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ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolu-
tion and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an
important model for studying the generation, physiological impact, and evolutionary
significance of CCNV. Fundamental studies of this yeast have contributed to an ex-
tensive set of methods for analyzing and introducing CCNV. Moreover, these studies
provided insight into the balance between negative and positive impacts of CCNV in
evolutionary contexts. A growing body of evidence indicates that CCNV not only fre-
quently occurs in industrial strains of Saccharomyces yeasts but also is a key contrib-
utor to the diversity of industrially relevant traits. This notion is further supported by
the frequent involvement of CCNV in industrially relevant traits acquired during evo-
lutionary engineering. This review describes recent developments in genome se-
quencing and genome editing techniques and discusses how these offer opportuni-
ties to unravel contributions of CCNV in industrial Saccharomyces strains as well as
to rationally engineer yeast chromosomal copy numbers and karyotypes.
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Saccharomyces yeasts are applied in a large and expanding number of industrial
processes (1), ranging from traditional applications such as dough leavening (2) and

beer (3) and wine fermentation (4) to modern processes such as the production of first-
and second-generation fuel ethanol (5, 6), other low-molecular-weight compounds (7),
and heterologous proteins (8). Selection and improvement of yeast strains remain
essential to meet the complex, diverse, and continually changing performance criteria
for industrial applications of Saccharomyces yeasts (9). Improving and extending yeast
strain applications can be pursued by exploration of biodiversity, mating, interspecies
hybridization, random mutagenesis and selection, evolutionary engineering, targeted
genetic modification, or a combination of these approaches (10).

Understanding the genetic basis for industrial performance is invaluable for focusing
and accelerating microbial strain improvement. In prokaryotes, genetic variation
among related strains and species predominantly encompasses the presence or ab-
sence of protein-encoding and regulatory sequences, as well as mutations in these
sequences. In eukaryotes, including the Saccharomyces yeasts, differences in ploidy, i.e.,
variations in copy number of chromosomes, provide an important additional source of
genetic diversity (11).

While most eukaryotic cells are euploid, i.e., their chromosomes all have the same
copy number, aneuploidy is encountered in nature as well as in manmade contexts. In
aneuploid cells, the copy number of one or more chromosomes differs from that of the
remainder of the genome. The existence of stable aneuploidy cells implies that chro-
mosomal copy number variation (CCNV) contributes to genetic and physiological
diversity within eukaryotic species and, in multicellular eukaryotes, within organisms.
The biological significance of CCNV is powerfully illustrated by its impacts on human
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health. Effects of CCNV of human X and Y chromosomes range from infertility (XXY) to
mental retardation (XXXXY), while trisomies of other chromosomes can cause de-
creased life span, mental retardation, and premature fetal death (12, 13). Spectacular
CCNV occurs in most human cancer cell lines, leading to chromosome numbers of up
to 90, and has been linked to the cancer hallmark of increased genome instability (14).
Targeting of aneuploid cells is therefore considered a potential strategy for cancer
therapy (15). Use of polyploid plants and animals in agriculture is related to their
increased size and infertility (16, 17), while allopolyploid plants additionally combine
industrially relevant traits from two parental genomes (18, 19). As will be discussed in
this paper, CCNV is also an important phenomenon in industrial strains of Saccharo-
myces yeasts, whose history often involves prolonged domestication and/or industrial
strain improvement.

Saccharomyces cerevisiae is an important model for studying how aneuploidy arises
during mitotic and meiotic cell division, how it affects growth, and how it influences
evolution of eukaryotes. These research fields are discussed in recent specialized review
papers (20–22). The present paper specifically aims to review current knowledge on the
analysis, occurrence, and significance of CCNV in Saccharomyces yeasts in industrial
contexts. To this end, we review methods for analyzing CCNV in yeast strains, the
mechanisms by which CCNV can arise spontaneously or be induced in the laboratory,
and the mechanisms by which CCNV can negatively affect fitness of yeast cells.
Subsequently, we discuss the occurrence and significance of CCNV for domestication
and development of industrial strains of Saccharomyces yeasts and its relevance in
evolutionary engineering.

