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ABSTRACT

Advances in single-cell RNA sequencing (scRNA-
seq) have furthered the simultaneous classification
of thousands of cells in a single assay based on
transcriptome profiling. In most analysis protocols,
single-cell type annotation relies on marker genes
or RNA-seq profiles, resulting in poor extrapolation.
Still, the accurate cell-type annotation for single-
cell transcriptomic data remains a great challenge.
Here, we introduce scDeepSort (https://github.com/
ZJUFanLab/scDeepSort), a pre-trained cell-type an-
notation tool for single-cell transcriptomics that uses
a deep learning model with a weighted graph neu-
ral network (GNN). Using human and mouse scRNA-
seq data resources, we demonstrate the high perfor-
mance and robustness of scDeepSort in labeling 764
741 cells involving 56 human and 32 mouse tissues.
Significantly, scDeepSort outperformed other known
methods in annotating 76 external test datasets,
reaching an 83.79% accuracy across 265 489 cells
in humans and mice. Moreover, we demonstrate the
universality of scDeepSort using more challenging
datasets and using references from different scRNA-
seq technology. Above all, scDeepSort is the first at-
tempt to annotate cell types of scRNA-seq data with
a pre-trained GNN model, which can realize the ac-
curate cell-type annotation without additional refer-
ences, i.e. markers or RNA-seq profiles.

INTRODUCTION

Recent advancements in single-cell RNA sequencing
(scRNA-seq) that permit the identification of various cell
types based on transcriptomics at single-cell resolution have
facilitated our understanding of the heterogeneity of cel-
lular phenotypes and their composition within complex
tissues (1,2). In the data processing protocols of scRNA-
seq experiments, cell-type annotation is a vital step for
subsequent analysis (3–5). Cell type identification is com-
monly performed by mapping differentially expressed genes
at the level of pre-computed clusters with prior knowl-
edge of cell markers like SCSA (6) and scCATCH (7). An-
other cell-based annotation strategy tries to compare the
similarities between a single cell and a reference database
of bulk or single-cell RNA-seq profiles to determine po-
tential cellular identities. Several methods including Sin-
gleR (8), CHETAH (9), scMap (10), scID (11), scPred (12),
ACTINN (13), CellAssign (14), Garnett (15), SCINA (16),
singleCellNet (17) and support vector machine (SVM) be-
long to this category as described in the recent review (18).
Such methods rely heavily on references, severely limiting
the extrapolation of these methods. Still, the accurate cell-
type annotation for single-cell transcriptomic data remains
a great challenge (19).

Fortunately, recent advances in deep learning have en-
abled major progress in the ability of artificial intelli-
gence techniques to integrate big data, incorporate ex-
isting knowledge, and learn arbitrarily complex relation-
ships (20,21). Given the state-of-the-art accuracy deep
learning has achieved in numerous prediction tasks, it
has been increasingly used in biological research (22) and
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biomedical applications (23,24). For example, Chaudhary
et al. established a deep learning-based model using RNA-
seq, miRNA-seq and methylation data of 360 hepatocellu-
lar carcinomas (HCC) patients to help predict patient sur-
vival (25). The graph neural networks (GNN), one of the
commonly-used deep learning methods (26), is the connec-
tionist model that captures the graph dependence through
message passing between the graph nodes. Unlike stan-
dard neural networks, GNNs retain a state that represents
information from its neighborhood with arbitrary depth,
which has demonstrated ground-breaking performance on
many learning tasks (27). Moreover, recent published large-
scale scRNA-seq resources have provided the foundation
for deep learning models that can execute challenging pre-
diction tasks (28–30).

In this study, we designed a pre-trained cell-type an-
notation method called scDeepSort, based on a weighted
GNN framework since cells and genes from the scRNA-
seq data are the natural graph structure as genes are ex-
pressed by cells, which addresses this challenge (see Figure
1 for an overview). First, we prepared the most comprehen-
sive single-cell transcriptomics atlases, namely a human cell
landscape (HCL) (31) and a mouse cell atlas (MCA) (32), as
the underlying training set (Supplementary Table S1). Sec-
ond, we trained our scDeepSort mainly on HCL and MCA
using a weighted GNN model. Last, we compared the per-
formance of scDeepSort with other known methods on 76
external human and mouse test datasets. Moreover, we eval-
uated the performance of scDeepSort with three additional
scRNA-seq atlases (33–35) and with the Tabula Muris (TM)
dataset (36). The present results indicated that scDeepSort
is a robust method that can help scientists realize the accu-
rate cell-type annotation of scRNA-seq data without addi-
tional references, i.e., markers or RNA-seq profiles.

MATERIALS AND METHODS

Datasets

All scRNA-seq datasets were retrieved from several high-
quality reports and the Gene Expression Omnibus (GEO),
including human and mouse primary tissues, wherein
unannotated cells were excluded and normal or healthy
cells were included. The human cell landscape (HCL,
https://figshare.com/articles/HCL DGE Data/7235471)
provided data for 562 977 cells from 56 types
of tissues and the mouse cell atlas (MCA, https:
//figshare.com/articles/MCA DGE Data/5435866) pro-
vided 201 764 cells involving 32 tissues. External test
datasets used for comparing scDeepSort with other meth-
ods were freely available from public platforms detailed in
Supplementary Table S2. The TM dataset were downloaded
from the Figshare website (https://figshare.com/projects/
Tabula Muris Transcriptomic characterization of 20
organs and tissues from Mus musculus at single cell
resolution/27733). The Loom (http://mousebrain.org),
DropViz (http://dropviz.org) and oncoscape (https:
//oncoscape.v3.sttrcancer.org/atlas.gs.washington.edu.
mouse.rna/landing) datasets were all downloaded from
websites. The large human pancreas dataset (37) by Baron
et al. was downloaded from GSE84133.

