) SR SR-W1

(N=6522 - Weight 
Records=31,153)

(N=6522 - Weight 
Records=31,153)

(N=418) (N=418) (N=3379 - Weight Records=16,709) (N=6181 - Weight Records=26,880) (N=418) (N=418)

Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p Beta SE p

t1 [β1] −0.0051 0.0012 <0.001 −0.0058 0.0012 <0.001 −0.0158 0.0030 <0.001 −0.0193 0.0030 <0.001 −0.0075 0.0017 <0.001 −0.0082 0.0013 <0.001 0.0008 0.0035 0.826 −0.0045 0.0032 0.158

t2 [β2] 0.4642 0.0289 <0.001 0.4617 0.0289 <0.001 0.8160 0.0875 <0.001 0.8071 0.0871 <0.001 0.4116 0.0412 <0.001 0.4576 0.0303 <0.001 0.7994 0.0998 <0.001 0.7863 0.0943 <0.001
t3 [β3] 0.0127 0.0015 <0.001 0.0125 0.0015 <0.001 0.0246 0.0032 <0.001 0.0279 0.0036 <0.001 0.0121 0.0021 <0.001 0.0133 0.0017 <0.001 0.0043 0.0036 0.234 0.0105 0.0044 0.017

sex [β4] - - - −12.9299 0.4173 <0.001 - - - - - - −13.7330 0.8075 <0.001 −13.1364 0.4471 <0.001 - - - - - -

Age [β5] - - - 0.9498 0.0589 <0.001 - - - - - - 0.8276 0.0832 <0.001 0.9126 0.0614 <0.001 - - - - - -
Age2 [β6] - - - −0.0096 0.0005 <0.001 - - - - - - −0.0085 0.0007 <0.001 −0.0093 0.0006 <0.001 - - - - - -

Smoking [β7] - - - −3.8524 0.4382 <0.001 - - - - - - −3.6762 0.6304 <0.001 −3.7532 0.5992 <0.001 - - - - - -

Intercept [β0] 73.5754 0.2630 <0.001 62.2883 1.5107 <0.001 75.0677 0.3688 <0.001 75.4822 0.3542 <0.001 66.4391 2.2499 <0.001 63.8191 1.6031 <0.001 71.7488 0.4207 <0.001 72.3779 0.3749 <0.001

Note: Beta estimates are in kilograms. 
Abbreviations: THIN, The Health Improvement Network Database; MAR, missing at random; SR, ‘aggregate-level’ segmented regression; SR-W1, ‘aggregate-level’ segmented  
regression weighted with the inverse of the number of observed weight records at each time point; MEM, random intercept and slope model with restricted maximum likelihood  
and unstructured covariance matrix; MI-JOMO, joint modelling multiple imputation using a similar MEM model; t1, time before treatment initiation (209 weeks); t2, short-term  
after treatment initiation (6 weeks); t3, long-term after treatment initiation (203 weeks).
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the JOMO package in R. As described in23,24 this 
imputes missing values consistent with the substantive 
model [Equation 1]. It does this by factorising the joint 
model into a joint model for the covariates and 
a conditional model for the outcome given the covari-
ates. Then, the estimation and imputation process 
allows compatibility between the imputation and ana-
lysis models (MEM in this case), even with longitu-
dinal data.24 We used 5 imputations and 1000 
iterations (before the first, and between each subse-
quent imputation) to impute the missing covariate 
smoking status. We did not impute the missing weight, 
as (in the absence of auxiliary variables) no informa-
tion can be recovered by doing this. Note that standard 
fully conditional specification25 is not evaluated 
because it is inappropriate for handling the irregular 
observation times we expect in real longitudinal data. 
We only used MI-JOMO in the MAR-2 scenario.

