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Abstract: Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and
thrombosis. There are three major types of PEVs described based on their size and characteristics, but
newer types may continue to emerge owing to the ongoing improvement in the methodologies and
terms used to define various types of EVs. As the literature on EVs is growing, there are continuing
attempts to standardize protocols for EV isolation and reach consensus in the field. This review
provides information on mechanisms of PEV production, characteristics, cellular interaction, and
their pathological role, especially in autoimmune and infectious diseases. We also highlight the
mechanisms through which PEVs can activate parent cells in a feedback loop.
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1. Introduction

In 1967, extracellular vesicles (EVs) were first discovered [1]. Initially, these vesicles
were considered “platelet dust” and were found to influence thrombosis and hemostasis but
have since been found to play roles in many different conditions, including in inflammation
and immunologic responses. The majority of these EVs are derived from platelets [2–10].
The exact percentage that platelet-derived EVs account for is controversial and varies from
30–85%, with most studies reporting higher percentages [2–10].

An ever-increasing number of reports are being published on the function and poten-
tial therapeutic roles of EVs. However, there have been inconsistencies in the definitions
of EVs and their isolation methods. To address this issue, the International Society for
Extracellular Vesicles (ISEV) enacted the Minimal Information for Studies of Extracellular
Vesicles (MISEV) guidelines in 2014, which were updated in 2018 [11]. These guidelines
are intended to be used for mouse and human EVs. In these guidelines, EV is classified
as the generic term used for vesicles that are released from a cell, have a lipid bilayer,
and cannot replicate. There are multiple populations of EVs that can be characterized
further by their size, contents, and formulation. However, with technological advances,
new populations of EVs can and are being discovered. Some studies have found EVs the
size of exosomes, or smaller, that are made through different mechanisms than those men-
tioned below [12,13] and contain different contents [14] or are even non-membranous [15]
(Figure 1). As technology continues to advance, we will undoubtedly see the emergence
of different EV populations or subgroups. For now, the classic populations are exosomes,
ectosomes (microparticles/microvesicles), and apoptotic bodies.
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Figure 1. Subtypes of Extracellular Vesicles. There are three main subtypes of extracellular vesicles 
(EVs) that have been characterized to date, apoptotic bodies, ectosomes 
(microparticles/microvesicles), and exosomes. Apoptotic bodies are large (greater than 1000 nm in 
diameter) and heterogenous in size and shape due to them originating from plasma membrane 
blebs. Ectosomes, are also heterogenous in size and shape and can range from 150–1000 nm in 
diameter. Exosomes are more homogenous in size and shape, being 30–150 nm in diameter and 
mostly round, as they are produced via a regulated process., Apoptotic bodies and ectosomes 
originate from the plasma membrane and can express specific markers ARF6, VCAMP3, and 
membrane glycoproteins. Exosomes can be identified by the markers ALIX, CD9, CD63, CD81, and 
TSG101. While these three EV types have been characterized, emerging technologies are revealing 
new EV populations that have yet to be characterized. These include EV populations that are 
smaller, are non-membranous, and/or have different contents and mechanisms of production. 

2. Type of EVs and Their Characterization 
2.1. Exosomes 

Exosomes are small EVs that are 30–150 nm in diameter [16–18] (Figure 1). Typically, 
exosomes are less heterogenous in size and content than other EVs because they are 
produced and secreted through a regulated process. In the first step of this process, there 
is an invagination of endosomes in a ceramide-regulated fashion [19], resulting in the 
formation of multivesicular bodies (MVBs). While the MVB is critical in exosome 
formation for most cells, platelet-derived exosomes can originate from MVBs or from 
alpha granules [20,21] (Figure 2). This process is dependent on the pH of the endosomes. 
Lower pH destines endosomes for the lysosomal degradation pathway, while a higher pH 
moves the endosomes towards the plasma membrane and results in an increased exosome 
yield [16,22] (Figure 2). The acidification of the endosome is reliant on vacuolar H+-ATPase 
activity. Cholesterol accumulation in the MVB, activating vacuolar H+-ATPase, results in 
endosomal acidification and fewer exosomes are produced. On the other hand, neutral 
sphingomyelinase 2, which inhibits vacuolar H+-ATPase activity, results in increased 
exosome production [22]. Once the MVB has formed, the MVB membrane will then fuse 
with the plasma membrane, releasing the exosomes. The endosomal sorting complex 
required for transport (ESCRT) proteins is heavily involved in the fusion of the MVB and 
plasma membrane, and as such essential for the secretion of exosomes [23]. Many other 
proteins associated with the cytoskeleton are involved with exosome secretion as well. 
One such family of proteins are the Rabs [16]. Signaling from outside of the cell that affects 
these processes can also affect exosome production. For example, syndecan proteoglycans 
interact with ALG-2 interacting protein X (ALIX) which then interacts with ESCRT 
proteins and affects exosome numbers [24]. As another example, tumor necrosis factor-
alpha (TNFα) can activate neutral sphingomyelinase 2 which then results in increased 
exosome production [22]. 

Because the formation of exosomes is a regulated process, the packaging of RNAs, 
lipids, and proteins into the exosomes also occurs in a regulated manner. There are still 
many unknowns as to how this process is regulated, but it has been found that 

Figure 1. Subtypes of Extracellular Vesicles. There are three main subtypes of extracellular
vesicles (EVs) that have been characterized to date, apoptotic bodies, ectosomes (microparti-
cles/microvesicles), and exosomes. Apoptotic bodies are large (greater than 1000 nm in diameter) and
heterogenous in size and shape due to them originating from plasma membrane blebs. Ectosomes, are
also heterogenous in size and shape and can range from 150–1000 nm in diameter. Exosomes are more
homogenous in size and shape, being 30–150 nm in diameter and mostly round, as they are produced
via a regulated process., Apoptotic bodies and ectosomes originate from the plasma membrane
and can express specific markers ARF6, VCAMP3, and membrane glycoproteins. Exosomes can be
identified by the markers ALIX, CD9, CD63, CD81, and TSG101. While these three EV types have
been characterized, emerging technologies are revealing new EV populations that have yet to be
characterized. These include EV populations that are smaller, are non-membranous, and/or have
different contents and mechanisms of production.

2. Type of EVs and Their Characterization
2.1. Exosomes

Exosomes are small EVs that are 30–150 nm in diameter [16–18] (Figure 1). Typically,
exosomes are less heterogenous in size and content than other EVs because they are pro-
duced and secreted through a regulated process. In the first step of this process, there is an
invagination of endosomes in a ceramide-regulated fashion [19], resulting in the formation
of multivesicular bodies (MVBs). While the MVB is critical in exosome formation for most
cells, platelet-derived exosomes can originate from MVBs or from alpha granules [20,21]
(Figure 2). This process is dependent on the pH of the endosomes. Lower pH destines en-
dosomes for the lysosomal degradation pathway, while a higher pH moves the endosomes
towards the plasma membrane and results in an increased exosome yield [16,22] (Figure 2).
The acidification of the endosome is reliant on vacuolar H+-ATPase activity. Cholesterol
accumulation in the MVB, activating vacuolar H+-ATPase, results in endosomal acidifica-
tion and fewer exosomes are produced. On the other hand, neutral sphingomyelinase 2,
which inhibits vacuolar H+-ATPase activity, results in increased exosome production [22].
Once the MVB has formed, the MVB membrane will then fuse with the plasma membrane,
releasing the exosomes. The endosomal sorting complex required for transport (ESCRT)
proteins is heavily involved in the fusion of the MVB and plasma membrane, and as
such essential for the secretion of exosomes [23]. Many other proteins associated with the
cytoskeleton are involved with exosome secretion as well. One such family of proteins
are the Rabs [16]. Signaling from outside of the cell that affects these processes can also
affect exosome production. For example, syndecan proteoglycans interact with ALG-2
interacting protein X (ALIX) which then interacts with ESCRT proteins and affects exosome
numbers [24]. As another example, tumor necrosis factor-alpha (TNFα) can activate neutral
sphingomyelinase 2 which then results in increased exosome production [22].
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modifications have on cargo sorting depends on the type of modification. While specifics 
may vary depending on the protein or exact modification, in general, ubiquitination, 
glycosylation, and sumoylation increase target packaging into exosomes, while 
acetylation and ISGylation target the protein for degradation instead. 
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the MVB activates H+ ATPase creating an acidic environment. On the other hand, TNFα activates 
neutral sphingomyelinase 2 which in turn inactivates H+ ATPase leading to a more basic pH within 
the MVB. 
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Ectosomes (microparticles/microvesicles) are EVs of 150–1000 nm in diameter (Figure 

1) and are formed through blebbing of the plasma membrane. The production of 
ectosomes is not a regulated process, and thus is not fully characterized. However, there 
is evidence that the actin cytoskeleton is important in this process. Benedikter et al. found 
that ectosome production is regulated by the generation of reactive-oxygen species (ROS) 
[33]. ROS act on actin to induce actin polymerization, and one mechanism is through ROS-
induced S-nitrosylation of cytosolic actin that results in enhanced actin polymerization. 
This in turn leads to increased ectosome production [34]. Platelet-derived ectosome 
release requires intact actin dynamics while tubulin is dispensable [35]. The use of 
cytochalasin D, an actin polymerization inhibitor, inhibits platelet-derived ectosome 
formation [36]. Conversely, while megakaryocyte-derived ectosome production is also 
independent of tubulin, it is augmented by actin polymerization inhibition [37]. This 
opposing phenotype is potentially related to the critical requirement of actin in 

Figure 2. Effect of pH on Exosome Biogenesis. When the endosome, or the α-granule in platelets,
undergoes invagination of its membrane, a multivesicular body (MVB) is formed. An acidic pH in
the MVB destines the created exosomes for degradation via the lysosome, while a more basic pH
destines the exosomes for secretion. H+ ATPase controls the acidification of the MVB. Cholesterol in
the MVB activates H+ ATPase creating an acidic environment. On the other hand, TNFα activates
neutral sphingomyelinase 2 which in turn inactivates H+ ATPase leading to a more basic pH within
the MVB.

