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Conserved and divergent aspects of human T-cell
development and migration in humanized mice

Joanna Halkias1,2, Bonnie Yen1, Kayleigh T Taylor1, Olaf Reinhartz3,4, Astar Winoto1, Ellen A Robey1 and
Heather J Melichar1,5

Humanized mice represent an important model to study the development and function of the human immune system. While it is

known that mouse thymic stromal cells can support human T-cell development, the extent of interspecies cross-talk and the

degree to which these systems recapitulate normal human T-cell development remain unclear. To address these questions, we

compared conventional and non-conventional T-cell development in a neonatal chimera humanized mouse model with that seen

in human fetal and neonatal thymus samples, and also examined the impact of a human HLA-A2 transgene expressed by the

mouse stroma. Given that dynamic migration and cell–cell interactions are essential for T-cell differentiation, we also studied the

intrathymic migration pattern of human thymocytes developing in a murine thymic environment. We found that both conventional

T-cell development and intra-thymic migration patterns in humanized mice closely resemble human thymopoiesis. Additionally,

we show that developing human thymocytes engage in short, serial interactions with other human hematopoietic-derived cells.

However, non-conventional T-cell differentiation in humanized mice differed from both fetal and neonatal human thymopoiesis,

including a marked deficiency of Foxp3+ T-cell development. These data suggest that although the murine thymic

microenvironment can support a number of aspects of human T-cell development, important differences remain, and additional

human-specific factors may be required.
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Humanized mice, in which immune deficient mice are engrafted with
human hematopoietic cells, provide a powerful model to study human
T-cell development in vivo. Several models of humanized mice have
been developed that exhibit de novo thymopoiesis. In the neonatal
chimera model, irradiated newborn mice are reconstituted intra-
hepatically with cord-blood derived human hematopoietic stem
cells,1,2 and human thymocytes develop within a mouse thymic
environment. This approach has been used with multiple immuno-
deficient mouse strains including the NOD SCID Il2rgtm1Wjll (NSG),
NOD SCID Il2rgtm1Sug (NOG) and BALB/c-Rag1null Il2rgtm1Sug (BRG)
strains, and these strains, in particular, appear to have comparable
thymic reconstitution.3,4 In another humanized mouse model, adult
immunocompromised mice are surgically implanted with human fetal
thymus and liver under the kidney capsule and can be later
transplanted with autologous human hematopoietic stem cells to
prolong thymopoiesis within a human thymic environment.5–8 One
important advantage of the neonatal chimera model is the relative ease
with which one can generate these mice in terms of both technical
skills and access to tissue. However, to what extent the murine thymic
environment can support human T-cell development is not comple-
tely understood. To maximize their capacity as a pre-clinical model of

human T-cell mediated immunity, it is necessary to understand how
human T cells are selected in these systems and the processes that
shape the T-cell repertoire.
There are indications that in neonatal chimera NSG mice, T-cell

receptor (TCR) selection of human thymocytes may occur via
interactions with both murine and human major histocompatibility
complex (MHC).9 Thymic reconstitution in neonatal chimera NSG
mice reflects all stages of conventional T-cell development and the
generation of mature T cells with human leukocyte antigen (HLA)-
restricted effector functions.1,2 These findings suggest that positive
selection may be mediated, at least in part, through the occurrence of
human HLA-dependent positive selection events, in addition to
selection events on murine MHC. In an attempt to increase the
efficiency of T-cell generation in the murine thymus of humanized
mice, NSG mice expressing human MHC class I molecules on murine
thymic epithelial cells (TECs) were generated.10 In these models,
peripheral T-cell responses to human-specific pathogens were eval-
uated, and T-cell development in the presence of a human HLA-A2
transgene appeared to favor development of TCRs with different
affinities and specificities.10–12 Despite these results, it is unclear
whether the human HLA transgene affected selection events in the
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thymus or had an indirect effect on T-cell specificity by influencing
peripheral T-cell responses or homeostasis.
In the absence of a human HLA transgene, however, human