Data preprocessing

All scRNA-seq data were preprocessed using R (version
3.6.1). For the Zheng dataset, the raw count was processed
in accordance with the pipeline detailed in the Satija Lab tu-
torial, using Seurat 3.0, wherein cells with more than 2500
or fewer than 200 unique features or with mitochondrial
counts greater than 5% were filtered out. For other datasets,
all cells in the datasets were included in the filtered ma-
trices. Human and mouse gene symbols were revised in
accordance with NCBI gene data (https://www.ncbi.nlm.
nih.gov/gene/) updated on 10 January 2020, wherein un-
matched genes and duplicated genes were removed. For all
human and mouse datasets, the raw data were normalized
via the global-scaling normalization method LogNormal-
ize in preparation for running the subsequent scDeepSort
pipeline and other methods.

scDeepSort algorithm

scDeepSort consists of three components: the embedding
layer, weighted graph aggregator, and linear classifier lay-
ers. The embedding layer stores the representation of graph
nodes and is frozen during training. The weighted graph ag-
gregator layer inductively learns graph structure informa-
tion, generating linear separable feature space for cells. In
this layer, a modified version of the GraphSAGE (38) infor-
mation processing framework was applied as the backbone
GNN. The final linear classifier layer classifies the final cell
state representation produced from the weighted graph ag-
gregator layer into one of the predefined cell type categories.

Weighted cell-gene graph generation. To construct the
weighted cell-gene graph, cells and genes were both treated
as graph nodes and the gene expression for each cell was re-
garded as the weighted edge between cells and genes, consti-
tuting the embedding layer. First, the principal component
analysis (PCA) was used to extract dense representations for
gene nodes from the cell-gene data matrix, and cell node
representations were then calculated by the weighted sum
of gene node representations and the cell–gene data matrix.
For an input single-cell data matrix D ∈ R

m×n (m genes and
n cells), PCA was applied to extract dense representations
of a fixed-size dimension (d = 400) as initial representations
because the performance of d = 200, 400 and 600 is very
close as shown in Supplementary Figure S1. Considering
that it takes the lower cumulative variance contribution rate
as well as the longer training time for d = 200 and it takes
the higher memory and GPU for d = 600, we finally set di-
mension as 400. A weighted sum of gene representations
with single-cell data matrix D as input was used to obtain
the cell representations with the same dimension d. By col-
lecting gene and cell representations, a matrix X ∈ R

(m+n)×d

was constructed as the initial node embeddings. Second, a
weighted adjacency matrix A ∈ R

(m+n)2
was generated from

the input single-cell data matrix D, in which the gene ex-
pression (>0) was directly regarded as the weights of edges
between cells and genes.

Aggregating process. To inductively learn graph struc-
ture information, we followed a graph neural network
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Figure 1. General conceptual framework and validation of scDeepSort. (A) Human and mouse single-cell transcriptomics atlases were curated from HCL
and MCA as the underlying data for training scDeepSort. The human and mouse atlases include 562,977 cells from 56 tissues and 201,764 cells from 32
tissues, respectively. (B) For each cell, a graph network was constructed of this cell, its genes and neighboring cells for supervised learning scDeepSort
with known cell labels from the transcriptomic atlases for each tissue. (C) Internal human and mouse atlases datasets and external test datasets of single-
cell transcriptomics data involving multiple tissues were employed to test the performance of scDeepSort. Markers- and profiles-dependent annotation
methods (CellAssign, Garnett, SingleR, scMap, ACTINN, CHETAH, scID, scPred, SCINA, singleCellNet and SVM) were compared with scDeepSort
on human and mouse external test datasets.

framework called GraphSAGE. The essential processes of
GraphSAGE are sampling a batch of 500 nodes with their
neighbors and aggregating graph neighborhood to generate
node representations for each node. However, we proposed
a new weighted graph aggregator layer to replace the ag-
gregator of GraphSAGE. Let hk

i (a 200-dimensional vector
in our experiments) represents the embedding of node i in
the kth layer. Our weighted graph aggregator layer can be
summarized as:

hk
i = σ

(
Wk−1 AGG

(
hk−1

i , hk−1
N(i )

)
+ bk−1

)

where N(i) is the set of one-hop neighbors of node i. The
output of the aggregate function AGG is then transformed
to the target dimension by a linear transformation shared
among all nodes, followed by a non-linear activation func-
tion � called Rectified Linear Unit (ReLU). In practice, we
set k = 1 (k is the number of the weighted graph aggregator
layer) because the performance of k = 1 and 2 are very close,
but k = 2 requires longer training time and more memory
during training, as shown in Supplementary Figure S1. The
aggregate function AGG contains two new techniques. The
first technique is called the weighted adjacency matrix nor-
malization. The main reasons for applying normalization
to the weighted adjacency matrix are twofold. Gene expres-
sion varies a lot across different kinds of cells. For single
cell, the expression level and pattern of different genes can
also vary. Thus, we normalize weighted adjacency matrix A

as following:

ai j ← di × ai j∑
j∈N(i )ai j

where ai j , the weight of an edge from node j to node i, is the
element of A, and di denotes the indegree (the number of
connected genes) of cell node i. The second technique is the
learnable sharing confidence. Due to batch effects and miss-
ing value issues, we proposed to add learnable parameters to
each edge as a confidence matrix while leveraging the con-
text of one-hop neighborhood of nodes in a weighted graph.
For a gene node j, we proposed a learnable sharing param-
eter β j as the confidence value for the edges that interact
with node j. Another learnable parameter α as the confi-
dence value of the self-loop edge for each cell. Its value will
be shared among cells since we may encounter new cells in
test datasets. Therefore, the overall formulation of gather-
ing neighborhood information given each sub-graph of cell
node i is stated below:

hk
i = σ

(
Wk−1

αhk−1
i + ∑

j∈N(i )β j ai j h
k−1
j

1 + |N (i )| + bk−1

)

A linear classifier layer. The weighted graph aggrega-
tor layer produces a latent feature space for the graph.
To classify the final cell state representation into one of
the pre-defined cell-type categories, we extract cell node
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representations and feed them into a linear classifier layer.

ŷi = sof tmax
(
Whk

i + b
)

Cross entropy loss was then used to measure the differ-
ence between the predicted class distribution and the labels.
Therefore, the objective function can be written as:

θ̂ = argminθ −
C∑

c=1

yclogŷc

θ represents all trainable parameters in our method, includ-
ing the weight Wk−1 and bias bk−1 of our weighted Graph
Neural Network, as well as the learnable confidence of α
and β j for the self-loop edge of each cell and the edges that
interact with gene node j, respectively. We train our model
with the above objective function using a stochastic gradi-
ent descent method called Adam, with default hyper param-
eters except for the learning rate of 0.001 and the weight
decay rate of 0.0005 until convergence or after 500 epochs.
The training process is conducted in a mini-batch manner
with batch size of 500.

To annotate the new dataset, new cells will be connected
to the gene node of the trained cell–gene graph and the gene
expression of new cells will be added to the edge between the
new cell node and the gene node as the weight. According to
the connected gene node representation, the cell representa-
tion of the test cells will be calculated by the weighted sum
of gene node representations and the cell–gene data matrix.
Using the aggregator function consisting of the learned rep-
resentation of the connected gene nodes, the weights, the
learned confidence, and the raw representation of each test
cell, a new representation of the test cell will be calculated,
which will go through the linear classification layer to gen-
erate a predicted cell label for each test cell.

scDeepSort performance evaluation on internal datasets

For each cell type, cells numbering at least more than 5‰
of the total cells in each tissue were included and randomly
divided into training and test sets, ensuring that the ratio of
training and test cells was set to 8:2, 7:3, 6:4 and 5:5 with
five replicates for each alternative split.

Performance comparison with other methods on external test
datasets

CellMatch, MCA or HCL were used as the reference
datasets for reference-dependent methods. To compare the
performance of scDeepSort with other methods on anno-
tating cell types of single-cell transcriptomics data, only the
cell types that existed in both cell marker database (Cell-
Match) and RNA-seq profiles (MCA and HCL) were se-
lected to construct the test datasets. Considering the few
samples of main cell types (e.g. alpha, beta and delta cells) in
the HCL pancreas dataset, another large human pancreas
dataset by Baron et al. (37) was integrated with the HCL
pancreas dataset as the reference for profile-dependent
methods.

For scDeepSort, all cells from a particular tissue (Supple-
mentary Table S1) were used to train the GNN-based deep

learning model for cell-type prediction on the test cells that
originated from the same tissue.

For CellAssign, external test datasets were first trans-
formed as SingleCellExperiment objects with a normalized
matrix. The CellMatch database containing tissue-specific
cell markers was then used as a reference. All other param-
eters in CellAssign were kept as default.

For Garnett, marker genes from the CellMatch database
were extracted and checked to train classifiers for each test
dataset. The parameter of the number of unknown type
cells was set as 50 by default during classification. Then, the
trained classifiers were used to classify the cells for each test
dataset.

For SingleR, external test datasets were annotated based
on reference datasets (HCL and MCA) with default param-
eters, wherein the method was set to ‘single’.

For scMap and CHETAH, external test datasets were
transformed into SingleCellExperiment objects and anno-
tated based on reference datasets (HCL and MCA) with de-
fault parameters.

For ACTINN, external test datasets and reference
datasets from human and mouse cell atlases were trans-
formed into .h5 objects and reference datasets (HCL and
MCA) were used to annotate test datasets with default pa-
rameters.

For scID, reference datasets (HCL and MCA) were used
to construct markers by the method of MAST in Seurat.
Then, reference datasets and markers were used to annotate
external test datasets with default parameters.

For SCINA, the CellMatch database containing tissue-
specific cell markers was used as a reference to annotate ex-
ternal test datasets with default parameters.

For scPred, reference datasets (HCL and MCA) were
transformed into scPred objects and trained with default
parameters, which were then used to annotate external test
datasets.

For singleCellNet, reference datasets (HCL and MCA)
were trained with default parameters and used to annotate
external test datasets with default parameters (nrand = 50
in ‘get cate’).

For SVM, reference datasets (HCL and MCA) were
trained with default parameters (the scikit-learn python
package) over the same cell representations as the ones
applied in scDeepSort and used to annotate external test
datasets.