Because the formation of exosomes is a regulated process, the packaging of RNAs,
lipids, and proteins into the exosomes also occurs in a regulated manner. There are
still many unknowns as to how this process is regulated, but it has been found that
components of the secretory pathway are involved in this regulation [25]. Furthermore,
post-translational modification of proteins, such as ubiquitination and glycosylation, can
regulate their incorporation into exosomes [26–32]. The effect post-translational modifica-
tions have on cargo sorting depends on the type of modification. While specifics may vary
depending on the protein or exact modification, in general, ubiquitination, glycosylation,
and sumoylation increase target packaging into exosomes, while acetylation and ISGylation
target the protein for degradation instead.

2.2. Microparticles/Microvesicles

Ectosomes (microparticles/microvesicles) are EVs of 150–1000 nm in diameter (Figure 1)
and are formed through blebbing of the plasma membrane. The production of ectosomes
is not a regulated process, and thus is not fully characterized. However, there is evidence
that the actin cytoskeleton is important in this process. Benedikter et al. found that
ectosome production is regulated by the generation of reactive-oxygen species (ROS) [33].
ROS act on actin to induce actin polymerization, and one mechanism is through ROS-
induced S-nitrosylation of cytosolic actin that results in enhanced actin polymerization.
This in turn leads to increased ectosome production [34]. Platelet-derived ectosome release
requires intact actin dynamics while tubulin is dispensable [35]. The use of cytochalasin
D, an actin polymerization inhibitor, inhibits platelet-derived ectosome formation [36].
Conversely, while megakaryocyte-derived ectosome production is also independent of
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tubulin, it is augmented by actin polymerization inhibition [37]. This opposing phenotype is
potentially related to the critical requirement of actin in megakaryopoiesis. Interestingly, the
addition of the phosphatase inhibitors, okadaic acid and calyculin A, both of which increase
cytoskeletal rearrangement, results in doubled platelet-derived ectosome formation [36].

There are three possible steps in which the actin cytoskeleton regulates ectosome
formation [38]. First, the force generated from the polymerization of the actin could lead to
bud formation in the plasma membrane. Second, the myosin mechanoenzymes in the cell
could transport the components to the site of ectosome production. Third, the actin-myosin
network could act to close and separate the ectosome from the host cell. Likely all three are
involved. Filamin A promotes the branching of actin and anchors transmembrane proteins
and glycoproteins to the actin cytoskeleton. Collier et al. discovered that while a partial
decrease in filamin A expression had no effect on ectosome size or number, a 90% decrease
in expression lead to increased ectosome release from the cell [39]. In particular, Collier
et al. found that filamin A was involved in the regulation of tissue factor (TF) incorporation
into procoagulant ectosomes [39,40]. They hypothesized that this was due to increased
instability of the cytoskeleton at the plasma membrane surface. Similarly, others have found
that disruption of the actin cytoskeleton in platelets, through calpain or integrin activation,
leads to increased ectosome formation [41–43]. Calpain activity, resulting in the cleavage
of cytoskeletal proteins, correlated with platelet-derived ectosome formation, and the
inhibition of calpain blocked ectosome formation [41,42,44]. Intriguingly, the role of calpain
appeared to be dependent on the stimulant used. When platelets were stimulated with
calcium ionophore A23187, calpain inhibition depleted ectosome formation [44]. On the
other hand, when platelets were stimulated with complement, or integrin α2bβ3 signaling
was triggered, ectosome formation was independent of calpain activity [43,45]. These data
suggest that different agonists may have different effects on the cytoskeleton, resulting
in changes to ectosome production. Additionally, these data suggest that while initial
actin cytoskeletal rearrangement is involved in platelet-derived ectosome formation, the
destabilization and reorganization of the cytoskeleton produces more ectosomes.

Upon platelet activation, cytosolic calcium levels increase, and phosphatidylserine
(PS) residues are expressed on the outer membrane. The loss of PS asymmetry on the
membrane coincides with platelet-derived ectosome formation [46]. The importance of
PS in ectosome formation is elucidated by the decreased EV levels found in patients with
Scott Syndrome who have defects in PS exposure [46–48]. However, not all ectosomes are
positive for annexin V, which binds to PS.

2.3. Apoptotic Bodies

Apoptotic bodies are the largest extracellular vesicles and are often over 1000 nm in
diameter (Figure 1). Apoptotic bodies are formed when a cell undergoes cell death, and the
vesicles are formed from fracturing of the cell and its plasma membrane. This process is
unregulated and simply a result of cell death. Many times, apoptotic bodies contain cellular
organelles or fragments of organelles. In some pathologic conditions, platelet-derived
apoptotic bodies have been found to contain mitochondria [9,35,49].

3. EV Characterization

The exact nomenclature of EVs is difficult to assign without direct visualization of EV
production, thus the ISEV recommends that authors refer to EVs based on their physical
characteristics. These characteristics can include size, density, biochemical composition,
or cellular origin. To more specifically characterize EVs, the initial characterization to
confirm the population should include 1: a quantitative measure, 2: a measure of EV
abundance, 3: the presence of EV components associated with generic or EV subtypes, and
4: the presence of non-vesicular, co-isolated components [11]. Positive EV markers should
include at least one transmembrane/lipid-bound protein, a cytosolic protein, and one
negative protein marker [11]. Some generic EV markers include ALIX, tumor susceptibility
gene 101 (TSG101), CD63, CD9, and CD81 for exosomes, ADP-ribosylation factor 6 (ARF6),
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vesicle-associated membrane protein 3 (VCAMP3), plasma membrane glycoproteins and
annexin A1 for ectosomes and apoptotic bodies [11,50] (Figure 1). It is important to
note that these may be altered depending on the cell of origin. For example CD9 is
absent from EVs originating from natural killer cells, B-cells and some mesenchymal stem
cells [51]. The recommended negative controls are albumin and apolipoproteins A1/2 and
B. However, negative controls may sometime pose a problem because cell components
from different compartments can end up in EVs and this could be increased in pathologic
conditions [25,35,49]. Some specific EV markers are utilized to mark the cell of origin
(Table 1).

Table 1. Cell-type specific markers of EVs.

Cell of Origin Protein Marker References

Platelet CD41, CD42b, CD61, CD62P [2,3,5,9,37,52–71]
Megakaryocyte CD41, CD42b, filamin A [2,5,6,37]
Red Blood Cell Glycophorin A (CD235) [5,7,58,66,69–71]
Endothelial Cell CD62E, CD31, CD105, CD144, CD146 [5,53,57,59–62,64,67–77]
Neutrophil CD16, CD66b [3,6,63]
Monocyte CD14, CD11b [3,5,6,9,53,58,61,70,71,76,78]
Leukocyte CD45 [5,6,59,61,67,68,71,72,76,79]
T-Cell CD3, CD4, CD8 [3,5,9,62]
B-Cell CD19, CD20, CD79a [3,5]
NK Cell CD56 [67,80–82]
Prothrombotic CD142 (tissue factor) [10,39,54,83]

There are many different techniques used to measure EVs, and each has its strengths
and weaknesses. Some of the techniques used to image and measure EVs and their contents
are flow cytometry, nanoparticle-tracking analysis (NTA), resistive pulse screen, atomic
force microscopy, electron microscopy, super-resolution microscopy, mass spectrometry,
raman spectroscopy, flourier-transform infrared spectroscopy, sulfo-phospho-vanilin assay,
total protein analyses with a Bradford assay, enzyme-linked immunoassay (ELISA), fluori-
metric assay, and global protein stain on SDS-PAGE. The numbers of EVs detected varies
based on the isolation, storage, and quantification techniques and whether pre-requisites to
EV definition are set (i.e., annexin V positive). Due to these differences, the numbers of total
EVs, annexin V positive EVs, and platelet-derived EVs is varied across the literature. For
example, Arauna et al. reported 5000 total EVs/µL plasma, 223 annexin V positive EVs/µL
plasma, and 200 platelet-derived EVs/µL plasma [52]. While, Arraud et al. observed 11,500
EVs/µL plasma [7], Sabatier et al. observed 752 EVs/µL plasma and 625 platelet-derived
EVs/µL plasma [6], and Terrisse et al. reported 7300 platelet-derived EVs/µL plasma [53].
Even with only the small selection of reports discussed here, there is enough variability
in EV number and cell of origin to emphasize the importance of clearly presenting the
isolation protocols and analysis techniques to appreciate the robustness of data and show
the need for the inclusion of multiple techniques for EV characterization.