METHODS FOR CCNV ANALYSIS IN YEASTS

Analysis of chromosomal copy numbers in yeasts predominantly relies on five,
largely complementary methods (Fig. 1). Flow cytometry analysis of cells stained with
fluorescent DNA-intercalating dyes, using reference strains for calibration, enables
absolute quantification of cellular DNA content and overall ploidy (23). The choice of
fluorescent dyes should consider excitation/emission spectra, RNA/DNA specificity,

FIG 1 Methods to analyze chromosome copy number and DNA content in yeast cells. (A) Absolute quantification of the DNA content of strain CBS1483 by flow
cytometry using the DNA-intercalating dye Sytox Green and calibration with three strains of known ploidy. (Adapted from reference 23.) (B) qPCR fluorescence
profiles for different initial concentrations of a template DNA sequence can be used to infer the amount of initial template in a reaction and to calculate relative
copy numbers of different parts of the template DNA. (Republished from reference 157.) (C) Chromosome copy number determination of S. cerevisiae variants
using contour-clamped homogeneous electric field electrophoresis and Southern blotting. I, stained CHEF gel; II, Southern blot hybridization; III, quantification
of the hybridization bands. Lanes 1 and 2 show two disomic knockout strains that have only a single copy of chromosome VIII, while lane 3 shows a diploid
control strain. (Modified from reference 28 with permission [copyright 2005 John Wiley & Sons Ltd.].) (D) Copy number estimation of chromosome II by array
comparative genomic hybridization of an evolved strain relative to its unevolved parental strain. Deviating copy number can be detected by significant
deviations of the measured signal and has been accentuated by a red line. (Republished from reference 108.) (E) Copy number estimation of the genome of
the wine production strain VL3, based on whole-genome sequencing and read depth analysis. A marked increase of the read depth for chromosome VIII
indicates a gain of copy of that chromosome. (Adapted from reference 117.)
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mutagenicity, effects on viability, and the required accuracy (24). When the fluorescent
dye does not compromise viability, fluorescence-activated cell sorting (FACS) can be
used to select cells with a deviating DNA content. FACS-based selection has enabled
selection of mutants whose DNA content differed by less than 2% from that of the
parent population (25). While this FACS approach cannot select cells with specific
chromosome amplifications or deletions, it can preselect cells with a deviating overall
DNA content.

Contour-clamped homogeneous electric field (CHEF) electrophoresis separates yeast
chromosomes on agarose gels and is used to analyze chromosome complements
(karyotypes) of yeast strains (26, 27). Southern hybridization of CHEF gels can reveal
copy numbers of individual chromosomes by comparison of hybridization intensity
with reference strains (Fig. 1C) (28). However, the accuracy of CCNV estimates obtained
by this method is limited.

Copy numbers of individual yeast chromosomes can be analyzed by quantitative
real-time PCR (qPCR, Fig. 1B), using primers that amplify chromosome-specific genomic
sequences (29). Accuracy of PCR-based copy number estimates can be boosted by
digital droplet PCR (ddPCR), which uses microfluidics to generate thousands of replicate
PCRs in water-in-oil emulsions (30, 31). Since qPCR analysis estimates copy numbers of
only the amplified region(s), additional methods are required to assess whether these
reflect copy number variations of entire chromosomes or of specific chromosomal
regions (segmental aneuploidy).

Array comparative genomic hybridization (aCGH) compares local copy number
differences by hybridizing genomic DNA from related yeast strains to oligonucleotide
arrays (Fig. 1D) (32). Depending on oligonucleotide size and genome coverage of the
arrays, copy number variations can be analyzed across entire genomes at resolutions
down to 20 bp (33).

High-resolution, accurate analysis of CCNV in yeast increasingly depends on next-
generation sequencing (NGS) of entire yeast genomes (34). NGS enables ploidy esti-
mation from allele frequency in the whole genome and in specific regions (35).
Moreover, when sequence bias in DNA isolation and/or sequencing (36) is prevented,
the number of reads generated for any particular sequence (i.e., its read depth) directly
reflects its copy number relative to the remainder of the genome (Fig. 1E) (37). Computa-
tional tools assist CCNV identification via read depth, either by mapping of NGS reads
to a preassembled genome sequence or via de novo genome assembly (38). With both
approaches, the accuracy of copy number estimates increases with increasing sequenc-
ing coverage. When many copies of a chromosome are present in a yeast strain,
(dis)appearance of a single copy causes only a small relative change. Accurate analysis
of aneuploid yeast genomes with large variations in chromosomal copy numbers
therefore requires high sequencing coverage. Short-read-length NGS methods cur-
rently provide the most cost-effective access to high sequencing depth (�100�

coverage at read lengths from 75 to 400 bp can be obtained routinely with, for example
Illumina and Ion Torrent platforms). Sequencing reads can be mapped to a preas-
sembled, accurate reference genome similar to that of the sequenced strain, yielding
accurate CCNV estimates. If no such reference genome is available, de novo assembly
of the genome and subsequent copy number analysis can provide unbiased and
more accurate results (23). However, short-read-length NGS does not allow assem-
bly of repetitive regions whose length exceeds the read length, such as TY,
subtelomeres, and ribosomal DNA (rDNA) sequences in Saccharomyces genomes. De
novo genome assembly is strongly facilitated by long-read-length sequencing
platforms (e.g., Pacific Biosystems and Oxford Nanopore Technologies), either alone
or combined with short-read-length data. Moreover, when genes are present in
multiple nonidentical copies, it can be difficult to perform full reconstruction of
duplicated alleles (“phasing”) (39). Indeed, when two single nucleotide polymor-
phisms (SNPs) occur in only one copy of a gene, nucleotides can be assigned to a
specific allele only if individual reads that cover both variable positions are avail-
able. Allelic reconstruction, and by extension reconstruction of (parts of) chromo-