Testing scRNA-seq datasets using different training sets

To test MCA datasets and mouse external test datasets us-
ing TM datasets as the training set, seven TM datasets
having the common tissues with MCA datasets (i.e., blad-
der, bone marrow, kidney, liver, lung, mammary gland and
spleen) were used.

To test mouse external test datasets using TM datasets as
the training set, 11 TM datasets having the common tissues
with mouse external test datasets (i.e., bone marrow, kidney,
liver, lung, and spleen) were used.

To test TM datasets using MCA datasets as the training
set, seven MCA datasets having the common tissues with
TM datasets (i.e., bladder, bone marrow, kidney, liver, lung,
mammary gland, and spleen) were used.
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Table 1. Comparison of scDeepSort with other methods

Methods Property Performance

Marker-
dependent

Profile-
dependent Unsure cells

95% CI of mean
F1 score

95% CI of
mean MCC

Accuracy
(265 489 cells)

Ratio of
unsure cells

scDeepSort -
√ √

0.47–0.68 0.48–0.69 83.79% 0.32%
CellAssign

√
- - 0.13–0.36 0.14–0.39 13.36% -

Garnett
√

-
√

0.07–0.18 0.03–0.24 17.38% 39.09%
SingleR -

√
- 0.39–0.59 0.36–0.56 65.99% -

scMap-cell -
√ √

0.17–0.35 0.23–0.42 26.01% 66.20%
scMap-cluster -

√ √
0.03–0.22 0.17–0.49 13.84% 84.15%

ACTINN -
√

- 0.42–0.63 0.43–0.63 76.05% -
CHETAH -

√ √
0.33–0.54 0.32–0.54 63.45% 23.74%

scID -
√ √

0.16–0.31 0.11–0.27 21.31% 9.00%
SCINA

√
-

√
0.27–0.48 0.24–0.46 39.34% 27.10%

scPred -
√ √

0.18–0.40 0.22–0.48 42.16% 48.75%
singleCellNet -

√
- 0.42–0.61 0.45–0.63 78.24% -

SVM -
√

- 0.18–0.36 0.14–0.41 46.41% -

CI, confidence interval. MCC, Matthews correlation coefficient.

Accuracy, F1 score and MCC evaluation

For the accuracy in Figures 4 and 5, it is defined as the per-
centage of consistent cells with the same cell type, as in the
literature, for each external test dataset and each tissue. For
the accuracy in Table 1, it is the ratio of consistent cells from
all tissues involving 265 489 cells. To calculate the F1 score
and Matthews correlation coefficient (MCC), test datasets
containing at least two cell types were selected, which gener-
ated 16 external test datasets across nine tissues for human
and 11 external test datasets across six tissues for mouse.
For each cell type in each test dataset, we calculated a F1
score and MCC by following equations:

F1 score = 2∗TP
2 ∗ TP + FP + FN

MCC = TP ∗ TN − FP ∗ FN√
(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)

where TP, FP, FN, and TN are short for the true positives,
the false positives, the false negatives, and the true negatives,
respectively.

We calculated an F1 and MCC for each cell type within
each tissue, and then aggregated them across cell types
among all test datasets to obtain the 95% CI of mean F1
score and mean MCC (Table 1), while we calculated a mean
F1 and MCC of all cell types for each test dataset and each
tissue (Figures 4 and 5).

Statistics

R (version 3.6.1) and GraphPad Prism 8.0.1 were used for
the statistical analysis.

RESULTS

General description of scDeepSort

In brief, we applied a supervised deep learning model based
on a weighted GNN framework to build the scDeepSort
model with underlying data of human and mouse single-
cell transcriptomics atlases. First, dense representations,
namely vectors, for cells and genes were obtained with

dimensionality reduction methods to initialize fixed-size
node embeddings, since the single-cell transcriptomics data
are usually sparse matrices. Principal component analysis
(PCA) was used to extract dense representations for gene
nodes from the cell–gene data matrix and cell node repre-
sentations were then calculated by the weighted sum of gene
node representations and the cell–gene data matrix. Then,
an undirected and weighted graph containing cell nodes and
gene nodes was constructed from an adjacent weighted ma-
trix by taking the gene expression as the weighted edges be-
tween cells and genes to model the intrinsic geometric in-
formation, which constitutes scDeepSort’s first embedding
layer (Figure 2).

In detail, the scDeepSort model’s architecture consists of
three components: the embedding layer, the weighted graph
aggregator layer, and the linear classifier layer (Figure 2).
The embedding layer, namely the input layer, generate vec-
tors for graph nodes, i.e. cells and genes, which are initial-
ized as previously described and are frozen during train-
ing. In the weighted graph aggregator layer, GraphSAGE
(38) was applied as the backbone GNN framework and
heavily modified in some aspects as detailed in Methods.
The weighted graph aggregator layer gathers information
about the neighborhood and itself during training for each
subgraph, which produced a new representation for each
node. The final linear classifier layer, namely the output
layer, classifies the new cell representation produced from
the weighted graph aggregator layer into one of the prede-
fined cell type categories. For the cell node, once a label is
predicted by the linear classifier layer, the loss between this
prediction and the correct label is computed and then used
to update the parameters of three layers until convergence.