Estimands and Performance Measures
We focused on the slope estimates (true values: timebefore :

β1 ¼ � 0:05 and timeafter : β2 ¼ 3:4) from all methods 
evaluated in both MAR scenarios (MAR-1 and MAR-2), 
by examining the bias, empirical standard error, model- 
based standard error and confidence interval coverage.26

Simulation Results
In the first scenario (DGM-base), all SR methods were biased 
except from when data were fully observed (Table 2). 
However, the coverage of these methods was low (<61%) 
due to their small model-based standard errors, even the 

weighted methods (SR-W1 and SR-W2) and the method 
adjusted for serial correlation (Prais-Winsten). Conversely, 
MEM provided reasonably good coverage for β1 and β2 

(>94%) for unbiased estimates.
Where weight was missing based on sex only (MAR- 

1), MEM showed unbiased results and the best coverage 
(≥95%). SR and SR-W1 produced biased estimates for 
both pre- and post-treatment initiation slopes, showing 
the highest model-based standard errors. Because the miss-
ingness mechanism depended on sex, and women weighed 
less than men, the preliminary data aggregation step in SR 
and SR-W1 biased the estimated slopes (see example in 
Figure 3, MAR-1). The SR bias was corrected using 
inverse-probability weights based on sex (SR-W2), but 
coverage was low (<74%) due to too-small model-based 
standard errors. The Prais-Winsten model was not success-
ful in correcting the SR bias since it does not incorporate 
information on missing data at the individual-level as SR- 
W2 does.

In the second scenario (DGM-extended-covariates), 
with full data, all methods were unbiased (Table 2). 
MEM provided the best coverage for β1 and β2 (>95%), 
followed by SR-W2 (>90%). Although with unbiased esti-
mates, SR, SR-W1 and Prais-Winsten provided a low cov-
erage (<55%) due to their small model-based standard 
errors. SR, SR-W1 or Prais-Winsten cannot provide dif-
ferent averages by sex and age at each time point, which 
can be provided by SR-W2. Having more variability at 
each time point produced higher – and more realistic – 
standard errors from SR-W2.

On the other hand, with missing values in weight and 
smoking status (MAR-2), MI-JOMO had the best perfor-
mance. MEM showed poorer performance after all covari-
ates were included in the imputation and study models and 
there were missing smoking data, producing slightly 
biased estimates and low coverage (<79%). In the same 
scenario, MI-JOMO performed better than MEM, provid-
ing less biased estimates, closer values of empirical and 
model-based standard errors, and higher coverage (>87%). 
For both methods, we should consider that there is some 
residual bias because of the dependence of observation of 
weights on the random intercepts. While the results in the 
bottom half of Table 2 show this resulted in a bias in the 
MI-JOMO analysis, this was not severe, and the resulting 
inferences were still usable. Conversely, SR, SR-W1, SR- 
W-2 and Prais-Winsten performed extremely poorly, 
showing large bias and low coverage (<18%).

Figure 2 Estimated weight trajectories before and after initiation of olanzapine 
treatment, from the data in Section 2 (motivating example). Circles are weight 
averages at each time point, dashed line – SR model fitted to these averages; solid 
line – model [Equation 1] fitted to the raw data by MEM.
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Table 2 Simulation Results

Data 
Generation 
Mechanism 
(DGM)

Missing Data Mechanism Estimand True 
Parameter 
Value

Method Simulated Data (Time Points=11; 
Individuals=1000; Replications=1000)

Bias Empirical 
Standard 
Error

Model- 
Based 
Standard 
Error

Coverage

DGM-base Data fully observed β1 (before treatment 

initiation slope)

−0.5 MEM −0.0004 0.0356 0.0343 94.3

SR −0.0004 0.0356 0.0134 52.4

SR-W1 −0.0004 0.0356 0.0111 42.7

SR-W2 −0.0004 0.0356 0.0165 57.5

Prais-Winsten −0.0004 0.0356 0.0105 41.4

β2 (after treatment 

initiation slope)

3.4 MEM 0.0006 0.0345 0.0343 95.2

SR 0.0006 0.0345 0.0134 52.6

SR-W1 0.0006 0.0345 0.0114 44.5

SR-W2 0.0006 0.0345 0.0164 60.5

Prais-Winsten 0.0006 0.0345 0.0105 42.3

MAR-1 (weight MAR on sex 

only)

β1 (before treatment 

initiation slope)

−0.5 MEM 0.0014 0.0523 0.0535 95.7

SR 0.3761 0.0682 0.2388 88.6

SR-W1 0.5801 0.0724 0.3113 64.9

SR-W2 0.0010 0.0591 0.0381 72.2

Prais-Winsten 0.369 0.0679 0.1795 40.1

β2 (after treatment 

initiation slope)