Minireview Applied and Environmental Microbiology

June 2017 Volume 83 Issue 11 e03206-16 aem.asm.org 3

http://aem.asm.org


some copies, is enhanced by the use of long-read or mate-pair sequencing data
(39). Long-read sequencing technologies still have higher error rates than short-
read platforms. Fast developments in real-time, single-molecule methods for rep-
lication (Pacific Biosystems) or nanopore (Oxford Nanopore Technologies) sequenc-
ing enable generation of extremely long reads with increasing accuracy (40–43) and
are likely to transform whole-genome resequencing (44). The potential of long-read
sequencing to capture entire chromosome arms or even entire chromosomes
within a single read offers unique possibilities to unravel chromosome structure,
translocation breakpoints, and allelic variation among duplicate chromosomes and
chromosomal fragments (41).

INDUCTION OF CHROMOSOME MISSEGREGATION

The anaphase of the eukaryotic cell cycle has evolved to conserve chromosomal
copy number during cell division. Its crucial steps include chromatid cohesion, centro-
some formation at opposite cell poles, kinetochore-microtubule attachment, and qual-
ity control at the spindle assembly checkpoint (45). Imperfections in any of these steps
can cause chromosome missegregation and, thereby, CCNV in eukaryotic cell popula-
tions, tissues, and tumors (45–47). Even in cell lines without predisposing defects,
chromosome missegregation occurs, albeit at very low frequencies (21, 48). In yeast,
chromosome missegregation can occur during mitosis (48) and, with a higher inci-
dence, during the meiotic process of sporulation (49). Figure 2 provides a schematic
overview of mechanisms by which missegregation of chromosomes can occur.

A wide range of chemical and physical stress factors increase the incidence of
chromosome missegregation in growing cultures. Stimuli that increase occurrence of
CCNV in mitotic yeast cultures include nutrient-limited growth (50), heat shock (51), UV
or X-ray irradiation (52), and chemical stress. Chemical compounds such as nocodazole,
fumaronitrile, and methyl benzimidazole-2-yl-carbamate induce a high incidence of
chromosome missegregation in S. cerevisiae (53–55). Polar aprotic solvents, including
ethanol esters, are other known inducers of CCNV (56), and high concentrations of

FIG 2 Schematic representation of chromosome segregation and of the common mechanisms leading to chromosome missegregation. Two
chromatids of two different chromosomes are shown in red and blue, with their centromeres and kinetochores. In green, the centrosomes are
shown with the assembled microtubule attached to the kinetochores of the chromatids. For each case, the microtubule-kinetochore assembly is
shown before and after the anaphase. (A) Correct chromosome segregation is achieved by amphitelic spindle assembly, where microtubules
connect each chromatid to a different centrosome, resulting in separation to opposite cellular poles during anaphase and maintaining a stable
karyotype in the daughter cells (45). (B and C) If only one of the chromatids is attached to a centrosome or both chromatids are attached to the
same kinetochore, referred to as monotely and syntely, respectively, proceeding to anaphase would result in the missegregation of both
chromatids to that centrosome. However, monotelic and syntelic spindle assemblies are detected at the spindle assembly checkpoint and
therefore rarely cause chromosome missegregation. (D) In the case of a merotelic spindle assembly, a chromatid is attached to both centrosomes
and, as a result, cannot migrate to a cellular pole. The resulting random segregation of the lagging chromosome can cause missegregation,
damage, and micronucleus formation (158). (E) When more than two centrosomes are formed, random attachment of chromatids can result in
chromosome missegregation due to chromosome lagging or unequal chromosome segregation (159).
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ethanol itself have also been reported to enhance chromosome missegregation in
fungal cells (57). Exposure to high ethanol concentrations may therefore contribute to
the frequent occurrence of CCNV in industrial yeast strains used for production of
alcoholic beverages and fuel ethanol (see below).