Performance and robustness on internal datasets

In this study, a total of 562 977 human cells from 56 tis-
sues and 201 764 mouse cells from 32 tissues which were
collected from recent published HCL and MCA were cu-
rated to construct single-cell transcriptomic atlases (Supple-
mentary Table S1). For each cell type, cells that were from
cell types representing <0.5% of the cells were dropped. For
each tissue in the human and mouse atlases, cells of various
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Figure 2. The weighted GNN algorithm of scDeepSort. The algorithm consists of embedding, weighted graph aggregator and linear classifier layers. The
embedding layer stores the graph node representations and is frozen during training, wherein dimensionality reduction methods (PCA and weighted sums)
were used to generate the initial fixed-size node representations, and the gene expression for each cell was regarded as the weighted edge between cells and
genes forming a weighted adjacent matrix. In the weighted aggregator layer, a self-loop confidence for each cell node and a learnable sharing confidence
for each gene node were incorporated into the weighted cell–gene graph. For each node (i.e. cell-centered and gene-centered) subgraph, weighted edges
were normalized and the node itself and its neighborhood were then gathered to generate a new cell node representation during aggregation. The linear
classifier layer categorizes the final cell state representation as a predefined cell type.

types were randomly divided into training and test sets, en-
suring that the ratio of training and test cells was set to 8:2
for each cell type. In total, this process generated 443 566
training cells and 110 860 test cells from the HCL, 160 519
training cells and 40 112 test cells from the MCA. After su-
pervised learning on training sets, we evaluated the scDeep-
Sort’s performance on HCL and MCA test sets with five
replicates.

Across 56 human tissues and 32 mouse tissues, scDeep-
Sort annotated the most cells, with the mean accuracy rang-
ing from 85.20% to 99.11% for HCL and from 73.22%
to 98.14% for MCA, respectively (Figure 3A). Among the
common tissues (i.e., bladder, bone marrow, fetal lung, fetal
brain, fetal intestine, fetal liver, fetal stomach, kidney, liver,
lung, muscle, pancreas, peripheral blood, placenta, spleen,
and stomach) between HCL and MCA, the accuracies be-
tween them were much similar across 16 tissues except for
the fetal brain (Supplementary Figure S2).

Moreover, we have validated the robustness of the
pipeline by running the experiments for each alternative
split (8:2, 7:3, 6:4 and 5:5 of the training set and the test

set). As shown in Figure 3B, we selected the splits of 8:2,
7:3, 6:4 and 5:5 to test the HCL and MCA test sets for each
tissue with five replicates. Concordantly, these four kinds of
splits showed close accuracies across 56 human tissues and
32 mouse tissues.

To get a better idea of what role the reference has in
the performance, we have mapped the TM cells to the
MCA annotation, which generated seven datasets having
the common tissues with MCA (i.e., bladder, bone mar-
row, kidney, liver, lung, mammary gland, and spleen). Then
we compared the performance of different training sets
(TM or MCA) on the annotation of cell types, i.e. test-
ing TM using MCA as the training set and testing MCA
using TM as the training set (Figure 3C). Although both
of them accurately annotated most cells across seven tis-
sues (79% and 76% accuracies, respectively), accuracies of
testing TM using MCA as the training set were slightly
higher than that of testing MCA using TM as the train-
ing set except on the spleen dataset. We observed that
there are 18 401 cells in TM datasets and 21 651 cells
in MCA datasets involving these common tissues, which
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Figure 3. Performance and robustness of scDeepSort on internal test datasets and performance of different references on annotation of cell types. (A)
Accuracy of scDeepSort in annotating the HCL test set across 56 tissues (line chart) and the MCA test set across 32 tissues with five replicates by the 8:2
split of the training set and the test set. The bar chart shows the number of test cells for each tissue. (B) Accuracy of scDeepSort in annotating the HCL
and MCA test set by the split of 8:2, 7:3, 6:4 and 5:5 with five replicates for each alternative split. The data of the accuracy represents the mean ± SD. (C)
Performance of different references on the annotation of cell types. The accuracy for each dataset was labelled for bar plot (left) and the median accuracy
across seven datasets was labelled beside the box (right).



e122 Nucleic Acids Research, 2021, Vol. 49, No. 21 PAGE 8 OF 13

Figure 4. Performance comparison on human external test datasets. (A) Heatmaps of accuracies for scDeepSort, CellAssign, Garnett, SingleR, scMap-cell,
scMap-cluster, ACTINN, CHETAH, scID, SCINA, scPred, singleCellNet and SVM on 27 external test datasets across 10 tissues and mean F1 scores and
mean MCCs on 20 external test datasets across nine tissues. The asterisk represents the top-ranked method for each test dataset. NA, not available. (B)
Boxplots summarized the maximal, minimal, median and quantile accuracies, mean F1 scores and mean MCCs for different methods among different
tissues. The median value is labelled beside the corresponding box. MCC, Matthews correlation coefficient.
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Figure 5. Performance comparison on mouse external test datasets. (A) Heatmaps of accuracies for scDeepSort, CellAssign, Garnett, SingleR, scMap-cell,
scMap-cluster, ACTINN, CHETAH, scID, SCINA, scPred, singleCellNet and SVM on 49 external test datasets across 18 tissues and mean F1 scores and
mean MCCs on 11 external test datasets across six tissues. The asterisk represents the top-ranked method for each test dataset. NA, not available. (B)
Boxplots summarized the maximal, minimal, median and quantile accuracies, mean F1 scores and mean MCCs for different methods among different
tissues. The median value is labelled beside the corresponding box. MCC, Matthews correlation coefficient.
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might account for the slight superiority of testing TM
using MCA as the training set because MCA has a larger
sample size than TM.

