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Introduction

Cancer mortality is largely due to metastatic spread of the pri-
mary tumor.1 A wide variety of genes and micro-RNAs (miRNA) 
appear to be implicated in the metastasis process,2-5 in many cases 
independently of the dysregulation of genes leading to uncon-
trolled cell proliferation.6 It is becoming clear, however, that 
despite the plethora of reports implicating single genes in metas-
tasis, there may be a few master regulators that coordinate the 
process. Activation of the JAK-STAT3 pathway, in particular, has 
been repeatedly correlated with increased invasion and metas-
tasis in a wide variety of cancer types7 although, until recently, 

there have been few mechanistic insights into how this occurs. 
Identification of key proteins is required for the transduction of 
the JAK-STAT3 signal specifically to promote invasion, how-
ever, brings many disparate observations together and begins to 
define critical nodes in the overall signaling process that might be 
exploited to suppress metastasis in a clinical setting. In this article 
we review the emerging evidence that specifically implicates JAK-
STAT3 signaling in cell movement and invasion and investigate 
some of the complex regulatory relationships between other tran-
scription factors and miRNA in this process. We now describe 
how activation of JAK-STAT3 signaling leads to upregulation of 
other key proteins that are primarily involved in orchestrating 
cell movement and invasion and which may prove to be targets 
for suppression of invasion and metastasis.

The Invasion and Metastasis Process

Not all epithelial cancer cells are capable of expressing the 
metastatic phenotype, and those that do must be able to escape 
the constraints of the primary tumor and enter the circulatory 
system (blood or lymphatic). This process requires production 
of enzymes that can break down basement membranes to allow 
invasion, which is a prerequisite for metastasis. Invasion also 
depends on reorganization of the actin cytoskeleton to facili-
tate migration/invasion. The ability of these cancer cells to leave 
the tumor mass depends on losing cell-cell contact early in the 
process, which has been associated with a change in cell shape 
referred to as the epithelial-to-mesenchyme transition (EMT). 
EMT8 is associated with the loss of cell adhesion proteins such 
as E-cadherin.9 Once in the circulatory system, the isolated can-
cer cell must survive before eventually exiting at a distant site to 
establish as a micro-colony. The mechanics of this process have 
been reviewed extensively elsewhere.10 Genes that enhance all of 
these individual capabilities are considered metastasis promoting, 
and must be activated in concert for metastasis to be achieved.2-5 
This process requires responses to external signaling cues from 
growth factors and cytokines, which are transmitted through 
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JAK-STAT3 signaling, while regulating many aspects of 
cancer development and progression, promotes invasion and 
metastasis through activation of key metastasis promoting 
genes such as wASF3. STAT3 promotes wASF3 expression and 
JAK2 independently activates it, which is required for inva-
sion. JAK-STAT3 signaling is dependent on wASF3 function, 
since its inactivation in cells expressing JAK-STAT3 suppresses 
invasion. wASF3 overexpression leads to activation of NFκB 
and ZeB1 which also promote invasion through regulation of 
target genes involved in metastasis. NFκB frequently cooper-
ates with STAT3 to upregulate metastasis promoting genes 
such as matrix metalloproteinases and cytokines, as well as to 
suppress microRNAs which can suppresses invasion. This bet-
ter understanding of the complex role played by JAK-STAT3 
in the regulation of cell movement, invasion, and metastasis 
provides opportunities to suppress this lethal aspect of cancer 
progression by not only targeting the JAK and STAT3 proteins 
directly, but also some of the downstream effectors of JAK-
STAT3 signaling.
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extracellular receptors via adaptor protein complexes to regulate 
gene expression by transcription factors. Within this continuum, 
the same control pathways also regulate the ability of cells to move 
(motility) and migrate by regulating actin dynamics, and invade 
and metastasize by re-orchestrating gene expression. While 
strictly speaking, analysis of the metastatic phenotype ultimately 
requires an in vivo model, there are a number of in vitro pheno-
types that have been commonly used to predict metastasis with 
remarkable accuracy and are broken down into motility, migra-
tion, and invasion. In this review we accept these phenotypes as 
part of the overall process in support of the role of JAK-STAT3 
signaling in metastasis.