Chromosome missegregation can also be stimulated by genetic factors. Increased
ploidy strongly enhances chromosome missegregation (58), in particular when uneven
numbers of chromosome sets preclude equal distribution of chromosomes during
meiosis (59). Strongly increased chromosome missegregation rates have also been
observed in allopolyploid Saccharomyces yeasts, which carry chromosomes from dif-
ferent parental species and show a high incidence of aneuploidy (60). Since aneuploidy
itself, including segmental aneuploidy, also stimulates chromosome missegregation,
aneuploid cells are more prone to acquire further CCNV (61).

In contrast to chemical, physical, and genetic stresses, which affect segregation of all
chromosomes, targeted molecular genetic approaches enable elimination or amplifi-
cation of specific chromosomes. In S. cerevisiae, copy gain and loss of specific chromo-
somes have been achieved by cloning a strong inducible promoter upstream of the
centromere of the targeted chromosome (62, 63). When induced, transcription from the
promoter interferes with centromere function, thus causing missegregation during
mitosis. Aneuploid daughter cells that have lost or gained a copy of the targeted
chromosome can then be isolated from the resulting culture. Alternatively, by crossing
with kar1 null mutants, mating is prematurely aborted but chromosome transfer
between nuclei can still occur, yielding aneuploid cells. Aneuploidy of specific chro-
mosomes can be easily selected for when they carry marker sequences (64).

NEGATIVE IMPACTS OF CCNV ON FITNESS

Aneuploid yeasts typically show a reduced fitness relative to congenic euploid
strains (64). The molecular basis of generic transcriptional responses to aneuploidy
remains to be fully elucidated. Reported transcriptional responses in aneuploid strains
include downregulation of genes involved in cell growth and proliferation and upregu-
lation of genes involved in the environmental stress response (ESR) (64, 65). Studies on
the impact of gain or loss of chromosomes in otherwise euploid yeast strains showed
that the aneuploidy-associated stress response (AASR) includes increased genome
instability, low sporulation efficiency, reduced growth rate, increased nutrient uptake
rates, and reduced replicative life span (21, 66, 67). Phenotypic consequences of
chromosome gain and those of chromosome loss are similar, suggesting that the
responsible cellular mechanisms overlap (68). AASR intensity is positively correlated
with the length of the affected chromosome(s) and with the number of affected genes
(20, 64, 69). A much less pronounced AASR in polyploid strains has been attributed to
a smaller relative impact on chromosome number (64, 70). The absence of AASR-related
phenotypes upon introduction of a yeast artificial chromosome harboring nontran-
scribed mammalian genes indicates that AASR is not due to increased DNA content per
se (64).

Genome instability of aneuploid yeasts has been linked to the missegregation
events that cause aneuploidy and, in particular, to “lagging” (Fig. 2D) of chromosomes
during anaphase. DNA damage and imperfect repair of lagging chromosomes cause
mutations, deletions, and translocations (71, 72). Additionally, formation of transient
micronuclei by lagging chromosomes increases the mutation rate during subsequent
mitosis (73, 74). At a longer time scale, aneuploidy promotes generation of CCNV by
enhancing chromosome missegregation and mitotic recombination as well as by
impairing DNA repair (61, 75, 76). Impaired sporulation of aneuploid strains has been
linked to disruption of homologous chromosome pairing during meiosis (77). AASR-
related cell cycle defects involve slow accumulation of G1 cyclins, causing an abnormal
delay in the G1 phase (78, 79).

CCNV-associated changes in gene dosage can directly affect expression levels of the
affected genes. Typically, gain or loss of a chromosome coincides with an increased or
decreased expression level, respectively, of the large majority of expressed genes that
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it carries (80). Correct subunit folding and assembly of multiprotein complexes (29, 64,
81, 82), which strongly depend on subunit stoichiometry (83), can be disturbed when
one or more subunits are encoded by aneuploid chromosomes. A resulting “overload”
of the cellular protein folding machinery can cause accumulation of un- and misfolded
proteins and proteotoxic stress (67, 70). Indeed, some aneuploid strains show increased
sensitivity to inhibitors of protein folding and degradation (84) and impaired function-
ality of the proteasome, the chaperone Hsp90, or endocytosis-mediated protein deg-
radation (66, 70). Energy costs of protein misfolding and protein overproduction have
been implicated in the increased nutrient consumption and slow growth of aneuploid
yeast strains (85). The correlation between protein level and gene copy number is not
always straightforward (29, 64), and situations have even been described in which the
transcript level of individual genes decreased with increasing copy number (86–88).
Signaling cascades and transcriptional regulation are among the core cellular systems
that can be affected by aneuploidy (89). The impact of gene-dosage-related changes in
gene expression on AASR (29) can be further intensified or attenuated by mutations in
genes on nonaneuploid chromosomes (90). Such in trans effects can, for example, be
related to stoichiometric imbalances in protein complexes or pathways, unspecific
protein interactions, protein folding, and degradation (81).