Performance comparison of scDeepSort with other methods

We collected human and mouse scRNA-seq data manually
from high-quality studies, forming 76 external test datasets
(Supplementary Table S2) to comprehensively compare
the performance of scDeepSort with other single-cell an-
notating methods (Table 1). For the marker-dependent
methods (CellAssign, Garnett and SCINA), CellMatch
(7) was used as the reference for annotation. CellMatch
is a comprehensive and tissue-specific cellular taxonomy
reference database providing a panel of 20,792 human
and mouse marker genes involved with 184 tissue types
and 353 cell types. For profile-dependent methods (Sin-
gleR, scMap, ACTINN, CHETAH, scID, scPred, single-
CellNet and SVM), the HCL and MCA were used as refer-
ences, wherein scDeepSort was systematically trained based
on the same references (i.e. 562 977 human cells from 56 tis-
sues and 201 764 mouse cells from 32 tissues). Considering
the insufficient sample size of some cell types (e.g. alpha,
beta and delta cells) in the HCL pancreas dataset, another
large human pancreas dataset (37) by Baron et al. was inte-
grated with the HCL pancreas dataset to pre-train scDeep-
Sort. To ensure that all methods are able to predict the right
cell identity, only cell types and subtypes that were recorded
in both cell marker database (CellMatch) and RNA-seq
profiles (HCL and MCA) were selected to establish external
test datasets, which generated a total of 265 489 test cells for
human and mouse (Supplementary Table S2).

Generally, scDeepSort accurately annotated most cell
types and subtypes with an 83.79% accuracy across 265
489 human and mouse cells, outperforming all other meth-
ods (singleCellNet, 78.24%; ACTINN, 76.05%; SingleR,
65.99%; CHETAH, 63.45%; SVM, 46.41%; scPred, 42.16%;
SCINA, 39.34%; scID, 21.31%; scMap-cell, 26.01%; Gar-
nett, 17.38%; scMap-cluster, 13.84%; CellAssign, 13.36%,
Table 1). Also, scDeepSort obtained the highest mean F1
score (0.47–0.68) and mean MCC ranging from 0.48 to 0.69
(Table 1).

Specifically, there are 27 human external test datasets
containing a total of 130 885 cells involving 10 tissues:
blood, brain, colorectum, fetal kidney, kidney, liver, lung,
pancreas, placenta and spleen. By mapping the predicted
cell label with the real one (Supplementary Table S3), we
systematically compared the accuracy, mean F1 score, and
mean Matthews correlation coefficient (MCC) of scDeep-
Sort with other methods for each test dataset (Supplemen-
tary Table S4, Figure 4A), wherein datasets containing at
least two cell types or subtypes were selected to calculate
the F1 score and MCC. For each tissue, the result shows
that scDeepSort was superior to other methods given the
median accuracy (78.39%), mean F1 score (0.51) and mean
MCC (0.53), followed by singleCellNet (72.00% median ac-
curacy), ACTINN (70.86% median accuracy), CHETAH
(55.32% median accuracy), SingleR (44.03% median accu-
racy), SVM (36.65% median accuracy) and SCINA (24.63%
median accuracy) (Figure 4B). For other methods (i.e. Cel-

lAssign, Garnett, scMap, scID and scPred), they exhibited
significant inadequacies in annotating human test datasets.

In the same manner, we also evaluated the performance
of scDeepSort and other methods on annotating 49 exter-
nal test datasets of mouse cells, which includes 134 604
cells from 12 tissues: blood, bone marrow, brain, fetal
brain, intestine, kidney, liver, lung, mammary gland, pan-
creas, spleen and testis. Concordantly, scDeepSort showed
an excellent performance among different datasets (Fig-
ure 5A), which also exhibited the highest median accu-
racy (83.05%) followed by singleCellNet (69.78%), SingleR
(69.62%), ACTINN (69.33%), CHETAH (44.99%) and
SVM (43.97%) among different tissues as shown in Figure
5B. However, Garnett and scMap-cluster seemed unable to
distinguish the most cells’ identities exhibiting a relatively
poor performance on annotating mouse test datasets con-
sidering the accuracy, mean F1 score, and MCC (Supple-
mentary Table S4, Figure 5B). The reason might be that
Garnett need collect sufficient training samples from test
datasets by using cell markers when training the classifier,
and the low accuracy for Garnett may have been caused by
too few training samples at the root of a cell type hierar-
chy leading to the missing of some cell types in the trained
classifier. As for scMap-cluster, it uses the median gene ex-
pression of each cell cluster for similarity comparison with
test cells, which might introduce some uncertainties when
projecting test cells to reference cell clusters. Moreover, a
selection-bias effect specific to the implementation could be
the cause as well.

In short, the present results showed that scDeepSort
can accurately predict most test cells with the top-ranked
performance, wherein the performance of some meth-
ods is also quite well such as SingleR, singleCellNet,
ACTINN and CHETAH. Indeed, some methods exhibit
an unappealing performance in our benchmarking analy-
sis, especially for marker-dependent ones, i.e. CellAssign,
Garnett, and SCINA. The relatively poor performance of
marker-dependent methods may be largely caused by the
markers, as these methods heavily rely on the quality and
integrality of selected marker genes. On the other hand, it
is a common practice to use markers to annotate the cell
type for pre-computed clusters rather than single cells. It has
been reported that some cluster-based marker-dependent
methods (e.g., scCATCH and SCSA) show decent perfor-
mance in predicting the cell types of clusters (6,7). Unlike
the cluster-based methods, CellAssign, Garnett and SCINA
predict the cell type for each cell instead of the cluster. As a
consequence, the poor performance of CellAssign, Garnett,
and SCINA might result from the poor extrapolation of
markers on cell-based marker-dependent cell typing meth-
ods.