The STAT Family of Genes

Of the seven STAT family members (STAT1, 2, 3, 4, 5A, 5B, 
and 6),11 STAT2 is largely involved with viral infections12 and 
STATs 4 and 6 are primarily involved in lymphocyte function,13 
particularly associated with helper T cells.11 While there are 
reports that STAT5A/B can promote invasion and metastasis,14,15 
it now appears that STAT5, at least in prostate cancer, may be 
more involved in promoting growth and preventing apoptosis.16 
STAT1 and STAT3 have been implicated in cancer progression 
but with opposite roles. STAT1 appears to promote anti-prolif-
erative and pro-apoptotic responses in cancer cells17 and, while 
STAT3 can clearly promote proliferation, in contrast to the other 
family members, it has been consistently implicated in promot-
ing cell migration and invasion17,18 as well as metastasis16 in many 
cancer cell types and is, therefore, the focus of this review.

Involvement of JAK-STAT3 Signaling in Cellular 
Phenotypes Associated with Metastasis

In normal cells, STAT3 signaling is under tight spatial and 
temporal control as a result of negative feedback mechanisms 
involving the suppressors of cytokine signaling (SOCS), in par-
ticular SOCS3, and tyrosine phosphatases but, in cancer cells, 
constitutive activation of STAT3 is ubiquitous.7 STAT3 activa-
tion requires phosphorylation (typically at tyrosine 705) and 
this can be achieved directly by growth factor receptors that 
have inherent tyrosine kinase activity, such as EGFR, ERBB2, 
VEGFR, and PDGFR, in response to growth factor stimula-
tion.7 These receptors may also recruit non-receptor kinases such 
as SRC and ABL which can also activate STAT3. Constitutive 
activation of these receptors by either their overexpression or as 
a result of mutation, has been associated with increased invasion 
and metastasis in many cancer cell types.19-22 STAT3 can also 
be activated by members of the interleukin family of cytokines,7 
but since cytokine receptors do not have intrinsic tyrosine kinase 
activity, they must recruit kinases such as members of JAKs. 
JAKs phosphorylate tyrosine residues on the STAT clients facili-
tating STAT3 activation, which is required for its relocation to 
the nucleus, leading to transcription of the target genes.

The constitutive activation of STATs in cancer cells is usu-
ally facilitated through excessive stimulation by cytokines or 
growth factors, which may be produced by the tumors themselves 

(autocrine stimulation) or be derived from either stromal or 
inflammatory cells associated with tumor development (para-
crine stimulation), which has led to the notion that the micro-
environment in the metastatic niche is important for successful 
metastasis.23 STAT3 can also stimulate its own activation by 
regulating genes (e.g., IL-6, IL-10, and EGF) that promote its 
increased activation or are themselves direct STAT3 activators 
(e.g., RAS, SRC, and ABL). Thus, paracrine production of IL-6 
can promote autocrine STAT3 signaling.24 In experimental sys-
tems, JAK-STAT3 signaling can be conveniently activated using 
IL-6, which has been shown to increase migration and invasion 
in vitro25-27 and metastasis in vivo.24 Consistently, downregula-
tion of cytokines and their receptors in different cell systems is 
associated with a less aggressive phenotype.28

Phosphoactivation of STAT3 by JAKs is required for the 
dimerization that is essential for STAT3 to function as a tran-
scription factor.7 Intuitively, therefore, it might be expected that 
STAT3 promotes invasion and metastasis as a consequence of reg-
ulating genes involved in this process. Indeed, STAT3 is known 
to regulate expression of essential components of the metastasis 
continuum, such as the matrix metalloproteinases (MMP) that 
degrade the basement membranes and extracellular matrix.29 
Most aggressive cancer cells overexpress MMPs which facilitate 
intravasation into the vasculature and extravasation at the meta-
static site. Other targets of the STAT3 transcription factor are 
also intimately involved in the invasion and metastasis process. 
It has been consistently observed, for example, that HSP70 and 
HSP90 promote invasion and metastasis30-33 and both are regu-
lated by STAT3.23 STAT3 also regulates HIF1a, which induces 
many other genes related to invasion and metastasis such as 
VEGFR.23 Thus, activation of STAT3 has a broad impact on the 
expression of genes that promote invasion.