4. EV Clearance

Once EVs have been produced, they enter into circulation and are cleared within
minutes to hours [54,84–86]. During this process, EVs are taken up by cells. This process
occurs through fusion with the plasma membrane, receptor mediated uptake, or endocyto-
sis (Figure 3). A target cell may take up the EVs to promote cell–cell communication or they
may be taken up by scavenger cells. Macrophages appear to be an important scavenger,
because depletion of macrophages in mice tipped the balance of EV secretion/clearance
resulting in increased plasma EVs due to decreased EV clearance [84]. Macrophages will
phagocytose annexin V positive EVs in circulation [87]. This clearance mechanism appears
to be dependent in part on lactadherin binding to PS and the spleen. Mice missing either
lactadherin or a spleen had increased platelet-derived EVs in the plasma [88]. Lactadherin
on splenic macrophages recognizes the PS on the surface of EVs and mediates phagocytosis.
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Mice lacking lactadherin had increased plasma platelet-derived EVs and demonstrated
an increased level of coagulation and thrombosis [89]. The shape of EVs is important for
non-opsonized phagocytosis while the size affects antibody-enhanced phagocytosis by
macrophages [90]. Interestingly, IgG coating of EVs enhanced phagocytosis independent of
size, while IgM coating of EVs enhanced the phagocytosis of only smaller particles (less
than 2 microns) (Figure 3), indicating a role for IgM in EV clearance by macrophages [90].
However, EV uptake is not specific to macrophages as EVs can be taken up by other cell
types, such as endothelial cells, in a process that can also be dependent on anionic PS
and lactadherin. The addition of neutralizing/blocking antibodies for annexin V and
lactadherin greatly decreased EV uptake by human umbilical vein endothelial cells (HU-
VECs) [53]. The inhibition of PS and lactadherin did not completely diminish EV uptake,
indicating that there is more to this process. For example, annexin V negative EVs cannot
bind to lactadherin and would need to be cleared up by a different mechanism. One
potential mechanism for uptake of EVs irrelevant of their annexin V status is via glycosyla-
tion/sialyation [91]. As EVs are cleared from circulation, a forward feeding process occurs
where EV phagocytosis by macrophages induces apoptosis and EV production from said
macrophage in a never-ending loop.
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Figure 3. EV Uptake by Cells. EVs can be taken up and cleared from circulation via three methods.
(1) The EV membrane can fuse with the plasma membrane of the cell, releasing the EV contents into
the cytoplasm. (2) Receptor-mediated endocytosis can occur when a receptor on the cell membrane,
such as lactadherin, attaches to a molecule on the EV, such as negatively charged phosphatidylserine.
(3) EVs can be endocytosed or phagocytosed. When EVs are coated with molecules like immunoglob-
ulins, phagocytosis of the EVs is increased. When coated with IgG, EVs are endocytosed to a greater
degree regardless of their size, however, when they are coated with IgM, phagocytosis is preferential
for smaller EVs.

5. Production of Platelet-Derived EVs
5.1. Common Stimuli

Extracellular vesicles produced from platelets (PEVs) and megakaryocytes (MEVs)
are a means of communicating with other cells in the body in ways that the platelet itself
cannot communicate [92]. While EVs from these two cell types are very similar, there are
differences. First, megakaryocytes constitutively secrete EVs, while platelets largely release
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them upon activation [37]. Platelets at rest, or in storage, can also produce EVs [43,55,93],
indicating that time outside the body is enough of a stimulus to induce EV formation.
Ponomareva et al. found that even 15 min under ex vivo conditions is enough for resting
platelets to produce EVs [55] and the numbers increase greatly when platelets are kept
in storage over several days [93]. These spontaneously released PEVs do not contain
any organellar content and are circular and smooth, indicating that they are exosomes or
ectosomes and not apoptotic bodies. Second, MEVs contain CD41, CD41b, PS, and full
length filamin A, while PEVs contain CD41, CD42b, PS, LAMP1, and CD62P [37,47,56].
Filamin A is one of the major factors differentiating MEVs from PEVs. Third, EVs are
produced along slender unbranched macropodia in megakaryocytes [37] while platelet EV
production specifics depend on the platelet stimuli.

Any stimuli that can activate platelets will often result in the formation of PEVs and
the quantity, structure, and size of the PEV released depend on the stimulus. These stimuli
include shear stress, fibrinogen, collagen, thrombin, ADP, calcium ionophores, activated
protein C, and epinephrine. It was shown that increased shear stress resulted in a higher
number of PEVs, and this was markedly increased at 5 min of exposure to shear stress
compared to 2 min [94]. Shear stress promotes PEV production through the binding of
von Willebrand factor (VWF) to platelet glycoprotein 1b (GP1b) followed by calcium influx
and the activation of platelet calpain [94–96]. Under experimental conditions, thrombin
is often used for PEV production because it results in the release of a higher number of
PEVs [35,55]. Ponomareva et al. showed that the increase in released EVs in response
to thrombin, unlike other common platelet stimuli (arachidonic acid, ADP, collagen, and
calcium ionophore), is due to their generation from the plasma membrane as well as from
intracellular organelles, such as the open canalicular system [55]. In contrast, Miyazaki
et al. found that PEV numbers were highest when they used high shear stress or fibrinogen
as stimuli [94], while Sims et al. found that using calcium ionophore A23187 resulted in
the most PEVs [48]. These disparate results could be partly explained by whether studies
examined annexin V positive or negative PEVs or from the experimental conditions used.
Ponomareva et al. saw that while the calcium ionophore A23187 stimulated the most
PEV release, these PEVs were mostly annexin V negative [55]. Platelets stimulated with
ADP or epinephrine showed very little PEV release and there was no prothrombinase
activity associated with the vesicles [48,94,95]. In general, using a combination of stimuli,
such as thrombin and collagen, results in the highest number of PEVs [37,48,94,97]. The
release of PEVs in response to common stimuli is shown in Figure 4. The use of multiple
stimuli perhaps mimics the vasculature in vivo and can explain why the activation and
consumption of platelets during thrombosis results in the release of large quantities of
PEVs [56].

With regards to size and shape, PEVs from resting platelets are variable in size
(30–500 nM). Thrombin-stimulated PEVs are relatively small (50–100 nM diameter) and
are spherical or elongated with a rough surface or thin offshoots [55]. Collagen-stimulated
PEVs are in the middle size range (50–300 nM) and are circular and smooth [55]. Cal-
cium ionophore-stimulated PEVs are more heterogenous and larger in size and have a
rough membrane surface [55,97]. PEVs produced from these stimuli showed procoagulant
activity [41,44].
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Figure 4. Diverse production of platelet-derived extracellular vesicles with different agonists.
Platelets stimulated with different agonists produce extracellular vesicles (EVs) that are charac-
teristically different. ADP and collagen stimulation produces spherical and smooth EVs and a higher
number of EVS are produced with collagen. Thrombin stimulation produces an even larger number
of EVs, but they are smaller, both spherical and elongated in shape, and have rough surfaces with
thin offshoots. Calcium ionophore stimulation produces EVs that are larger and more heterogenous
in size and have a rougher membrane surface. Included here is also LPS, a non-host derived stimuli,
that leads to PEV production.

The contents of PEVs also differ based on which stimuli were used to activate the
platelets. In general, PEVs contain proteins, glycoproteins, lipids, RNA, transcription
factors, sugars, and coagulation factors [48,98,99]. When stimulated with thrombin, or
a similar stimulus, they also contain cellular organelles, such as mitochondria and their
DNA [35]. PEVs can also contain factors that promote inflammation, such as complement,
CD63 and ROS [37,100,101]. When stimulated with thrombin and collagen together or with
calcium ionophore A23187, PEVs expressed more CD62 [37]. PEVs generated with both
thrombin and collagen had glycoprotinIIb/IIIa complexes that bound to fibrinogen while
the complement-induced PEVs did not express fibrinogen receptor function. Additionally,
PEVs from thrombin (alone) stimulated platelets had increased levels of NADPH Oxidase
1 (NOX1) on their surface, causing increased superoxide generation [100]. These data are
only a small selection demonstrating that differential stimulation of platelets results in
PEVs that varies significantly.