Sensitivity to AASR is yeast strain dependent (91, 92). In tolerant strains, mutations
that attenuate AASR, such as a loss-of-function mutation in the deubiquitinating
enzyme Ubp6p, were identified (82). While not all mutations involved in AASR tolerance
are known, its relevance is amply demonstrated by the frequent occurrence of aneu-
ploidy in wild, clinical, and industrial isolates of Saccharomyces yeasts (35, 91, 93).

CCNV IN EVOLUTIONARY ENGINEERING

In addition to negative impacts on cellular fitness, chromosome-specific effects of
CCNV can also confer fitness benefits in specific environmental or genetic contexts.
Indeed, CCNV offers a fast way to modify gene copy number during natural evolution
of eukaryotes and to increase evolvability by allowing neofunctionalization of amplified
essential genes (51, 94–96). Under selective conditions, mutants with CCNV will out-
grow the parental population whenever positive effects of CCNV on fitness outweigh
any negative impacts of AASR, while further mutations that enhance positive effects or
decrease AASR can further increase the initial fitness benefit. CCNV is therefore seen as
a significant contributor to evolutionary adaptation in eukaryotes (51, 97).

Technically, adaptive laboratory evolution (ALE) encompasses prolonged cultivation
of microorganisms under defined conditions, combined with an analysis of the phe-
notypic and/or genotypic changes that occur during evolutionary adaptation (98). ALE
approaches that are specifically designed to select for industrially relevant traits are
often referred to as evolutionary engineering (99, 100). Resequencing of evolved strains
can provide insight into the genetic basis for industrially relevant traits and enable its
reverse engineering into naive, nonevolved strains (101). Evolutionary engineering is
particularly attractive for food and beverage applications, since it does not involve
recombinant DNA techniques and associated consumer acceptance and regulatory
issues (102).

While, on the time scales involved in natural evolution and speciation, CCNV is
considered to be a transient adaptation mechanism that is usually replaced by more
elegant and efficient mutations (103, 104), most ALE experiments with yeasts cover only
50 to 500 generations of selective growth. It is therefore not surprising that CCNV is
frequently encountered during ALE of Saccharomyces yeasts, for example, for the
selection of suppressor mutants (Table 1). Numerous evolutionary engineering studies
have linked CCNV to industrially relevant traits, ranging from tolerance to products or
inhibitors to improved kinetics of sugar fermentation or sedimentation behavior of
yeast cultures (Table 1). In some cases, ALE even resulted in complete duplication of the
genome of haploid S. cerevisiae strains, for instance, after selection for glucose-limited
growth, high ethanol tolerance, and increased sedimentation (105–107). In the last
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case, increased ploidy played a major role in shaping an evolved, multicellular pheno-
type.

In addition to whole-chromosome copy number variations, ALE frequently involves
segmental aneuploidies (108–111). While both can be identified by analysis of high-
coverage, short-read NGS data, precise definition of duplication and/or translocation
events and karyotypes involved in segmental aneuploidy generally requires additional
analysis by long-read sequencing or diagnostic PCR (110, 111).

Several methods can be applied to test if segmental or whole-chromosome aneu-
ploidies do indeed contribute to phenotypes acquired in an ALE experiment. In some
cases, hypothesis-based deletion or amplification of one or more genes on (an) affected
chromosome(s) can directly confirm the relevance of a CCNV. For example, an increased
copy number of chromosome III in jen1Δ mutants evolved for restoration of lactate
transport could be rapidly linked to the ADY2 monocarboxylate-transporter gene on
this chromosome (112). Overexpression or deletion studies were also successfully used
to identify 17 genes that contributed to the benefit of a copy gain of chromosome III
in an S. cerevisiae strain evolved for heat tolerance (103). Alternatively, the relevance of
a CCNV in an evolved strain can be tested by introducing the deviating chromosome
copy number in a euploid strain, e.g., via transcriptional interference with centromere
function (103, 113). Similarly, the chromosome copy number variation can be reverted
to wild type, e.g., by sporulation and analysis of segregants with wild-type karyotypes
(103, 113). Although the method is not routinely applied, specific chromosomal regions
that contribute to an acquired phenotype can be identified by targeted introduction of
segmental aneuploidy of sets of tiled chromosomal regions (114). Two recently de-
scribed PCR-based methods enable duplication or deletion of chromosome segment
copies by introduction of telomere seed sequences and of an additional centromere to
generate an additional autonomously replicating chromosome fragment. By introduc-
ing centromere and telomere seed sequences pointing outward of the region of
interest, this region will be duplicated on an additional, independently replicating
chromosome (115). Conversely, by introducing a centromere and telomere seed se-
quences pointing into the region of interest, the targeted chromosome is split into two
autonomously replicating chromosomes that no longer contain the targeted region