The idea that the pro-metastatic effects of STAT3 signaling 
results from upregulation of metastasis genes, however, may be 
too simplistic, since there are examples where, even in the presence 
of constitutive STAT3 signaling and IL-6 responsiveness, inacti-
vation of other genes can still suppress invasion.26 Furthermore, 
the fact that overexpression of these metastasis promoting genes 
in cells that normally do not express STAT3 can promote inva-
sion, argues for a STAT3-independent mechanism.26 We have 
recently demonstrated, for example, that while the expression of 
the WASF3 pro-metastasis gene is regulated by STAT3, its ability 
to regulate invasion depends on its direct phosphoactivation by 
JAK2, independently of STAT3 activation.26

JAK-STAT3 Regulation of the WASF3 Metastasis 
Promoter Gene

Early evidence implicating JAK-STAT3 signaling in the inva-
sion/metastasis process was largely correlative, with increased 
STAT3 expression seen in advanced stage tumors,34,35 at the lead-
ing edges of invasive cancers24 and associated with survival.36,37 
There were, however, few mechanistic insights into the under-
lying basis of this effect from these studies. For cancer cells to 
escape the restraints of the parental tumor, they must become able 
to dissociate from the surrounding cells. Epithelial cells maintain 
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cell contact though adhesion molecules such as the claudins38 and 
E-cadherin.9 EMT is characterized by loss of E-cadherin expres-
sion39 and aggressive subtypes of cancer have low claudin expres-
sion.40 The relevance of STAT3 to this observation came with the 
demonstration that E-cadherin expression was downregulated by 
transcription factors such as ZEB, Twist, and Snail, which are 
activated by STAT3.41,42 Losing cell–cell contact by cancer cells, 
however, is only one component in successfully acquiring the 
invasive phenotype, since these cells must also be able to reorga-
nize their actin cytoskeleton to facilitate structural changes that 
are essential for cell migration and invasion.43 Among a variety 
of genes involved in actin cytoskeleton reorganization, WASF3 
in particular, has been shown to be associated with invasion and 
metastasis44 and is upregulated in high-grade tumors.45

WASF3 is a member of the Wiskott–Aldrich syndrome fam-
ily of proteins (WASF),46 which are involved in regulating actin 
cytoskeleton dynamics47 through recruitment of the ARP2/3 
complex48,49 which promotes actin polymerization. As a result, 
increased production of membrane structures such as lamellipo-
dia occurs,44 which is associated with cell motility, migration and 
invasion.50 Knockdown of WASF3 in a variety of cell types in 
vitro, leads to loss of invasion50,51 and, where it has been exam-
ined, metastasis in vivo.50,52 This loss of invasion and metastasis is 
independent of the genetic background (e.g., mutant p53, mutant 
RAS, etc.) of the cancer cells and, whether or not they express 
STAT3. Overexpression of WASF3 in non-invasive cancer cells 
enhances invasion.53 Inactivation of WASF3 in cells that consti-
tutively express activated STAT3, however, still leads to suppres-
sion of invasion and metastasis, demonstrating that the activation 
of the STAT3-regulated genes described above is not sufficient to 
maintain the metastatic phenotype.53 Several studies demonstrate 
that increasing WASF3 levels leads to increased invasion,53,54 
and IL-6 treatment of cancer cells leads to increased expression 
levels and increased activation levels of WASF3.53 STAT3 was 
shown to bind to elements in the WASF3 promoter, upregulat-
ing its expression in response to IL-6 treatment,53 which led to 
increased invasion potential. To promote invasion, WASF3 must 
be phosphoactivated, which can be achieved by different kinases 
such as PI3K,44 ABL,55 and JAK2.53 When JAK2 is deficient in 
these cells, however, migration is suppressed demonstrating that 
JAK2-dependent activation of WASF3 is required for increased 
migration and by inference, invasion, and metastasis, as we have 
shown in zebrafish models of human cancer cell metastasis.56 As 
a consequence of loss of JAK2, WASF3 levels are further reduced 
because of the concomitant loss of activated STAT3. Thus, acti-
vation of WASF3 by JAK2 is the critical event promoting migra-
tion in these and other cell types, with the coincident activation 
of STAT3 leading to increased WASF3 protein levels (Fig. 1). 
In the study of WASF3 activation, JAK2 was shown to be the 
critical activating kinase, even though JAK1 was also identi-
fied in the WASF3 immunocomplex.53 JAK1 is a major activator 
of STAT3 in many cell systems7 and, in the highly metastatic 
U2A fibrosarcoma cells, was required for invasion,57,58 with loss 
of JAK1 expression suppressing metastasis to a lesser extent.56 It 
appears, therefore, that JAK1/2 may have the same role in pro-
moting invasion but possibly in a cell context-dependent manner.