thymocytes can interact with mouse MHC,9 and we have shown that
these interactions can provide tonic signals in the thymus that sustain
human thymocyte motility.13 Additionally, human CD4+CD8+ thy-
mocytes express MHC class II molecules,14–17 and have been
implicated in their own positive selection through thymocyte:thymo-
cyte interactions.18,19 Therefore, it has been proposed that selection of
human thymocytes in a mouse thymic environment might be skewed
toward atypical TCR:HLA interactions with other human-derived
hematopoietic cells due to inefficient selection on mouse MHC.2,19,20

This may, in turn, lead to the development of non-conventional
T cells with innate-like or regulatory properties that are known to be
enriched in the human fetal thymus.19,21,22 Additionally, neonatal
chimera NSG mice are reconstituted with hematopoietic progenitor
cells (HPCs) from human cord blood that likely represent a transi-
tional stage between fetal and adult hematopoietic development and
may further contribute to the development of non-conventional T-cell
subsets.23

Here, we examined both conventional and non-conventional T-cell
development in neonatal chimera NSG mice in the presence or
absence of human HLA-A2 transgene expression and in comparison
with human fetal and postnatal thymic samples. As T-cell develop-
ment is intricately linked to thymocyte migration and cellular
interactions, we also examined human thymocyte behavior in the
neonatal chimera NSG model of humanized mice. We present
evidence that the selection and behavior of conventional human
thymocytes on mouse stroma resembles, in large part, that in human
thymus, and that expression of an HLA-A2 transgene by murine TECs
does not dramatically improve T-cell development. Despite visual
evidence to suggest human thymocyte interactions with other human
hematopoietic-derived cell types in these humanized mice, we did not
detect an increase in alternative T-cell lineage development. In
addition, non-conventional T-cell differentiation in neonatal chimera
NSG mice did not segregate with either fetal or postnatal human
thymopoiesis, and the dearth of Foxp3+ thymocytes suggests that other
human-specific factors are necessary to fully mimic all aspects of
human T-cell development in this model.

RESULTS

Conventional T-cell development in humanized mice recapitulates
that in fetal and post-natal human thymus, regardless of an
HLA-A2 transgene
The absence of human MHC molecules on murine TECs is thought to
limit T-cell development in neonatal chimera humanized mice. In
support of this notion, expression of an HLA-A2 human transgene
(NSG-HLA-A2 tg) has been reported to alter the TCR repertoire in
humanized NSG mice.10–12 The impact of HLA-A2 tg expression on
T-cell development in these mice was inferred from the response of
peripheral T cells to infection, and it remains unclear whether the
presence of human MHC enhances the overall development of human
T cells in humanized neonatal chimera NSG mice. To address this
question, we generated humanized mice in which littermate NSG and
NSG-HLA-A2 tg neonatal mice were reconstituted with CD34+ HPCs
isolated from individual cord blood samples. We found that chimer-
ism in the spleen ranged from 28 to 88% based on the proportion of
human CD45+ cells of live mononuclear cells, and was comparable
between NSG and NSG-HLA-A2 tg mice (Supplementary Figure 1a).
In line with previous studies, we observed similar levels of T-cell
reconstitution in the spleen regardless of HLA-A2 transgene

expression or HLA-A2 expression in CB donors (Figure 1a and
Supplementary Figure 1b and c)10. While the proportion of CD8+