TABLE 1 Examples of whole-chromosome copy number variations acquired during laboratory evolution experiments with Saccharomyces
cerevisiae strainsa

Selected phenotype Aneuploid chromosome(s)
Confirmed
causality Contributing gene(s) Reference

Biomass sedimentation Whole-genome duplication Yes ACE2 105
Glucose-limited growth Whole-genome duplication Yes 107
High temp tolerance III (�1) Yes 17 individual genes 103
High pH tolerance V (�1) Yes 103
Glucose-limited growth I (�1), III (�1), V (�1) No 108
Phosphate-limited growth IV (�1), VI (�1), X (�1),

XIII (�2), XVI (�1)
No 108

Lactate utilization by jen1Δ strain III (�1) Yes ADY2 112
Xylose utilization I (�1) No 160
p-Coumaric and ferulic acid tolerance XIV (�1) No 160
Copper tolerance II (�1), VIII (�1) No CUP1, SCO1, and SCO2 104
Galactose tolerance VIII (�1) Yes GAL80 161
Ethanol tolerance III (�1), VIII (�1) No 106
Radicicol resistance XV (�1) Yes STI1 and PDR5 113
Fluconazole resistance VIII (�1) No ERG11 113
Tunicamycin resistance XVI (�1) Yes 113
Benomyl resistance XII (�1) No 113
Suppressors of MEC1 deficiency IV (�1) Yes RNR1 162
Suppressors of MYO1 deletion XIII (�1), XVI (�1) Yes HSP82, HSC82, RLM1, and MKK2 94
Suppressors of RPS24A and RNR1 deletion IX (�1) No RPS24B and RNR3 163
Suppressors of telomerase insufficiency VIII (�1) No PRP8, UTP9, KOG1, and SCH9 164
aIn the examples listed, the acquired CCNV was hypothesized to contribute to the selected phenotype. “Confirmed causality” indicates that a causal link between
CCNV and the phenotype acquired during laboratory evolution was experimentally confirmed. In cases where the impact of a CCNV on phenotype was linked to
specific genes, this is also indicated. Segmental aneuploidies observed in the cited studies are not included in the table.
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(116). This approach enables a nonbiased, systematic analysis of the positive and
negative contributions of chromosomal regions and/or individual genes.

CCNV IN INDUSTRIAL SACCHAROMYCES YEASTS

Aneuploidy has been observed in Saccharomyces strains used in diverse industrial
applications, including dough leavening, bioethanol production, beer brewing, spirit
production, wine fermentation, and production of cacao and coffee (Table 2). In
industrial strains, CCNV may have occurred during centuries-long domestication pro-
cesses and/or during strain improvement programs that involved CCNV-inducing mu-
tagenesis procedures such as UV irradiation (52).

Currently available information suggests that aneuploidy is not prevalent among S.
cerevisiae strains used in dough leavening, bioethanol production, ale-type beer fer-
mentation, and distilled-beverage production. In these strains, aneuploidy typically
involves small deviations in copy number of one or a few chromosomes (117–119).
Since accurate information is available for only a few of the many hundreds of such
strains stored in culture collections, the incidence of CCNV may well be underestimated.
Indeed, a recent whole-genome sequencing study revealed extensive CCNV among
several beer-related S. cerevisiae strains that were previously assumed to be mostly
euploid (93).

There is ample evidence that copy numbers of individual genes or loci affect
industrially relevant traits of S. cerevisiae strains. For example, rates of sucrose, maltose,
and melibiose fermentation correlate with copy numbers of SUC, MAL, and MEL loci,
respectively (120–122), while proline utilization rates correlate with the copy number of
the PUT1 proline oxidase gene (123). So far, the industrial significance of CCNV in
industrial S. cerevisiae strains has not been systematically explored. S. cerevisiae ZTW1,
a strain isolated from corn mash used in a Chinese bioethanol factory, provides an
interesting exception. In this strain, chromosomal and segmental aneuploidy were
shown to directly contribute to industrially relevant traits, including copper tolerance
and ethanol yield (124).