The ability of IL-6 to promote invasion and metastasis, there-
fore, is clearly related to its promotion of WASF3 activation, since 
knockdown of WASF3 in many cell types suppresses invasion 
despite their constitutive expression of STAT3 and JAK1/2.44,50,51 
This JAK2-dependent promotion of invasion by WASF3 appears 
to be due to its ability to influence expression of the KISS1 
metastasis suppressor gene.59 KISS1, through its receptor GPR54, 
regulates the function of the IκBα repressor of NFκB, which 
normally sequesters the p65 subunit of NFκB in the cytoplasm.60 
High WASF3 levels lead to downregulation of KISS1,59 which 
in turn leads to phosphorylation-mediated degradation of IκBα, 
allowing NFκB to move into the nucleus and activate pro-
metastasis genes such as MMPs and IL-6.59,60 NFκB also regu-
lates ZEB1 expression directly,61 which promotes EMT in part 
through downregulation of E-cadherin. ZEB1 also suppresses 
expression of a number of different microRNAs which have also 
been associated with metastasis, notably the miRNA200 fam-
ily62,63 which can regulate WASF3 mRNA stability.64 Increased 
ZEB1 activity, therefore, as a result of increased NFκB activ-
ity following WASF3 overexpression, suppresses expression of 
miRNA200 family members, thus creating a regulatory loop to 
increase WASF3 levels further.61 These observations demonstrate 
the complexity of the JAK2-STAT3 influence on invasion.

STAT3 also has indirect effects on WASF3-promotion of inva-
sion. We recently showed that WASF3 is stabilized by HSP70,54 
and suppression of HSP70 function led to reduced invasion in a 
WASF3-dependent manner. In addition, while WASF3 is not an 
HSP90 client protein, it is dependent on HSP90 for its activation 

Figure  1. Summary of the iL-6/JAK-STAT interaction with the wASF3 
gene. Activation of STAT3 leads to increased expression of wASF3 which 
is then recruited to the membrane where it is activated by JAK2 to pro-
mote invasion.
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since ABL kinase is a client of HSP90, and ABL can activate 
WASF3. This loss of HSP90 prevents WASF3 activation leading 
to reduced invasion.54 Since both HSP70 and HSP90 are regu-
lated by STAT3,23 these proteins further impact on the ability of 
WASF3 to control cell invasion.

MicroRNA Deregulation Promotes Cancer 
Progression and Motility through Regulation  

of JAK-STAT3

MiRNAs are non-coding RNAs that target mRNAs for decay 
or interfere with translation, usually through binding to the 3′ 
untranslated region of their targets.65 Generally, miRNAs are 
abnormally expressed and hyper-activated in tumors, exerting 
oncogenic effects on multiple pathways causing increased pro-
liferation and reduced apoptosis. There is, however, a subset of 
miRNAs that are directly associated with metastasis and inva-
sion which are referred to as the “metastamirs”.66 These miRNAs 
regulate the function of genes important in metastasis, and indi-
vidual miRNAs can target many different genes simultaneously. 
The interaction between STAT3 and various miRNAs involves 
several regulatory feedback loops associated with invasion67 
where either STAT3 drives expression of miRNAs that promote 
invasion68,69 or where miRNAs suppress the function of STAT3 
inhibitors such as SOCS and PIAS.70,71 MiRNAs can also bind 
directly to the 3′UTR of STAT3 to regulate its activity,72 thereby 
suppressing invasion and metastasis.73 As expected, downregula-
tion of JAK2 by miRNAs has the same effect, since they lead to 
decreased levels of activated STAT3 which affects proliferation74 
and, presumably, invasion.