5.2. Pathogenic Stimuli

While the production of PEVs can be triggered by common thrombogenic stimuli,
their production can also be stimulated by pathogenic stimuli. Interestingly, activation
with these different stimuli can result in PEVs expressing different contents. For example,
stimulation of platelets with Dengue Virus results in PEVs that have a different EV marker
expression. While stimulation with Dengue Virus or thrombin resulted in similar levels of
CD41, heat shock protein 70 (HSP70), and CD63, and neither had CD81 expression, only the
PEVs from thrombin-stimulated platelets had expression of CD9 [102]. Similar phenotypes
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were seen where LPS stimulation of platelets resulted in IL1β positive PEV production,
while stimulation with thrombin resulted in interleukin 1 beta (IL1β) negative PEVs,
and TNF receptor-associated factor 6 (TRAF6)-stimulated platelets had decreased PEV
production overall [103]. As another example, platelets stimulated with NONOate or LPS,
but not TNFα or thrombin, generate PEVs with more redox potential [104]. Staphylococcal
superantigen-like protein 5 (SSL5) can also induce annexin V positive PEV formation [105].
Only a few pathogenic stimuli have been studied, but there is an indication that other
pathogenic stimuli may also generate PEVs with different characteristics [83]. These data
indicate that PEVs in different pathologic conditions are not equal and will account for
different pathological responses. Where one treatment in a disease with increased LPS
may help prevent PEV activity, the same treatment in a disease with increased SSL5 may
have no effect or could even have a negative effect. For example, if patients are given
adrenaline, their PEVs contain more dihydroethidium (DHE) fluorescence, indicating
more ROS production [106]. Studies in future should focus on better characterization to
understand the mechanistic activities of PEVs under different disease conditions and how
different pathogenic stimuli are affecting PEV production and formulation.

6. Platelet-Derived Extracellular Vesicles under Disease Conditions

Platelet-derived extracellular vesicles (PEVs) interact with multiple cells, at various
locations, and under several disease conditions. The functions of PEVs depend on where
the PEVs are localizing. Macoux et al. observed that fluorescently labeled PEVs injected
into mice mainly traveled to the spleen and lymph nodes, followed by the bone marrow,
the liver, the lungs, and the kidney [85]. These data indicate that not only do PEVs have
functions in the blood but they can also affect pathologies in these locations within the
body. This is particularly important when considering the possibility of PEVs affecting
coagulation outside the blood in pathologic conditions [107–118]. In particular, PEVs may
play a large role in the coagulation of lymphatic fluid, which is normally a hypocoagulable
fluid due to the paucity of phospholipids [107]. In the blood, PEVs will adhere to platelets,
leukocytes (mainly neutrophils and monocytes), lymphocytes, and endothelial cells and can
affect these cells [53,85,92,97,119–121]. PEVs have a pro-inflammatory and pro-thrombotic
nature [1,53,92,119,120,122–124], such that PEV membranes have 50 to 100-fold higher
procoagulant activity than calcium ionophore-activated platelets [125]. There are two
main mechanisms by which PEVs are thought to affect coagulation (Figure 5). The first is
through the presence of anionic phospholipids. The negative charge causes an interaction
with cationic domains of clotting factors, providing a surface for the assembly of these
factors and thus initiating thrombin generation. PEVs also contain clotting factors on
their surface including factor Va, factor VIIIa, factor X, and lactadherin [125,126]. The
second is through TF. TF on PEVs will form a complex with factor VII/VIIa to initiate the
coagulation cascade. While the presence of TF in platelets is controversial [127–131], PEVs
are often described as containing TF. The TF on PEVs could originate from the platelet
or its uptake from TF-bearing EVs of other cellular origins [132]. Alternatively, PEVs
can affect coagulation through the activation of other cells to induce a pro-thrombotic
environment [53,57,58,103,105,120,121,133–145] (Figure 5). As an example, Terrisse et al.
found that PEVs will adhere to endothelial cells dependent on lactadherin, PS, and αVβ3
integrin. This interaction triggered ROS production in endothelial cells which increased
the amount of VWF expressed on the endothelial cell surface. Circulating platelets at this
site would then bind to surface VWF via GP1b and p-selectin to start adhesion and clot
formation [53]. In general, PEVs support thrombin generation and this correlates with
increased fibrin clot formation [1,122]. The PEVs accelerate fibrin polymerization and
support the formation of more compact clots that can resist fibrinolysis [122].
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Figure 5. Mechanisms by which Extracellular Vesicles (EVs) can Contribute to Thrombosis. There are
three known pathways through which EVs can influence thrombosis: (A). Phosphatidylserine on the
surface of EVs provides a negatively charged surface on which the prothrombinase complex (com-
prised of factors Va, Xa, and II) can form, (B). Tissue factor (TF) on EVs interacts with factor VIIa to
initiate the coagulation cascade, (C). Molecules such as clotting factors, MHC-1, complement proteins,
CXCL4, CXCL7, CD40 ligand (CD40L), and immunoglobulins (IgG and IgM) on the vesicle membrane
can interact with other cell types to produce a pro-inflammatory and pro-thrombotic environment.

The extent to which PEVs can increase thrombosis depends on both their number
and composition. PEVs from pathologic conditions, such as disseminated intravascular
coagulation (DIC), thrombocytopenia, and systemic lupus, are larger in diameter [55].
These larger PEVs can possess mitochondria and are more prevalent in cardiovascular
disease [49]. Additionally, these larger PEVs can process and present ovalbumin on major
histocompatibility complex 1 (MHC-1) molecules through an active proteosome [85], in-
dicating that these PEVs contribute to adaptive immunity which can then lead to a more
pro-inflammatory and pro-thrombotic environment. Arauna et al. found that frail adults
had higher concentrations of PEVs in the circulating plasma and that these PEVs had
higher levels of PS and TF on their surface [52], while Grande et al. found that PEVs from
obese women were more heterogenous in size and protein contents with an enrichment of
thrombosis related proteins [146].

7. Platelet-Derived Extracellular Vesicles in Autoimmunity

Patients with autoimmune diseases are at higher risk of thrombotic complications.
While many factors contribute to thrombosis in these patients, pro-inflammatory and pro-
coagulant PEVs are often increased under these conditions, including Rheumatoid Arthritis
(discussed below), Systemic Lupus Erythematosus (lupus) (discussed below), Sclerosis
(discussed below), Antiphospholipid Syndrome [57,59], Diabetes Type 1 [6,53,147], Inflam-
matory Bowel Disease [148], Multiple Sclerosis [149], Raynaud’s Phenomenon [60] and
Autoimmune Thyroiditis (both Hashimoto’s and Grave’s diseases) [150]. For the majority
of patients, PEV levels decrease upon remission (discussed below). Many of these PEVs
are positive for both IgG and IgM and socan form immune complexes and will have pro-
coagulant activity. However, different disease states will favor one antibody over the other
and will express different pro-coagulant proteins. For example, there are more IgG-positive
PEVs in lupus and more IgM-positive PEVs in Multiple Sclerosis [149,151]. Understanding
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the composition of PEVs in these different disease states will improve understanding of
their pathologic roles and therefore, elucidate potential therapeutic targets.

7.1. Rheumatoid Arthritis (RA)

Rheumatoid arthritis (RA) is a chronic, inflammatory autoimmune disease that causes
problems within and outside of the joint. RA patients have increased inflammation with
increased risk of atherosclerosis and cardiovascular disease and decreased life expectancy,
which can result from acute myocardial infarction, stroke, and heart failure. In the plasma
of RA patients, the blood thrombi are denser and contain fibers that are thinner and more
tightly packed together than those in non-RA blood thrombi, making them less likely
to fibrinolyse [61]. These blood thrombi can also contain EVs and PEVs [61]. In RA,
levels of circulating PEVs are increased [57,61,133,152,153], and correlate with clinical man-
ifestations including vascular manifestations, inflammatory parameters, and coagulation
potential [57,61,134,152,153].

Interestingly, synovial fluid, which is normally non-clotting in nature, can develop
thrombi during inflammatory episodes, such as in RA or arthropathies. This occurs through
the leakage of inflammatory clotting factors into the synovial fluid [113,114], leading to
coagulation and the need to anticoagulate the synovial fluid before analysis [112]. There
is also leakage of nuclear cells into the synovial fluid, including fibroblasts and immune
cells such as neutrophils, macrophages, and lymphocytes. The types of cells in the synovial
fluid reflect the disease etiology, whether there is inflammatory arthropathy (sepsis, gout),
or rheumatoid disease vs. an injury to the joint [113]. In RA, PEVs can leak into the
synovial fluid, providing TF and a phospholipid surface on which the thrombin clot can
form [57,134,152,154]. The PEVs that enter into the synovial fluid of RA patients contain
more mitochondria and hyaluronan than the PEVs in osteoarthritis patients [35,155]. They
also are positive for citrullinated peptides (cit-fibrinogen) which can lead them to form
immune complexes [133]. In fact, the majority of immune complexes in the synovial fluid
of RA patients have PEV [120] and are highly pro-inflammatory.