T cells was greater than that of CD4+ T cells in the spleens of both
NSG and NSG-HLA A2 tg humanized mice, the absolute numbers of
CD4+ and CD8+ T cells did not differ significantly (Figure 1b and
Supplementary Figure 1d and f). We also noted that the number of
human T cells in the spleen did not correlate with the number of
human thymocytes (Figure 1c), suggesting that post-thymic T-cell
survival and expansion might have a large impact on the peripheral
T-cell populations in these mice. Because the thymocyte populations
provide a more direct indication of the efficiency of thymic develop-
ment, we focused our study of T-cell development in the thymus of
humanized mice.
Cortical TECs have a crucial role in presenting self-peptide-MHC

complex for positive selection of conventional T cells. Thus, it seemed
likely that expression of a human HLA molecule on murine TECs
would result in more efficient human thymocyte selection than on
mouse MHC alone and that this, in turn, would lead to enhanced
T-cell development. We routinely found that 490% of thymocytes
from reconstituted NSG or NSG-HLA-A2 tg mice expressed human
CD45 (Supplementary Figure 2a). Expression of an HLA-A2 transgene
on murine TECs did not have a major impact on thymic cellularity,
and this held true across multiple cord blood donors regardless of
donor HLA-A2 expression (Figure 1d and Supplementary Figure 2b).
We predicted that expression of HLA-A2 on murine TECs might

enhance development of mature CD8+ single positive (SP) thymo-
cytes. However, while there was no significant difference in the
proportion of SP cells, there was an overall trend toward slightly
increased numbers of mature thymocytes in NSG HLA-A2 tg mice
(Figure 1e and Supplementary Figure 2c). These differences reached
statistical significance for CD4+ SP, but not for CD8+ SP thymocytes
(Figure 1e). In addition, HLA-A2 expression on CB had only minor
effects on SP thymocytes (Figures 1f and g and Supplementary
Figures 2d and e). Further, the major thymocyte populations defined
by CD4 and CD8 expression were similar in neonatal chimera NSG
and NSG-HLA-A2 tg humanized mice, and resembled both fetal and
postnatal human thymic samples (Figure 1h). Thus, expression of
human HLA-A2 on murine TECs did not dramatically enhance overall
T-cell development in humanized mice.
The HLA-A2 transgene is driven by the endogenous human

HLA-A2 promoter and is expressed by murine TECs.10 However,
the level of the HLA-A2 transgene expression relative to endogenous
HLA-A2 on human cells has not been reported. It was therefore
possible that lower or less stable HLA-A2 transgene expression was
responsible for the lack of striking differences in T-cell development in
these mice as compared with non-transgenic controls. To address this
issue, we compared cell-surface expression of HLA-A2 on TECs from
NSG HLA-A2 tg mice to HLA-A2+ human thymic tissue. Before
analysis, NSG HLA-A2 tg mice were reconstituted with BALB/c bone
marrow to generate a thymus of sufficient size to analyze HLA-A2
expression on TECs by flow cytometry. We found that the HLA-A2
levels were equivalent (Supplementary Figure 2f). Thus, a defect in
HLA-A2 expression on TECs does not account for the lack of dramatic
impact of the transgene on overall T-cell cellularity, and supports the
notion that mouse MHC is sufficient for the development of
conventional human T cells.