TABLE 2 Examples of CCNV in industrial Saccharomyces strainsa

Strain Species Industrial product
Approximate
overall ploidy Aneuploid chromosome(s) Reference

BR001 S. cerevisiae Bread 4n IX (�1) 93
BR004 S. cerevisiae Bread 4n IX (�1) 93
E-IM3 S. cerevisiae Cacao 3n VII 165
AY529517 S. cerevisiae Cacao 2n IV, XII 165
YE 2-2 S. cerevisiae Coffee 3n I, XV, XVI 165
JV2 S. cerevisiae Coffee 4n Extensive aneuploidy 165
Y-393 S. cerevisiae Kefir 3n I, III, IX 165
YJM1356 S. cerevisiae Cider 2n I (�2) 147
YJM1439 S. cerevisiae Ginger beer 2n VIII (�2) 147
FostersO S. cerevisiae Ale beer �2n III (�1), XIV (�1) 117
FostersB S. cerevisiae Ale beer �2n III (�1), V (�1), XV (�1) 117
CBS1483 S. cerevisiae � eubayanus Lager beer �2n Extensive aneuploidy 23
CBS1270 S. cerevisiae � eubayanus Lager beer �2n Extensive aneuploidy 23
AWRI796 S. cerevisiae Wine 2n I (�1) 117
VL3 S. cerevisiae Wine 2n VIII (�1) 117
F-12 S. cerevisiae Flor wine 2n VII (�1), XIII (�2) 130
SA001 S. cerevisiae Sake 2–3n V (�1) 93
SA003 S. cerevisiae Sake 2–3n I (�1) 93
SP011 S. cerevisiae Spirits 2n I (�1), III (�1), VI (�1), IX (�1),

XII (�1)
93

SP001 S. cerevisiae Spirits 2n I (�1), VI (�1) 93
Y-999 S. cerevisiae Bioethanol from starch 3n III 165
CBS7960 S. cerevisiae Bioethanol from sugarcane 2n VIII 165
ZTW1 S. cerevisiae Bioethanol from corn mash 3n IX (�1) 166
aThe overall ploidy of the strains and identified aneuploid chromosomes are indicated. For strains in which the copy number deviation from euploidy has been
determined, this is reported between parentheses. Extensive aneuploidy refers to strains with more than 10 aneuploid chromosomes. Segmental aneuploidies that
occur in many of these strains are not indicated in the table.
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Consistent with the increased rate of chromosome missegregation in alloploid cells,
aneuploidy is highly prevalent among wine and lager-type beer yeasts originating from
domestication of natural hybrids of different Saccharomyces species. Despite its fre-
quent occurrence, the impacts of aneuploidy in these genetic contexts have not been
explored in depth, and it is unclear how AASR and chromosome-specific copy number
effects compare to those observed in otherwise euploid S. cerevisiae strains. In general,
these alloploid genomes tolerate aneuploidy well, with massive diversity in chromo-
some copy numbers across strains (23, 125, 126). Some aneuploid lager brewing yeasts
even sporulate, albeit at low efficiency, by anomalous cell division (79). Wine yeasts
include S. cerevisiae � Saccharomyces kudriavzevii, S. cerevisiae � Saccharomyces
uvarum, and S. cerevisiae � S. kudriavzevii � S. uvarum hybrids (127, 128), many of
which are alloaneuploids, with a large diversity in chromosome copy numbers (129).
Aneuploidy has a strong impact on performance of “flor” wine yeast. An increased copy
number of chromosome VII, which carries the alcohol dehydrogenase genes ADH2 and
ADH3, correlated with increased ethanol oxidation capacity of the characteristic vellum
formed by these yeasts during sherry wine fermentation (130).

Saccharomyces pastorianus lager beer brewing strains have long been assumed to
originate from a hybridization event involving S. cerevisiae and another Saccharomyces
species (131). The genome of the cold-tolerant species Saccharomyces eubayanus, first
isolated in Patagonia in 2011 (132) and later also found in North America, Asia, and New
Zealand (132–135), was shown to exhibit a 99.56% identity with the non-cerevisiae part
of S. pastorianus genomes (136). It is postulated that, after one or more spontaneous
hybridization events, centuries of domestication and selection of the resulting S.
cerevisiae � S. eubayanus hybrid(s) in brewing environments generated the current
diversity of lager brewing strains (137, 138). S. cerevisiae � S. eubayanus hybrids made
in the laboratory combine at least two important brewing-related characteristics of
their parents. The S. cerevisiae subgenome contributes the ability to ferment maltotri-
ose, a major fermentable sugar in wort, while low-temperature performance, essential
for the lager brewing process, is conferred by the S. eubayanus subgenome (139, 140).