Although CellAssign, scmap, scID and SCINA per-
formed worse than other methods across 265 489 cells, it’s
worth to point out that they exhibited significant perfor-
mance on some individual test datasets. For example, Cel-
lAssign obtained the highest accuracy among all methods
over the human fetal kidney dataset and the mouse fetal
brain dataset, etc., while scID is the top-ranked method
over the human placenta dataset. On annotating the sec-
ond mouse pancreas dataset, both scMap-cell and scMap-
cluster perfectly classified the most cells’ identities. For
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SCINA, as shown in Figure 5, it exhibited the highest per-
formance over the most mouse brain datasets.

Moreover, to demonstrate the universality of scDeep-
Sort, we first used it to annotate three more challenging
atlases (Supplementary Figure S3). For DropViz, almost
all cells involving astrocytes, microglia/macrophage, and
oligodendrocytes were assigned into the correct category.
For the oncoscape dataset, scDeepSort accurately assigned
neurons and neuronal progenitor cells as the label for most
neuron-related cells (i.e. inhibitory neurons, inhibitory in-
terneurons, inhibitory neuron progenitor, postmitotic pre-
mature neurons, sensory neurons, granule neurons and neu-
ronal progenitor cell) since these subtypes of neurons hardly
exist in the training set of MCA. It is noted that some ex-
citatory neurons were predicted as ganglion cells. In fact,
the ganglion cell, namely the retinal neurons, is classified
by its location in the tissue, while the excitatory neuron is
classified by the function. Therefore, it is hard to compare
the relation between them. For the loom dataset, more than
half of neuron-related cells (neurons, granule neurons and
hippocampus neurons) were predicted as neural progeni-
tor cells and postmitotic neurons, while near half neurons
were predicted as the unsure type. For these more challeng-
ing atlases, scDeepSort can accurately predict the main cell
type for most cells except the partial neurons in the Loom
dataset.

In addition, we mapped 49 external mouse test datasets
to the TM datasets, wherein 11 external test datasets hav-
ing the common tissues and the corresponding cell types
with TM datasets were included. Concordantly, the results
showed that TM-based models also accurately annotated
the most test cells among 11 datasets reaching a 95% ac-
curacy (Supplementary Figure S4), suggesting the univer-
sality of our weighted GNN-based deep learning model in
cell-type classification on scRNA-seq data with Drop-Seq
considering the multiple scRNA-seq technologies (39).

It is known that an important feature of cell typing meth-
ods is to be able to assign a cell into an unsure category
considering the unseen cell types in the training set. Like
most methods including Garnett, scMap, CHETAH, scID,
SCINA and scPred, scDeepSort also has this ability, while
CellAssign, SingleR, ACTINN and singleCellNet do not.
Among 265 489 test cells, scDeepSort assigned 0.32% cells
as the unsure type, while the ratio of unsure cells seems too
high for other methods, i.e. scMap-cluster (84.15%), scMap-
cell (66.20%), scPred (48.75%) and Garnett (39.09%), which
might also account for the unappealing outcomes of these
methods to a certain extent.

For scDeepSort, it is mainly pre-trained based on GPU
consuming a small percentage of the resource during train-
ing (Supplementary Table S5), i.e. about 8% memory (∼5G)
and 5% video memory (∼2.4G), wherein training time is
within minutes as the examples in Supplementary Fig-
ure S4. Considering that other methods are dependent on
CPU, a server without GPU was selected to fairly evalu-
ate the computation time for all methods on annotating
external test datasets by varying the number of cells and
genes for profile-dependent methods and varying the num-
ber of cell types and markers for marker-dependent meth-
ods (Supplementary Table S5). For CellAssign, SingleR,
scMap, ACTINN, CHETAH, scID and SCINA, they train
and predict simultaneously, the computation time depends

on the training time. Although Garnett, scPred and sin-
gleCellNet train and predict separately, the computation
time for prediction is very short despite the large-scale test
datasets (Supplementary Table S5). Obviously, the com-
putation time for profile-dependent methods (i.e. SingleR,
scMap-cell, ACTINN, CHETAH, scID, scPred and single-
CellNet) is positively correlated with the size of the train-
ing set, while the computation time for marker-dependent
methods (i.e. CellAssign, Garnett, and SCINA) is influ-
enced by the number of markers and cell types. Com-
pared to other methods, the pre-training is an advantage of
scDeepSort which saves computation time. Therefore, the
computation time of scDeepSort lies in the prediction as it
needs construction of cell–gene graph network and adds the
new test cells into the graph network. As shown in Supple-
mentary Table S5, the computation time of scDeepSort over
six test datasets is within minutes enabling the fast annota-
tion of scRNA-seq datasets.