Non-conventional T-cell development in humanized mice does not
segregate with fetal or post-natal human thymopoiesis
While a murine thymic environment is capable of supporting
conventional human T-cell development, it is not clear to what extent
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Figure 1 Development of conventional T cells in humanized mice is comparable to fetal and post-natal human thymus in the presence or absence of an
HLA-A2 transgene. (a) Number of human TCRβ+ splenocytes in neonatal chimera NSG and NSG HLA-A2 tg mice at 11–13 weeks post reconstitution. Each
dot represents an individual mouse. Line represents average. (b) Number of human CD4+ and CD8+ splenic T cells from neonatal chimera NSG and NSG
HLA-A2 tg mice. (c) Number of splenic human T cells versus the number of thymocytes in individual humanized mice. (d) Quantification of total thymocytes
in NSG and NSG HLA-A2 tg mice reconstituted with HLA-A2+ and HLA-A2− cord blood (CB). Each color corresponds to an individual CB donor. (e) Number
of CD4+ and CD8+ SP thymocytes in neonatal chimera NSG and NSG HLA-A2 tg mice. P=0.2 for CD8+ SP thymocytes. (f) Number of CD4+ SP thymocytes
in NSG and NSG HLA-A2 tg mice reconstituted with HLA-A2− or HLA-A2+ CB donors. (g) Number of CD8+ SP thymocytes in NSG and NSG HLA-A2 tg mice
reconstituted with HLA-A2− or HLA-A2+ CB donors. P=0.0741 for NSG and NSG HLA-A2 tg mice reconstituted with HLA-A2− CB. (h) Proportion of
thymocyte developmental intermediate subsets of CD45+ cells in human fetal (F) (18–20 weeks) and post-natal (PN) (1 week to 2.5 years) human thymic
samples and in NSG and NSG HLA-A2 tg mice (Hm) (11–13 weeks post reconstitution). Each dot represents an individual thymus sample. For Hm samples,
dots are color coded to distinguish NSG and NSG HLA-A2tg hosts. ns, not statistically significant, * indicates Po0.05. DN indicates CD4−CD8− thymocytes,
and DP indicates CD4+CD8+ thymocytes. All data shown in these graphs has been gated on human CD45+ cells.
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it can mimic the development of non-conventional T cells, which may
require specialized niches and human-specific growth factors as well as
distinct interactions with hematopoietic-derived antigen presenting
cells. Innate-like TCRβ+ T cells expressing the transcription factor
promyelocytic leukemia zinc finger protein (PLZF) are a non-
conventional thymic subset selected by homotypic thymocyte:thymo-
cyte interactions, and it has been suggested that their development
may be enhanced in humanized mice due to inefficient selection on
mouse MHC.19 However, we found that the proportion of PLZF+ SP
T cells in the thymus of humanized mice was comparable to that in
fetal samples, and expression of an HLA-A2 transgene on murine
stroma did not appear to influence their development (Figures 2a and
b and Supplementary Figure 3).19

In line with previous reports, the proportion of PLZF+ CD4+ and
CD8+ SP T cells was significantly higher in fetal than in postnatal
thymus (Figures 2a and b).19 Since HPCs in human cord blood are at
the transition between fetal and adult hematopoiesis,23 it was unclear
whether thymocytes in humanized mice would be more fetal-like, or
more adult-like in their developmental output. The observation that
the proportion of PLZF+ thymocytes from humanized mice more
closely matched the fetal rather than the postnatal thymus samples
suggested that their T-cell development might be more fetal-like.
To explore this issue further, we examined additional thymic subsets
that might distinguish fetal versus adult human T-cell development,
and/or that require specialized thymic microenvironments for their
development.
Development of innate-like CD8+ T cells expressing the transcrip-

tion factor Eomes has been linked both to a fetal development
program and to IL-4 production by PLZF+ T cells in mice.22,24,25

Additionally, there is evidence that innate-like CD8+ T cells can be
selected on hematopoietic cells,26,27 suggesting that their development
might be enhanced in the chimeric mouse–human thymus due to
inefficient selection on mouse-MHC. However, we did not observe a
significant difference in the proportion of Eomes+ CD8+ SP cells in
fetal versus postnatal thymocytes (Figures 2c and d). Moreover, the
proportion of Eomes+ CD8+ SP thymocytes was significantly reduced
in humanized mice compared with either fetal or postnatal human
thymic samples (Figures 2c and d). Thus, the presence of human
PLZF+ cells and other hematopoietic cells is not sufficient to support
human Eomes+ CD8 T-cell development in humanized mice, suggest-
ing that additional signaling interactions required for their develop-
ment are not efficiently reproduced in a murine thymic environment.
Like other non-conventional T-cell subsets, TCRγδ T cells elicit a

rapid response to foreign antigens and may be of particular impor-
tance for immune protection during early life.28,29 In contrast to their
earlier appearance during ontogeny in the mouse, γδ T cells emerge
simultaneously with αβ T cells during human fetal thymopoiesis.30–32