Historically and mainly based on geographical origin, two groups of S. pastorianus
strains were distinguished. Group I (Saaz-type) strains tend to ferment well at low
temperatures but generally show poor maltotriose fermentation. Conversely, group II
strains (Frohberg type) tend to have higher optimal growth temperatures and ferment
maltotriose well (141). These phenotypic differences correlate with ploidy and with the
contribution of genetic material from the two subgenomes. Consistent with their better
performance at low temperature, group I strains contain more S. eubayanus DNA, while
some S. cerevisiae chromosomes can even be absent (e.g., S. cerevisiae chromosome III
is absent in all group I strains sequenced so far) (23, 32, 141–143); group II strains
generally have a more balanced genome composition, with (multiple) chromosomes
from both S. eubayanus and S. cerevisiae (23, 32, 141–143). These differences have been
proposed to reflect different hybridization histories of the two groups (144). In this
model, group I derives from an original hybridization event involving a haploid S.
cerevisiae strain and a haploid or diploid S. eubayanus strain, while group II strains arose
from hybridization of a diploid S. cerevisiae strain with a haploid S. eubayanus strain (23)
or from two subsequent hybridization events (141). Different hybridization histories
appear to be contradicted by conserved chromosome rearrangement breakpoints
in group I and group II strains (32, 143). However, these might also have evolved
independently due to fragility of the breakpoint and/or by conferring a selective
advantage (145). The latter hypothesis is consistent with ALE studies with an S.
uvarum � S. cerevisiae hybrid in nitrogen-limited cultures, which selected for
recombination between alloploid chromosomes in the MEP2 ammonium permease
gene (146).

Two key brewing-related properties of S. pastorianus strains have been correlated
with CCNV. Production of diacetyl, an important off-flavor in lager beers that needs to
be removed at the end of fermentation (“Ruh” phase), correlated with copy number of
chromosomes III, VIII, X, XII, and XIV (23). These chromosomes harbor genes involved in
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the valine biosynthesis pathway, which generates �-acetolactate, the precursor for
diacetyl production. Similarly, Ca2�-dependent flocculation, which is essential for yeast
sedimentation during brewing, positively correlated with copy numbers of chromo-
somes I, VI, XI, and XII, all of which harbor flocculin genes (23).

OUTLOOK: UNDERSTANDING AND ENGINEERING CCNV IN INDUSTRIAL
CONTEXTS

Whole-genome sequences of environmental and industrial isolates of Saccharomy-
ces species, which are becoming available at a rapid and still accelerating pace (35, 93,
147), confirm the relevance of CCNV for the natural diversity, domestication, and
industrial strain improvement of these yeasts. Experimental hybridization of strains
from different Saccharomyces species is rapidly gaining popularity as a strategy for
strain improvement and product diversification of wine and beer yeasts (139, 148,
149). Traits that have been improved by hybridization include fermentative vigor
over wide temperature ranges and concentrations of minor fermentation products
(150), flocculation capacity (151), and sugar uptake kinetics (152). Moreover, ploidy
of laboratory-made hybrid strains correlates with fermentation rates, ethanol yield,
and concentrations of aromatic esters (148). In view of the higher tendency of
alloploid and allopolyploid genomes to develop aneuploidy, CCNV is likely to be a
key factor in the stability and further diversification of the resulting strains.

Targeted introduction of CCNV, e.g., by using drugs that interfere with chromosome
segregation, is rarely applied in industrial strain improvement (10). Use of the mitotic
inhibitor methyl benzimidazole-2-yl-carbamate (MBC) to mutagenize the aneuploid
bioethanol strain ZTW1 demonstrates the potential of this approach (153). Treatment
of strain ZTW1 with MBC yielded strains with an improved fermentative capacity under
industrial high-gravity conditions (119), enhanced viability after drying (154), and
higher final ethanol titer (124). These observations and the frequent appearance of
CCNV in ALE suggest that such interference with chromosome segregation may
deserve reconsideration in industrial yeast strain improvement.

The relatively small number of cases in which molecular mechanisms by which CCNV
contributes to industrial performance of Saccharomyces yeasts have been investigated
in detail often identified gene dosage effects as a key contributor. Allelic variation of
amplified genes can be an additional, as-yet-underexplored source of industrially
relevant diversity within strains that carry CCNV, especially in alloploid strains with a
long history of domestication and/or strain improvement. Novel long-read DNA-
sequencing approaches (e.g., nanopore MinION sequencing [41]) should enable a much
faster identification of such allelic variations and of their correlation with industrially
relevant traits, including subtle differences in flavor and aroma production. Recent
developments in genome editing, including the advent of CRISPR (clustered regularly
interspaced short palindromic repeat)-based techniques (155, 156) and methods for
experimentally introducing defined, segmental aneuploidies (115, 116), will accelerate
the functional analysis of CCNV. Moreover, these techniques will enable rapid intro-
duction of relevant mutations into strains that do not contain CCNV, without the
potential disadvantages of AASR. The combination of these developments will enable
a more thorough investigation of the importance of CCNV for the performance of
industrial strains and is likely to open the way to using CCNV induction as a tool for
strain improvement, either by direct generation of improved strains or by identification
of chromosome fragments or genes whose copy number affects industrial perfor-
mance.
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