DISCUSSION

In this study, we developed a scalable cell-type annotation
tool for single-cell transcriptomics data by using a pre-
trained deep learning model with a GNN model for the
first time. From human and mouse scRNA-seq datasets,
scDeepSort was able to be able to annotate most cells under
the context of a specific organ, significantly outperforming
known methods and the classical machine learning method
(SVM). Actually, what makes deep learning different from
standard machine learning is not the count of layers but
how the information being processed and transformed over
times (40,41). As one of the most famous deep learning
methods, the advantage of GNN lies in the ability of ar-
tificial intelligence techniques to integrate big data, incor-
porate existing knowledge, and learn arbitrarily complex
relationships, which has achieved the state-of-the-art accu-
racy on numerous prediction tasks in the computer science
(26,27).

In fact, the accuracy of our designed weighted GNN-
based scDeepSort improves 13% and 6% in predicting cell
types and subtypes for internal datasets and external hu-
man pancreas datasets, respectively, compared to the tra-
ditional GNN-based deep learning model (Supplementary
Table S6). Moreover, on three more challenging single-
cell atlases (33–35), scDeepSort also accurately predicts the
main cell type (Supplementary Figure S3) for most cells
except the partial neurons in the Loom dataset (35). The
present results indicated the superiority of our weighted
GNN-based deep learning model in processing big data like
high-throughput scRNA-seq data and in prediction.

An important feature of cell typing methods is to be able
to assign a cell into an unsure category considering the
unseen cell types in the training set. Like most methods,
scDeepSort is allowed to predict the unsure type. Besides
the external test datasets, a negative control was included
revalidating the predicted unsure type by scDeepSort us-
ing samples from different tissues (Supplementary Figure
S5). Nevertheless, a good cell-type annotation method is
to accurately identify the cell type rather than assigning
an unsure type in practice. Limited training datasets would
directly influence the cell-type annotation, e.g. generating
the unsure type, especially for these cell subtypes without
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sufficient training data. Indeed, some rare or intermedi-
ary cell types without sufficient training data were dropped
causing the inability to annotate them, which is a common
limitation for all single-cell annotation methods. However,
increasing scRNA-seq studies will enable the expansion and
perfection of atlases across the two species, especially for
the rare or intermediary cell types. Future integration of
HCL, MCA, and other known large-scale single-cell atlases
containing the rare or intermediary cell types with suffi-
cient training data will effectively address this issue. Hence,
we have provided an extra function on GitHub for users
to train a new model using our proposed weighted GNN
method with their own reference datasets containing the
rare or intermediary cell types of interest, given the pos-
sible rare or intermediary cell types which are not present
in our pre-trained models. Under this scenario, users are
able to annotate the rare or intermediary cell types on a new
dataset.

Interestingly, it seems easy to map cells across the human
pancreas as reported in the recent benchmark analysis (18),
wherein the widely-used human pancreas datasets (37,42–
44) were tested. Concordantly, SVM and most methods
also achieved good performance on the human pancreas
datasets in our study. However, SVM and some methods in-
deed exhibited an unappealing performance on the enlarged
datasets and tissues. It is noted that it is the first time that the
most comprehensive benchmarking datasets with 265 489
cells involving 22 tissues in humans and mice were intro-
duced to compare the performance of different cell-typing
methods generating the unbiased conclusion. Above all, we
have systematically and comprehensively demonstrated the
ground-breaking and robust performances of our proposed
weighted GNN model on the internal and external bench-
marking datasets. The key point of our work is that the top-
ranked performance for the accurate cell-type annotation,
which is the most important part in the application scenario
of scRNA-seq (45).

In addition, we tried to provide the interpretability of
our weighed GNN models using the GNNExplainer (46),
a model-agnostic approach for providing interpretable ex-
planations for predictions of GNN-based models, to gen-
erate possible explanations. Taking the macrophage of hu-
man liver datasets as the example, we used GNNExplainer
to identify a compact subgraph structure and a small subset
of node features that have a crucial role in GNN’s prediction
as shown in Supplementary Figure S6A below, which iden-
tifies the important graph structure and 59 important node
features for the macrophage. Among the 59 node features,
most of them (95%) have a significantly high expression (Z
score > 1.5) across macrophages (Supplementary Figure
S6B), wherein six node features are macrophages’ mark-
ers (32,47,48), i.e., TMSB4X, RPL10, RPL11, S100A4,
CD52 and GZMA (Supplementary Figure S6C). The re-
sults of GNNExplainer indicated that the highly expressed
node features including marker genes might play a more
important role in the information aggregation and propa-
gation in the constructed cell-gene graph during iterations
enabling learning better cell representations, which signifi-
cantly improve the performance of the GNN model.

Despite of the great success on many fields, deep learning
models, are commonly believed as black boxes. It is well-
known that it is easy to interpret the machine learning meth-

ods as most of them are shallow. However, the interpretabil-
ity is the common failing and difficulty for the majority of
deep learning models, which is also a great challenge in the
field of computer science (27,49). Also, there still lack of ef-
ficient methods for the interpretability of GNN models, al-
though the GNNExplainer can partly generate the possible
explanations for them. Future improvements are supposed
to be made in the science community on the biological inter-
pretation of the GNN models, which will substantially facil-
itate the development of biological research and biomedical
applications.

DATA AVAILABILITY

No new data was generated for this study. All data
used in this study is publicly available as previously
described. scDeepSort is available as a python pack-
age (https://github.com/ZJUFanLab/scDeepSort) and the
source code and results of comparison with other meth-
ods are available at github (https://github.com/ZJUFanLab/
scDeepSort performance comparison).
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