TCRγδ T cells have been shown to develop in the thymus of
humanized mice and to populate peripheral organs, but to what
extent this mimics their development in humans has not been
established.10,33 Consistent with the lower frequency of TCRγδ
T cells in the peripheral blood of fetal samples in comparison with
that of adults,34 we found a trend toward a higher proportion of
TCRγδ+ thymocytes in postnatal versus fetal samples, although this
difference was not statistically significant. However, the proportion of
TCRγδ+ thymocytes in humanized mice was comparable to that in
fetal thymus and significantly lower than that in postnatal thymus
(Supplementary Figure 4).
Finally, we examined the development of T regulatory (Treg) cells

expressing the transcription factor Foxp3 in humanized mice. While
Treg cells have been described in the thymus and periphery of

humanized mice,2,33,35 it is unclear whether the murine thymic
medulla can recapitulate the specialized niche required to support
efficient development of human Foxp3+ Treg cells.

36–39 We found no
significant difference in the proportion of Foxp3+ cells among human
fetal and postnatal SP thymocytes, consistent with published data
(Figures 2e and f).40–42 However, the proportion of both CD4+ and
CD8+ Foxp3+ T cells in the thymus of neonatal chimera NSG mice
was decreased compared with human thymus, implying a defect in
human Foxp3+ T-cell development or survival within a murine thymic
environment (Figures 2e and f). This decrease in the proportion of
thymic Foxp3+ T cells was true for both NSG and NSG HLA-A2 tg
humanized mice despite the readily detectable presence of Foxp3+

T cells in the periphery (Supplementary Figure 5a and b). These data
support the idea that the murine thymic environment cannot mimic
all the signaling cues required to guide selection or survival of non-
conventional T-cell subsets, in particular Foxp3+ T cells. This
contributes to a unique pattern of non-conventional T-cell develop-
ment in humanized mice that differs from both fetal and postnatal
thymopoiesis.

Human thymocyte migration and cellular interactions in a mouse
thymic environment
Human T-cell development requires that developmental intermediates
undergo specific maturation stages within distinct niches of the thymus,
resulting in a tight coupling of thymocyte differentiation with migration
and cellular interactions.43 To further examine the degree of interspecies
cross-talk that allows human T cells to develop in a mouse thymic
environment, we studied the behavior of human thymocytes within the
humanized mouse thymus. Neonatal chimera NSG or NSG HLA-A2 tg
mice were reconstituted with HLA-A2− cord blood CD34+ hemato-
poietic progenitors transduced at a low multiplicity of infection with a
lentivirus expressing GFP (Lenti-GFP). This resulted in GFP labeling of
~ 2% of human cells within the murine thymus. We confirmed that
GFP+ thymocytes had a normal distribution of developmental inter-
mediates by flow cytometry, with the majority corresponding to
relatively immature CD4+CD8+ thymocytes (Figure 3a, top panels).
We also identified a substantial population of dendritic cells (DCs)
within the GFP+ fraction. Indeed, of the non T-, B-, NK cell (CD3−,
CD19−, CD56−) lineage-negative (Lin−) population, ~ 30% of the
remaining GFP+ CD45+ cells expressed CD11c, and ~60% of these
expressed high levels of HLA-DR, consistent with previous reports of
human thymic DC subsets (Figure 3a, bottom panels).44

We next used 2-photon time-lapse microscopy of intact thymic
lobes to examine migration of human thymocytes developing in a
murine thymic environment. For orientation, we identified the
collagen-rich capsule of the thymus by its second-harmonic signal,
and the thymus was imaged to a depth of ~ 300 μm. Cord blood-
derived GFP+ cells in the thymus were heterogeneous in size and
morphology. The small, predominantly motile thymocytes (pseudo-
colored orange) were distinct from the larger, less motile cells with
dendritic morphology (pseudo-colored turquoise) (Figure 3b).
We have previously reported that immature human cortical

thymocytes exhibit a slower migration pattern compared with more
mature thymocytes in the deeper medullary region of the thymus.13