3.4 MEM −0.0003 0.0529 0.0534 95.0

SR −0.3748 0.0719 0.2388 87.1

SR-W1 −0.5786 0.0755 0.3117 66.8

SR-W2 −0.0002 0.0606 0.0380 73.7

Prais-Winsten −0.3682 0.0718 0.1795 40.9

DGM-extended 

-covariates

Data fully observed β1 (before treatment 

initiation slope)

−0.5 MEM 0.0000 0.0340 0.0343 95.1

SR 0.0000 0.0340 0.0134 53.6

SR-W1 0.0000 0.0340 0.0112 47.0

SR-W2 0.0000 0.0340 0.0316 90.3

Prais-Winsten 0.0000 0.0340 0.0106 43.1

β2 (after treatment 

initiation slope)

3.4 MEM −0.0001 0.0336 0.0343 96.0

SR −0.0001 0.0336 0.0134 54.0

SR-W1 −0.0001 0.0336 0.0113 44.7

SR-W2 −0.0001 0.0336 0.0315 90.1

Prais-Winsten −0.0001 0.0336 0.0106 43.5

MAR-2 (weight MAR on sex, 

age, and smoking (smoking 

has missing data))

β1 (before treatment 

initiation slope)

−0.5 MEM −0.0649 0.0884 0.0674 78.7

MI-JOMO −0.0335 0.0691 0.0697 88.7

SR −0.4535 0.0709 0.1954 17.6

SR-W1 −0.5963 0.0765 0.2605 11.3

SR-W2 −0.5385 0.0667 0.0872 0.0

Prais-Winsten −0.4515 0.0708 0.1565 1.4

β2 (after treatment 

initiation slope)

3.4 MEM 0.0652 0.0883 0.0674 76.2

MI-JOMO 0.0333 0.0698 0.0685 87.7

SR 0.4513 0.0724 0.1954 17.9

SR-W1 0.5941 0.0780 0.2609 13.7

SR-W2 0.5367 0.0672 0.0874 0.0

Prais-Winsten 0.4495 0.0724 0.1565 2.3

Abbreviations: MAR, missing at random; SR, ‘aggregate-level’ segmented regression; SR-W1, ‘aggregate-level’ segmented regression weighted with the inverse of the 
number of observed weight records at each time point; SR-W2, similar to SR-W1 but the number of observed weight records were counted by each time point, sex and age 
group (quintiles); MEM, random intercept and slope model with restricted maximum likelihood and unstructured covariance; MI-JOMO, substantive model compatible joint 
modelling multiple imputation using a similar MEM model; Prais-Winsten, ‘aggregate-level’ Prais-Winsten regression.
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The ‘aggregate-level’ SR analysis biased the slope 
trajectories in different directions, which we illustrated 
by our simulations (Figure 3).

Discussion
ITS provides a conceptually attractive approach for asses-
sing the impact of treatments because each individual acts 
as their own control. However, its innate strength, leading 
to its increasing use,4 raises important questions about how 
to appropriately handle missing data. As our example 
illustrates, incomplete outcome data (in our case, weight) 
is an intrinsic feature of this kind of study because the 
underlying observational data do not follow any pre- 
planned schedule. This means that, at any specific time, 
the marginal distribution of the response is unlikely to be 
representative of the underlying population.

The results of our studies demonstrate that the ‘aggre-
gate-level’ approach will generally be biased when indivi-
dual-level data are missing at random (MAR). Indeed, the 
motivating example shows this bias could lead to 
a substantial exaggeration of the actual effect of the stu-
died intervention. In the example, the difference between 
pre- and immediate post-treatment weight change (biased 
slopes) increases the overall effect attributed to olanza-
pine. However, it is not always possible to determine the 
direction of bias. This is because the direction of the 

average-points bias depends on how the covariate is asso-
ciated with the missingness of weight records. Even when 
the ‘aggregate-level’ SR analysis does not bring about 
a bias issue, our results highlight that the precision is 
inaccurate as the standard errors for this method are typi-
cally grossly underestimated.

When data are missing-at-random at the individual 
level, averaging before SR means that data are missing- 
not-at-random (MNAR) at the cluster level. This leads to 
the bias observed for the ‘aggregate-level’ SR analysis. 
For example, in the MAR-1 mechanism, ‘aggregate-level’ 
SR analysis loses the information about the distribution of 
weight records that are MAR on sex at each time point, 
due to the averaging-step. Thus, sex becomes unobserva-
ble at the ‘aggregate-level’, making weight records MNAR 
on sex at this level and biasing the subsequent analysis 
using those averages. As we demonstrate in the same 
simulation study, this issue could be handled by including 
sex in the averaging-step (SR-W2). However, in practice, 
any version of SR-W2 will be hard to apply since other 
covariates are typically incomplete as well.