These PEV-immune complexes can activate immune cells such as neutrophils and
monocytes. PEV-immune complexes have been found to stimulate neutrophils resulting
in them producing leukotriene [120], and stimulate monocytes inducing them to produce
chemokine receptor 1 (CXCR1), CD36, and interleukin 1 (IL-1) [133]. However, PEVs can
also activate other cells without being in an immune complex. PEVs in RA can modulate in-
flammation, endothelial cell activation, fibroblast activation, and coagulation [57]. PEVs can
directly stimulate monocytes causing the release of IL-1β, IL-6, IL-8, IL-10, and TNFα [133].
PEVs also activate fibroblast-like synoviates in the synovial fluid through IL-1, platelet
factor 4 (CXCL4) and platelet basic protein (CXCL7) on their surface [134,136]. IL-1 on the
PEVs stimulates the synovial fibroblasts to produce IL-8 [134]. CXCL4 and 7 trigger nuclear
factor kappa-B (NFκB) activation in the fibroblast-like synoviates, promoting their migra-
tion, which then results in joint erosion [136]. In a feedback loop, fibroblast-like synoviates
can also induce PEV production through glutathione peroxidase (GPXI) and FC receptor
gamma (FCRγ) chain signaling, and without GPXI, mice had decreased inflammatory
arthritis [134].

While clotting in RA occurs in both the blood and synovial fluid, PEVs also enter the
lymph of RA patients [156]. Interestingly, the EVs in the lymph of RA patients are mostly
of platelet origin and not of erythrocyte or leukocyte origin, indicating a role specifically
for PEV. However, the PEVs in the lymph of RA patients lacked mitochondria and were
unable to promote coagulation in the lymphatic fluid, indicating that while they promote
coagulation in other locations, they may serve more of an immune-regulating/activating
role in the lymph.

7.2. Systemic Lupus Erythematosus (Lupus)

Blood thrombi are seen with increased frequency in individuals with lupus. One reason
this may happen is that these patients have anti-phospholipid antibodies (APS). However,
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lupus is a complex disease and the presence of APS antibodies is not the only factor affecting
coagulation [80]. Another potential factor leading to increased thrombi formation in lupus
patients is platelet activity and the increased prevalence of PEVs. In lupus, the platelets
are smaller and more activated [157]. The prevalence of smaller platelets is most likely
a consequence of larger platelets being consumed preferentially, resulting in more PEVs
being produced (presumably from the consumed larger platelets). Interestingly, decreased
platelet size is associated with increased anti-phospholipid syndrome, and thrombotic
events in lupus [157]. As such, PEVs in lupus likely are promoting anti-phospholipid
syndrome and thrombosis. PEVs are elevated in the circulation in lupus by 2 to 10-fold
compared to healthy controls [10,49,60,158]. In patients with higher levels of circulating
TNFα, there are also increased PEV numbers [62] indicating that TNFα may be stimulating
PEV production in lupus. On the other hand, researchers have also found the opposite
and reported that PEVs decrease in lupus [72]. One potential reason for this controversy
could be that the PEVs are being consumed, leading to disease activity. Alternatively, in
lupus PEVs form immune complexes with both IgG and IgM [57,151,159–161] and the
PEV-immune complexes are likely being deposited in places such as the kidney glomeruli,
leading to loss of circulating PEVs and perhaps pathologies like lupus nephritis. However,
some studies have reported that patients with lupus nephropathy have increased circulating
PEV [63], which may reflect a discrepancy in methods used to analyze the PEVs.

In lupus, the majority of circulating IgG immune complexes are found on plasma
EVs [159]. While IgG-PEVs correlate with disease activity, IgM-PEVs do not, indicating
that the type of immune complex formed with the PEVs impacts its pathogenicity [159].
Some other prothrombotic factors clinically associated with IgG-PEV complexes are ds-
DNA antibodies, anti-histone antibodies, total IgG, decreased leukocyte counts, and the
Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) score [151,161]. IgG-PEV
complexes also activate monocytes in vitro and lead to the increased production of CD69,
CD64, IL1β, TNFα, and IFNα from the monocytes [159]. While most of the PEVs are likely
to be associated with immune complexes, researchers have also observed that PEV num-
bers themselves correlate with disease duration, thrombin generation, and cardiovascular
disease in lupus [10,62]. Though PEV-immune complexes correlate with active disease,
PEVs are increased even in the absence of any active disease [10,159]. APS antibodies
in lupus were not associated with PEV levels [159], and patients with no APS also have
increased total EVs that associate positively with thrombin generation [80].

In general, PEVs from lupus are larger in diameter than those in healthy individu-
als [55]. A proportion of these large PEVs (larger than 700 nm) contain mitochondria [49].
Patients with increased numbers of mt-positive PEVs also had worse disease outcomes
(dsDNA antibodies, pro-inflammatory cytokines, and lupus nephritis). Smaller PEVs in
lupus were determined to have decreased mitochondrial proteins but increased glycolytic
and apoptotic proteins, including annexin V, CD40 ligand, and galectin-3 binding protein
G3BP [78,158,160]. Increased amounts of glycolytic and apoptotic proteins in PEVs indi-
cated an increased SLEDAI score [78]. These PEVs also had increased levels of complement
proteins [10,151,158,160].

7.3. Vasculitis and Systemic Sclerosis

Vasculitis is a complication of many autoimmune diseases, including scleroderma, or
systemic sclerosis (SS). During vasculitis or SS, patients have a procoagulant state and have
an elevated risk of venous thromboembolism [162]. Levels of PEVs are increased during
vasculitis occurring at any age and often correlate with disease symptoms. In sclerosis,
Guiducci et al. found that there were increased levels of PEVs in both the limited and sys-
temic forms of the disease [163]. Not only are PEVs elevated in SS, but EVs originating from
endothelial cells, monocytes, and T cells are also increased. However, PEVs are the main
source of plasma-derived EVs in SS, where 67% of EVs are platelet-derived and endothelial
cell-derived EVs, constituting merely 9%, are the second largest source [163]. The elevation
of PEVs in SS is greater than that of RA [73]. PEV levels also correlated with disease activity,
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including the Rodnan skin thickness score, and the Birmingham vasculitis activity score
(BVAS) [64,163], and decreased at remission [73]. Patients experiencing interstitial pneumo-
nia, or nephropathy had increased PEVs in circulation [63,164]. While the correlation of
specifically PEV levels has not yet been examined for correlation with vasculopathy as a
symptom, total EV levels in SS are associated with increased vasculopathy [74].

Patients with SS can have anti-neutrophil cytoplasmic antibodies (ANCAs) [165] which
by themselves can lead to ANCA-associated vasculitis. In patients who have ANCAs,
platelets are activated via the thrombin-protease activated receptor (PAR) pathway and
produce PEVs [162]. During vasculitis, whether ANCA positive or not, PEVs are increased
and are associated with active disease, inflammation (immune cell counts, erythrocyte
sedimentation rate (ESR), C-reactive protein (CRP)), and renal damage [63,64,73,74,147].
PEV levels were found to be increased in chronic vasculitis with even greater numbers in
acute vasculitis. One group did not see an increase in PEV levels in patients with Coronary
Artery Disease, a vasculopathy independent of SS [166,167], indicating a role for PEVs
in SS-associated vasculitis. Leleu et al. did not see increases in endothelial cell-derived
EVs while they observed significant changes in PEVs [74]. Intriguingly, PEVs in vasculitis
seemed to be increased if they expressed CD42a but not if they expressed P-selectin [64],
indicating that the characteristics of EVs may align with the disease state.

PEVs in SS and vasculitis express many pro-inflammatory and pro-coagulant pro-
teins, including TF, IgG, sialic acid-binding immunoglobulin-type lectin 11 (siglec-11),
tumor necrosis factor receptor superfamily member 19L (RELT), Nectin 1 and 4, TFN RII,
IL1-R4, junctional adhesion molecule B (JAM-B), Cadherin-11, 13 and P-cadherin, glyp-
ican 5, thrombospondin 2 and 5, CD23, granulocyte colony-stimulating factor (G-CSF),
angiotensinogen, UL16-binding protein 1 and 2 (ULBP-1 and 2), interstitial collagenase
(MMP-1), CD229, CD84, CD58, and IL-12p40 [147,151,160,164]. As such it can be inferred
that they probably play roles in chemotaxis and adhesion of immune cells, cell growth,
apoptosis, and coagulation. PEVs expressing the protein high mobility group box 1 protein
(HMGB1) caused neutrophil activation and neutrophil extracellular trap (NET) formation
(NETosis) through this protein [166,167].