STAT3-NFκB Interactions

Extracellular cues transmit signals to regulatory hubs within 
the cancer cell that influence gene expression related to cell move-
ment and invasion. These signals are typically not linear events 
and considerable cross talk between regulatory genes is involved 
in the complex regulation of phenotypes such as invasion. From 
the WASF3 studies, for example, IL-6 treatment produced a coor-
dinated activation of NFκB through upregulation and activation 
of WASF3 by JAK2-STAT3. Chromatin binding studies demon-
strate a significant overlap between the genes regulated by these 
two transcription factors, and it has been shown that they co-
regulate a sub set of genes associated with invasion.7 Cooperation 
between NFκB and STAT3 to promote invasion has also been 
demonstrated at a number of levels.75 For example, STAT3 and 
NFκB both regulate the expression of proinvasive genes23 includ-
ing cytokines, and they are also activated by the cytokines they 
regulate.73 Both are these transcription factors are also centrally 
involved with inflammation,75 which also promotes tumor pro-
gression. At a mechanistic level, STAT3 can bind directly to the 
NFκB p65 subunit, sequestering it in the nucleus and leading 

to prolonged NFκB activation.61,76,77 In our studies, we demon-
strated that WASF3 can increase NFκB activity by releasing it 
from KISS1-mediated IκBα repression, creating a feed forward 
loop promoting motility and invasion through activation of 
IL-6-STAT3, which further increases WASF3 expression levels.

Targeting the JAK-STAT3 Pathway to Suppress 
Invasion and Metastasis

The clear role of JAK-STAT3 signaling in promoting invasion 
and metastasis opens the possibility of targeting these proteins, 
and possibly associated pathways, to control these phenotypes. 
Genetic inactivation of STAT3 and JAK2 in model cell systems 
leads to a reduction in motility and invasion (see above), sug-
gesting that pharmacological targeting of these proteins might 
have the same effect.78 Increasingly, JAK-STAT3 targeting drugs 
are being developed, as well as other pharmacological agents 
that affect genes that impact on JAK-STAT3 activation.18,78 For 
example, using antibodies that target either IL-6, or the solu-
ble or membrane bound IL-6 receptors, STAT signaling can be 
downregulated, and these agents are currently in clinical trials. 
Direct targeting of JAK1 and JAK2 using agents such as AG490 
have also been shown to suppress invasion of cancer cells in 
vitro,78 and knockdown of these kinases suppresses metastasis in 
animal models.24 Similarly, pharmacologically targeting STAT3 
directly leads to suppression of invasion.78 As the signaling path-
ways become more defined, it is likely that other JAK-STAT3 
nodes will be identified that may be equally important targets for 
a more complete blockade of metastasis.

Conclusion

JAK-STAT3 signaling is clearly a central regulatory hub in the 
overall process leading to invasion and metastasis. It is becoming 
clear, however, that its role in this process is made more com-
plex through the diversity of interactions with other signaling 
pathways. STAT3 also has many other functions beyond metas-
tasis and, in considering targeting JAK-STAT3 as a treatment to 
suppress invasion and metastasis, a better understanding of the 
metastasis-specific interactions will be required to provide speci-
ficity and avoid unfortunate side effects that might be related to 
its other functions. In this case, defining proteins that are depen-
dent on JAK-STAT3 function, but which are more specific for 
the metastasis phenotype, may present better targets. It is likely 
that teasing out the specific role of STAT3 in the development of 
metastasis, however, will depend on defining the consequences of 
interactions with other regulatory molecules that may complicate 
the analysis if they operate in a cell specific and/or temporal-
specific context.
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