A natural alternative to the ‘aggregate-level’ analysis is 
to model the individual patient data explicitly. When the 
reason for outcome data being observed depends princi-
pally on time (eg, before and after treatment initiation), 
underlying patient characteristics (eg, sex, age) and 

Figure 3 Weight trajectories from a simulated dataset in which weight is fully observed (circles and solid lines) or missing at random (diamonds and dashed lines).
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observed outcomes (eg, observed weights), the unseen 
values are plausibly MAR. In this setting, our simulation 
results demonstrate that a carefully formulated longitudi-
nal model provides a practical approach for improved 
inference.

Longitudinal models should be formulated carefully to 
include covariates predictive of both the outcome and the 
chance of observing it, which are key for avoiding bias. 
Where it is not desired – or appropriate – to include some 
such variables in the substantive analysis, an MMI approach 
should be considered, where these variables are included as 
auxiliary variables. Care should also be taken to model the 
longitudinal correlation of the outcome appropriately, as this 
is particularly important for missing data, as well as to use the 
observed rather than expected information for likelihood- 
based models. In particular, having random intercepts 
alone, or having uncorrelated random intercepts and slopes, 
should be avoided (see Appendix E for other practical 
suggestions).21 If data at the individual level are not avail-
able, and the researcher suspects that a strong MAR mechan-
ism affect the outcome points over time (eg, averages or 
rates), the issue should be stated as a limitation as recom-
mended in reporting guidelines.27,28

Our results show that MMI provides a practical 
approach for handling missing covariates in the analysis. 
When performing MMI, it is essential to both use an 
approach that properly takes account of the multilevel 
structure, and uses an approach that is compatible with 
the substantive model (which here includes splines for the 
effect of time). The JOMO package in R has the flexibility 
to do both.

We set our example and simulations with averages of 
a continuous variable, but a similar problem can happen 
with other types of outcomes. Rates (proportions), another 
common ITS outcome,5 can also be biased when outcome 
data are MAR at the individual level. For example, if the 
numerator of the rate (the events) is higher in women than 
men, and the missingness process generates more missing 
records for women, the rate will be underestimated at the 
‘aggregated-level’ (eg, at time points, hospitals or dis-
tricts). The ITS analysis will use those rates as consecutive 
points, biasing the estimated trajectories. Similar reasoning 
can be applied to binary and count ITS outcomes. Even 
using other recommended analysis methods than SR, such 
as ARIMA models,1 the bias problem will remain in the 
‘aggregate-level’ used for the time series. Although we did 
not formally evaluate these alternative methods, some 
reflections can be enlightened by the study findings. In 

the aggregate-level approach, ARIMA models will be 
fitted after the averaging-step; therefore, the ITS will be 
based on population-level average points already biased. 
Other options useful for individual-level data, such as 
generalised estimated equations (GEE) can be applicable. 
However, because they are moment-based estimates, pre-
cisely like the aggregate data analysis, its estimates will be 
biased unless data are missing completely at random.29,30

This is the first time that this averaging-step problem 
for MAR data has been studied with simulations and real 
data. Our results will help to guide future ITS studies. We 
focused our study on the situation when data are missing at 
random. However, we are aware there may be other sce-
narios where data missing not at random (MNAR) could 
bias estimates. For example, if weight is only recorded for 
those with a high or low weight. This scenario goes 
beyond the scope of this study but in practice, when 
a strong MNAR mechanism is suspected, a sensitivity 
analysis is possible using a pattern mixture approach.31,32

In conclusion, the segmented regression using aver-
aged data points can over or underestimate the effect 
evaluated in interrupted time series analyses, when per-
formed on outcome data missing at random at the indivi-
dual level. However, such a problem can be addressed by 
using mixed models. If there are also covariates missing at 
random, mixed models can be combined with multilevel 
multiple imputation and provide unbiased results.

Ethical Approval
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a simulation study. The latter did not require any ethical 
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example in April 2016 (SRC Reference Number: 
16THIN013). No further revision by another institutional 
review board or ethics committee was needed since all 
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