8. Platelet-Derived Extracellular Vesicles in Allergies

There are indications that activation of the coagulation system occurs during allergic
responses [168–170]. The role of the coagulation system would depend on the type of
allergy, but one study indicated that thrombin plays an important role in the induction
and regulation of mucin production in the upper airway [169]. It has been found that
people with seasonal allergic rhinitis and asthma have increased plasma levels of platelet
activation markers, including PEVs [65,171]. No significant changes in EVs from endothelial
cells were observed [65], indicating a role for PEVs. Additionally, PEVs were increased
in patients with atopic dermatitis and decreased as symptoms disappeared [172]. This
was in comparison to both healthy and non-atopic urticaria patients, indicating a role of
immune-mediated PEV production. PEV numbers also correlated with the scoring atopic
dermatitis (SCORAD) index, indicating a potential role of PEVs in the disease state. While
there are many unknowns in the roles of PEVs in allergic responses, there are a few possible
mechanisms that it would be beneficial to investigate. First, PEVs contain and can deliver
CD154 [173] and platelets promote allergic asthma through expression of CD154 [174].
Next, PEVs can be positive for Platelet-factor 4 (PF4) [175] and PF4 increases in people with
seasonal allergies when they are experiencing symptoms [171]. Further investigation of
the role of PEVs in allergies could provide new insight into the pathologic mechanisms of
different allergic responses.

9. Platelet-Derived Extracellular Vesicles in Infectious Diseases

Many different infections or infectious diseases have pathologies involved with altered
coagulopathy and thrombosis. These thrombo-inflammatory disease manifestations can
be caused by a wide variety of etiologies, from bacteria to viruses to parasites and their
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resulting systemic inflammation. Infection itself can lead to thrombosis, or infection can
lead to the release of pro-inflammatory components that then promote thrombosis. In
many infectious diseases, there is a combination of both. Many of these stimuli induce PEV
formation, and these PEVs can then enhance thrombosis in inflammatory and infectious
conditions. It is important to consider that the pathogen itself can affect PEVs. Not only can
they directly stimulate their release, but components of the pathogen can be present in the
EVs [66,176–179]. In some cases, the bacteria or parasites can produce their own EVs, which
could impact EV detection and characterization [180,181]. Below, we present a selection of
diseases in which PEVs have been demonstrated to affect patient coagulation states.

9.1. Sepsis

Sepsis is a disease in which the body responds to an infection and mounts a massive
immune response which spirals out of control. Mortality in sepsis is high globally, and
one cause of death is disseminated intravascular coagulation (DIC). Thrombocytopenia
in sepsis is correlated with a poor clinical outcome and also correlates with high num-
bers of PEVs [182]. In the plasma of septic patients, multiple groups have found high
PEV numbers [79,104,182–185] that correlate with poor clinical outcomes. PEVs correlated
positively with septic shock [75,79], DIC [75,79,182], renal dysfunction [185], longer va-
soactive support [79], and longer ventilation [79]. This was not true for EVs originating
from endothelial cells [75]. PEVs specifically were not found to correlate with mortality,
but CD31 positive EVs, which include a majority of PEVs, do correlate positively with
mortality [75]. Curiously, another group found that PEV levels decreased with DIC and
mortality [183]. This discrepancy is likely due to PEVs associating with thrombi [122] in
the patients so that they were not available in the aspirated blood. The increase in PEVs in
sepsis is associated with acute disease [79,175]. However, in patients who suffered DIC,
PEVs remained elevated for up to 21 days after DIC treatment [182]. The initial infection
causing sepsis affects PEV numbers and contents. For example, patients with fungal sepsis
caused by Candida albicans had elevated levels of PEVs compared to those with non-fungal
sepsis [186]. Furthermore, patients with sepsis caused by Neisseria meningitidis, which
causes massive coagulation, had increased levels of TF-positive EVs [83]. All these data
indicate that PEVs are an important factor in the progression of sepsis pathology, and due
to the diverse nature of sepsis, the PEVs and their downstream effects are not always the
same for every patient.

The cytokine storm in sepsis can mediate platelet activation and PEV release. Some of
the cytokines indicated to be involved in the release of PEV in sepsis are IL-6 [182] and IL-
8 [81]. Pathogenic components can also activate platelets to release PEV [103,105,187,188].
The pathogenic agonists appear to have a greater propensity to stimulate PEV formation
in sepsis. For example, it has been shown that LPS stimulation results in IL-1β rich PEV,
while stimulation with a TRAF6 interacting peptide-antennapedia chimera does not cause
the release of PEV despite causing platelet activation [103].

PEVs in sepsis lead to a prothrombotic environment not only due to an increase in
numbers, but also through their contents, including PS [184], and their ability to activate
other cells. Wang et al. found that PEVs can cause neutrophil cell death, potentially via
NETosis, through Rac1 [135]. Inhibition of Rac1 resulted in a reversed effect on thrombin
generation in sepsis. Monocyte activation can also be mediated by PEVs in sepsis. Platelets
stimulated with the Staphylococcal superantigen-like protein 5 (SSL5) produced PEVs that
bound monocytes with a preference for intermediate monocytes, then classical monocytes,
and last non-classical monocytes. The interaction of PEV and monocyte-induced cytokine
production from the monocytes, including IL1β, TNFα, monocyte chemoattractant protein-
1 (MCP-1), and matrix metalloproteinase 9 (MMP-9) [105]. These PEVs also induced
monocyte migration that was greater than SSL5 was able to induce. Additionally, PEVs
were able to recruit monocytes through the interaction of PS and p-selectin [121]. This
interaction resulted in transferring GP1bα to the monocyte from the PEV. As such, there was
greater tethering and rolling of monocytes to the VWF exposed on endothelial cell surfaces.



Int. J. Mol. Sci. 2022, 23, 7837 15 of 29

Normally, VWF is not exposed on the surface of endothelial cells, but PEVs in sepsis
can lead to this exposure [137]. PEVs can also activate endothelial cells through the IL-1
receptor, resulting in elevated vascular adhesion molecule 1 (VCAM-1) expression [103].
PEVs can also be internalized by endothelial cells [138], and the NADPH on their surface
can lead to ROS production and endothelial cell apoptosis [104,139]. Just like sepsis, this is
more complicated than meets the eye. In a likely attempt by the body to control and cool
down the system, PEVs in sepsis are also enriched in miR-223 which reduces intracellular
adhesion molecule 1 (ICAM-1)-dependent vascular inflammation in sepsis. This leads to
decreased adhesion of peripheral blood mononuclear cells (PBMCs) to the endothelial cell
surface [138] and may decrease thrombo-inflammation.

9.2. Human Immunodeficiency Virus (HIV)

Patients with HIV infection have a hypercoagulable state that increases their risk
of thrombotic complications even without active viral replication [140,189,190]. In these
patients, an increased viral load also leads to increased platelet activation [191]. One way
in which this occurs is through the protein transactivator of transcription (Tat). HIV Tat1
directly activates platelets through chemokine receptor 3 (CCR3) and β3-integrin, resulting
in PEV formation [191]. Correspondingly, patients with HIV have increased numbers of
PEVs in their blood [9,58,76,192], though the numbers of PEVs detected are again variable
in different reports. Hijmans et al. found 40 PEVs per µL plasma in healthy individuals
and 140 PEVs per µL plasma in HIV patients [76], while Falasca et al. found 897 annexin V
negative and 112 annexin V positive PEVs per µL plasma in healthy individuals and 1419
annexin V negative and 215 annexin V positive PEVs per µL plasma in HIV patients [192].
The PEVs in HIV patients contain protein components that are involved in thrombus
formation and inhibition of the immune response. Falasca et al. identified that some
proteins involved in the thrombotic response of PEVs are apolipoprotein E (APOE), Beta-2-
glycoprotein 1 (APOH), complement component 3 (C3), complement component 5 (C5),
complement factor H (CFH), complement factor H-related protein 1 (CFHR1), factor 2
(F2), fibrinogen alpha (FGA), fibrinogen beta (FGB), fibrinogen gamma (FGG), histidine-
rich glycoprotein (HRG), kininogen-1 (KNG1), plasminogen (PLG), and antithrombin-III
(SERPINC1) [192]. It has also been found that PEVs in HIV have higher numbers that are
positive for dihydroethidium (DHE), indicating that they contain ROS [106]. Unexpectedly,
even though there is increased ROS, these PEVs actually have lower mitochondria [9],
suggesting sources other than mitochondria induce ROS production in PEVs in HIV.

PEVs, and even MEVs, contain HIV viral receptor C-X-C chemokine receptor type
4 (CXCR4) [141]. The components on the surface of PEVs, including CXCR4, can be
transferred to cells that are devoid of these components. The transfer of CXCR4 from
PEVs to cells provides a significant pathological trigger where PEVs could then potentiate
the spread of the virus through the transfer of the viral receptor to cells naturally devoid
of these receptors [141]. Other than spreading the virus, PEVs in HIV correlate with
decreased levels of CD4-positive T cells [58] and can cause endothelial dysfunction [76].
These data indicate that PEVs play a role in the pathogenicity in HIV patients through their
participation in cellular interaction and coagulation.

9.3. COVID-19

COVID-19 disease is characterized by thrombo-inflammation. Microthrombi form in
the lungs of patients and larger thrombi form in circulation, leading to thrombotic events.
Platelet activity has been found to be increased in COVID-19 patients, and PEVs are released
as a result [77,193]. While exact numbers of PEVs detected differ, PEV levels are increased
in the circulation of COVID-19 patients [67,68,77,142,143,194–198]. Cappellano et al. visual-
ized 1472 PEVs/µL plasma, while Maugeri et al. observed 2.5 × 106 PEVs/µL plasma, and
Zaid et al. detected 2 × 108 annexin V negative PEVs/µL plasma and 9 × 108 annexin V
positive PEVs/µL plasma [194–196]. Additionally, PEVs in COVID-19 plasma are larger
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than those found in healthy controls [143], indicating that there may be a higher ratio of
ectosomes and apoptotic bodies in circulation.

The enhanced prevalence of PEVs correlates with COVID-19 disease severity. While
asymptomatic patients had increased levels of PEVs compared to healthy controls, PEV lev-
els rose dramatically in individuals with active disease [142,194,198]. If a patient was hospi-
talized, the PEV levels were the highest in those admitted to the ICU [198]. PEV levels corre-
lated with longer hospitalization, intubation, total leukocyte counts, neutrophil counts, CRP
expression, lactate dehydrogenase (LDH) levels, and thrombotic events [68,142,196,197].
Conversely, Zaid et al. and Guervilly et al. observed decreased levels of PEVs in the
circulation of patients with severe COVID-19 and thrombosis [82,196]. This discrepancy is
probably due to the consumption of PEVs that are then incorporated into thrombi [122].
This hypothesis is further supported by the finding that there is a negative correlation be-
tween PEV numbers and d-dimer levels, suggesting PEVs are being consumed in DIC [68].
PEVs that are HMGB1 positive are increased in COVID-19 and correlate positively with
CRP levels, LDH expression, d-dimer, acute respiratory distress syndrome (ARDS), and
patient WHO score. These PEVs correlate negatively with PaO2/FiO2 in COVID-19 [195].
Additionally, cancer is a co-morbidity often associated with COVID-19, and PEV levels are
high in patients with both cancer and COVID-19. However, only PEVs expressing platelet
activation markers, such as CD146, showed further increase upon metastasis. These acti-
vated PEVs correlated positively with the increased levels of CRP and d-dimer in metastatic
patients [77]. Total EVs in COVID-19 are enriched for coagulation, inflammation, and the
immune response, signifying their ability to affect these clinical outcomes [199].

As the COVID-19 pandemic progressed, it became apparent that many individuals
would suffer from symptoms weeks to months after they became sera-negative for the virus.
This phenomenon has been termed post-COVID. As of yet, there is no identifying reason
as to why one person will get post-COVID, and another will not. In studies examining PEV
levels after acute disease, two groups found contrasting results. Campello et al. observed
that PEVs remained elevated in the plasma of COVID-19 patients for at least 30 days
post-hospital discharge [67]. They also observed that EVs originating from endothelial cells
decreased after recovery, indicating a potential role for PEVs, specifically, in post-COVID
symptoms. On one hand, numbers of PEVs were positively associated with thrombosis and
with persistent symptoms. On the other hand, Abdelmaksoud et al. observed a decrease in
PEV levels four weeks after patients were sera-negative for SARS-CoV-2 [197]. In this study,
the authors did not observe post-COVID symptoms, but they did see that the levels of
PEVs correlated positively with CRP, LDH, and serum ferritin. These different observations
for PEVs in post-COVID patients could be due to the non-inclusion of patients without
post-COVID symptoms. There is a strong likelihood that elevated PEVs are associated with
persistent symptoms as both groups observed that increased PEV numbers correlated with
symptoms after initial COVID-19 recovery.

In COVID-19, there are many stimuli in circulation that can lead to PEV formation. A
few predicted PEV-stimuli in COVID-19 are IL-1, IL-6, TGFβ, and the virus itself [199,200].
Whether SARS-CoV-2 interacts with platelets in vivo is not fully elucidated and has only
been seen in a few patients [200,201]. Studies indicated that while infection may be possible,
it is unlikely that platelets support viral replication [202]. In vitro experiments have been
performed to determine the effect the virus has directly on platelets and if it induces
PEV formation. It is important to keep in mind that the viral doses used in vitro may be
substantially higher than those found interacting with platelets in vivo; it is also important
to consider that factors in the bloodstream released from other cells the virus comes into
contact with, can also activate platelets. In vitro, SARS-CoV-2 interaction with platelets
activates them and results in cell death and PEV release [200]. This is both dependent
on and independent of angiotensin-converting enzyme 2 (ACE2). Rarely has ACE2 RNA
or protein been detected on the platelet surface [193,200,203], but there are other SARS-
CoV-2 receptors on the platelet surface. CD147, a novel receptor for SARS-CoV-2 [204] has
increased expression on platelets in COVID-19 infection [202]. Activation of the CD147
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receptor on platelets resulted in increased release of PEVs [195]. However, the interaction
of platelets and the virus is probably dependent on the multiplicity of infection (MOI).
Koupenova et al. saw large effects as they used an MOI of 10, whereas Shen et al. saw
fewer effects when they used an MOI of 1 [200,202].

Functionally, annexin V positive PEVs were observed to adhere to PBMCs for weeks
after initial diagnosis [142]. The number of PEVs adhering to the PBMC correlated with
increasing disease severity as measured by the WHO ordinal scale. PEVs bound to CD4+ T
cells, CD8 T cells, CD19 positive B cells, and a fourth group of PBMCs comprised mainly
of dendritic cells and monocytes. The PEVs preferentially bound to proliferating T cells
with an increased propensity for effector T cells compared to memory T cells. Other than
binding to immune cells, PEVs from COVID-19 plasma triggered endothelial cell activation
and death [143]. Both p-selectin and VCAM-1 expression in endothelial cells increased via
the annexin V on PEVs. This activation of the endothelial cells then resulted in activation of
neutrophils, increasing their adherence and NETosis [143], indicating that PEVs in COVID-
19 not only adhere to PBMCs, but they can also affect endothelial cells and modify the
vasculature in a procoagulant way. With these activities, PEVs, and not platelets, have been
proposed as a potential biomarker for COVID-19 disease [194].

9.4. Dengue

Dengue virus is another virus that upon infection of humans, results in DIC [205].
While only a small population of infected individuals experience DIC, those who do are
classified as having dengue hemorrhagic fever. Infection leads to platelet activation and
PEV production [144], which further results in thrombocytopenia. In patients infected
with dengue who had thrombocytopenia and no bleeding phenotype, higher levels of
PEVs are observed [69]. Those who bled had low levels of both platelets and PEVs, while
those who did not have thrombocytopenia did not have high numbers of PEVs [66,69].
While PEV levels are lower in individuals who experience bleeding, this is most likely
due to PEVs being associated with thrombi found in the bloodstream [122] such that they
cannot be visualized ex vivo. Additionally, PEVs were found to play a role in dengue virus
lethality [102].

PEVs are produced in dengue through the activation of platelets and the platelets can
be activated through inflammatory factors or the virus itself. Dengue virus can activate
platelets through multiple mechanisms, including through activation of the platelet c-type
lectin-like receptor 2 (CLEC2), which is a receptor for the snake venom aggretin [102], and
through the production of mitochondrial ROS [144]. When the CLEC2 receptor is stimulated
with dengue virus, the PEVs produced can activate CLEC5A and Toll-like receptor 2
(TLR2) on neutrophils and macrophages, resulting in their activation. PEVs can also
cause NETosis [102]. It was found that when the CLEC5A and TLR2 receptors are inhibited,
dengue lethality was decreased from 70% to 10%, indicating the potential of PEVs in dengue-
related mortality through this particular mechanism. Whether through a direct mechanism
or an indirect one, upregulation of mitochondrial ROS in dengue infection led to the
assembly of the nucleotide-binding domain leucine-rich repeat-containing protein (NLRP3)
inflammasomes through caspase 1, which resulted in increased PEV production [144].
The PEVs produced were rich in IL-1β. The IL-1β on PEVs led to enhanced vascular
permeability, as evidenced by leakage through an endothelial cell layer. While the PEVs in
dengue had high levels of IL-1β, they were also positive for HSP70 and CD63. Interestingly,
CD9 was absent in PEVs from dengue-stimulated platelets, while it was present in PEVs
stimulated with thrombin [102]. These data indicate that the PEVs produced in infection
with dengue virus are different from those produced without viral infection.

9.5. Malaria

Coagulation and DIC are a consequence of malaria. DIC is associated with more severe
disease and cerebral malaria, and as such, high mortality [206]. In malaria infection, both in
people (Plasmodium falciparum and vivax) and in mice (Plasmodium berghei) there are higher
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numbers of circulating EVs and PEVs [70,71,207]. PEVs in malaria positively correlate
with clinical symptoms, including fever, cerebral malaria, coma depth, thrombocytopenia,
and length of symptoms [70,71]. PEV levels did not correlate with severe anemia or
uncomplicated malaria. Mfonkeu et al. observed levels of annexin V positive PEVs
increased from 50 in healthy individuals to 150 PEVs per µL of plasma in malaria patients
presenting with cerebral malaria [70]. In mice infected with P. berghei, mortality due to
cerebral malaria was decreased by the addition of a caspase inhibitor, which reversed the
inverse correlation between platelets and PEVs due to inhibition of the caspase-dependent
disintegration of the platelet and the resulting PEV production [8]. Interestingly, levels
of PEVs decreased with increasing numbers of previous malaria episodes [71], and were
associated with acute disease, as PEV numbers decreased upon hospital discharge [70].

PEVs in malaria affect coagulation by interacting with and activating other cell types.
First, PEVs can bind to and be taken up by parasitized red blood cells (pRBC) [145,207]. In
doing so, the PEV transfers both cholesterol and platelet antigens to the surface of the pRBC.
While the cholesterol serves as a necessary resource for pathogen replication [207], the
platelet antigens facilitate cytoadherence to brain endothelial cells [145], promoting cerebral
malaria. PEVs had minimal binding to uninfected RBC. Second, the PEVs can also directly
interact with brain endothelial cells. This interaction leads to the acquisition of platelet
endothelial cell adhesion molecule 1 (PECAM-1) and GPIV by the endothelial cells from
the PEVs, providing a pro-coagulant environment [145]. Third, EVs, including PEVs, can
be taken up by and activate human spleen fibroblasts, inducing ICAM-1 expression [208].
While these are three ways in which PEVs can lead to coagulation and adverse effects in
malaria, there could be other mechanisms yet to be discovered.

10. Effects of Therapeutics on PEVs

An interesting developing concept which has been not explored much is that different
treatment regimes can alter the production and characteristics of PEVs. One study found
that low molecular-weight heparin (LMWH) led to a decrease in the procoagulant activity
of PEVs in patients with deep vein thrombosis. However, if a vitamin K antagonist was
used prior to the treatment with LMWH, the PEVs showed an increase in procoagulant
activity [209]. On other hand, different therapies targeting the same pathway or receptor
can also have different effects on PEVs. Two anti-platelet therapies antagonizing the
P2Y12 ADP receptor, while resulting in similar effects on platelet aggregation, showed
diverse effects on PEV production [210]. Ticagrelor treatment resulted in decreased platelet
activity and PEV formation, while Prasugrel resulted in decreased platelet activity but had
no significant effect on PEV production. These data are examples of how the choice of
therapies, and even the order in which they are given, can affect PEVs and their resulting
impact on disease states.

Additionally, treatments used in the prevention of disease can also alter the production
of PEVs. For example, vaccine-induced thrombotic thrombocytopenia (VITT) can result
from vaccination against SARS-CoV-2 [211]. In this condition, individuals have PF4-positive
immune complexes [212] and these complexes have been found to induce platelet activation
and PEV formation [213]. Therefore, knowledge of how vaccination affects PEVs and their
potential to induce thrombosis is important in order to maintain an individual’s health.

11. A Feedback Loop of Platelet-Derived Extracellular Vesicles Activating Parent Cells

PEVs contribute to thrombosis through direct contribution with PS and TF, and in-
directly through activation of other cells and creation of a pro-thrombotic environment.
Interestingly, PEVs have a feedback loop where they can also act on platelets and their
precursor, megakaryocytes. In this way, PEVs affect their parent cells and this loop can
result in an increased number of pro-thrombotic PEVs. EVs derived from both platelets and
megakaryocytes can enter the bone marrow, and promote hematopoietic stem/progenitor
cell (HPSC) differentiation into mature megakaryocytes [96] (Figure 6). The addition of
cycloheximide inhibited this phenomenon, suggesting that properly functioning protein
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synthesis is necessary for this event to occur [214]. PEV-stimulated megakaryocyte matura-
tion is independent of thrombopoietin (TPO) (Figure 6) as direct injection of PEVs into irra-
diated mice resulted in increased levels of megakaryocytes and platelets without affecting
TPO levels [214]. This is substantiated by the finding that ex vivo treatment of bone marrow
from mice lacking the TPO receptor with wild-type PEVs, restores megakaryocyte differen-
tiation [215]. In PEV-stimulated megakaryocyte differentiation, the megakaryocytes were
generally larger and more polyploid [214] (Figure 6). The fragmentation of the megakary-
ocyte cytoplasm that occurs with ploidization, results in an increased platelet count as long
as the cellular organelles (mitochondria, granules, and demarcation membrane system) are
developed during megakaryocyte maturation [216]. PEVs contain miRNA1915-3p, which
suppresses the expression of Rho GTPase family member B (RHOB) [214]. While RhoA
plays a key role in the regulation of actin polymerization and megakaryopoiesis [217], RhoB
plays a role in microtubule/myosin contraction to promote actin assembly on endosomes
which in turn regulates protein trafficking and cell survival. As such, it is not surprising
that inhibition of RhoB results in increased megakaryopoiesis [214]. Since PEV-stimulated
megakaryocyte differentiation results in larger and more polyploid megakaryocytes, it is
safe to assume that there will be a resulting increase in platelet count, and Qu et al. found
that PEVs do indeed result in increased platelet-like particle formation in megakaryocytes
in vitro [214] (Figure 6).
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Figure 6. Platelet Extracellular Vesicles (PEVs) Stimulate Megakaryocyte Maturation and Platelet
Production. (A). Megakaryopoiesis is normally induced by thrombopoietin (TPO), where megakary-
ocytes become polyploid and platelets are produced from pseudopodia extending from the mature
megakaryocyte. (B). PEVs can stimulate megakaryopoiesis independent of TPO. When PEVs stimu-
late megakaryocyte maturation and platelet production, the resulting megakaryocytes are larger and
more polyploid and as a result, there is increased platelet production.

Not only can PEVs have an effect on the megakaryocyte, but they can also activate
platelets directly. One way in which this occurs is through NADPH oxidase 1 (Nox1) on
the PEV surface. The Nox1 on PEVs enhances fibrinogen binding, annexin V exposure,
and p-selectin exposure in platelets [100]. Therefore, it is likely that the Nox1 on PEVs
also results in increased PEV production from these activated platelets. However, as PEVs
contain many molecules that activate platelets, it is likely that there are a multitude of
ways in which PEVs can activate platelets through their receptors or from PEV uptake.
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In pathologic conditions, the number of PEVs in the bone marrow is increased [215],
suggesting that this process of PEV affecting megakaryocytes and platelets is also increased
in pathologic conditions, creating an endless loop where PEVs result in more EV production
from platelets and other cells [87]. Since there are more PEVs in pathologic conditions, this
cycle will continue to spin out of control, resulting in a worsened state for patients.

12. Future Directions

Understanding the role of PEVs in health and disease is important to appreciate their
contribution to pathologic conditions. In particular, one role PEVs are known for is their
ability to promote coagulation and a pro-thrombotic state [1,53,92,119,120,122–125]. The
production of PEVs can be induced by classic platelet stimuli that originate from the host
or from pathogens. Since different stimuli result in different numbers and phenotypic
expression/contents of PEVs, it is important to know how PEVs are being generated in
different disease states as well as to know how different agonists and therapies affect PEVs.
Intriguingly, coagulation can also occur in fluid other than that of blood, including the bone
marrow [108], the CNS [109–111], the lymphatic system [107,115–118], and the synovial
fluid [112–114,156] in pathologic conditions. This occurs due to leakage of clotting factors
and PEVs into these fluids allowing for coagulation, but very little has been studied about
the roles of PEVs in coagulation outside the blood. This is important because PEVs can
reach sites in the body that the platelet cannot [218]. Thus, a detailed understanding of
PEVs in a pathologic setting and how the therapies used to treat said disease affect PEVs, is
necessary in order to provide appropriate treatment to patients. Conversely, because of
their role in thrombosis, PEVs have been considered as a therapeutic potential in wound-
healing hemorrhage [219,220]. We have detailed the role of PEVs in coagulation in multiple
immune-mediated diseases, but PEVs have roles in other disease states as well, including
ones that have yet to be examined such as Ebola and Babesiosis which both have pathogenic
effects on the coagulation system. In pathologic conditions, knowledge of what stimuli are
used to produce the PEVs, and their composition, is just as important as understanding
their pathologic role in disease.
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