Moreover, there is evidence that the thymus of humanized mice
contains distinct cortical and medullary regions.1,2,45 To examine
regional segregation of thymocyte migration patterns in humanized
mice, we divided the imaging volume based on distance from the
capsule (Figure 3b). We found that thymocytes within ~ 90 μm of the
capsule migrated with average speeds of 4.6 μm per minute, in close
agreement with those reported for human and mouse cortical
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thymocytes (~4 μm per minute).13,46–48 In contrast, thymocytes in the
deep volume (~120–190 μm from the capsule) migrated more rapidly
with an average speed of ~ 7 μm per minute (Figures 3c and d). These
speeds are slightly slower than those reported for human CD4+ and
CD8+ SP thymocytes (~9 and ~ 12 μm per minute, respectively) on
human and mouse thymic slices.13 This may reflect the fact that the
'deep' volume in this system is an approximation for the medulla, and

likely represents a mixture of both cortical and medullary thymocytes.
These data further support the notion of efficient thymocyte:stromal
interspecies crosstalk, reflected in the similar migration speeds of
human thymocytes whether they have developed within a murine or a
human thymic environment.
Previous studies have indicated that developing thymocytes in

humanized mice may undergo selection by HLA molecules on other
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Figure 2 Non-conventional T-cell development in humanized mice is distinct from fetal and postnatal human thymopoiesis. (a) Representative flow-cytometric
analysis of PLZF expression in CD4+ (top panels) and CD8+ (bottom panels) human thymocytes gated on TCRβ+ cells in fetal, postnatal and humanized mice
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panel) and CD8+ (bottom panel) TCRβ+ human thymocytes in human fetal, postnatal and humanized mice thymic samples. Line represents average.
* indicates Po0.05.
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human cells.2,19,20 We therefore examined cellular interactions
between GFP+ human cells in the thymus of humanized mice. We
observed multiple examples of labeled thymocytes (~5%) forming
dynamic contacts with GFP-labeled cells with DC-like morphology
with interactions occurring, on average, during ~ 30% of the imaging
period (Figures 4a and b and Supplementary video 1). Thymocyte
speed during these contacts varied, with some cells apparently arrested
in contact with the DC-like cell, while others continued to migrate on
the surface of the DC-like cell (Supplementary video 1). This behavior
is reminiscent of the dynamic and transient contacts described for the
non-cognate interaction of a naïve T-cell first encountering a DC in
murine lymph nodes.49–52 We also observed that ~ 8% of labeled

human thymocytes within the thymus of humanized mice came into
contact with other labeled human thymocytes during the 20–30min
imaging runs. The thymocyte:thymocyte contacts were dynamic and
brief (average duration of 11 time points equivalent to ~ 7min)
(Figures 4c-e) and in some cases were preceded by the extension of
cellular protrusions (Supplementary videos 2 and 3). While some of
these contacts may reflect random collisions or associations with a
third, unlabeled cell, it is noteworthy that ~ 50% of contacts were
associated with changes in cell shape at the point of contact suggestive
of extensive cell:cell interactions (Supplementary videos 2 and 3).
Given that only ~ 2% of the human cells in the thymus of these mice
were labeled with GFP (Figure 3a), the proportion of human
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thymocytes interacting with other human hematopoietic cells in this
mouse model is significantly underestimated. Whether these contacts
lead to productive TCR signaling that influence selection events in the
thymus and lead to the unique non-conventional T-cell developmental
program of humanized mice will need to be investigated further.

DISCUSSION

Humanized mice provide an unparalleled opportunity to study human
immune development and function in vivo, and have led to the
development of important models of human infection, autoimmunity
and cancer. Despite extensive interest in using humanized mouse
models as a pre-clinical tool, many questions remain, including the
extent of interspecies crosstalk.53,54 The assumption that more efficient
selection should occur in the presence of a human HLA transgene led
us to directly examine T-cell development and behavior in the thymus
of neonatal chimera NSG and NSG-HLA-A2 tg mice reconstituted
with human CB HPCs. We demonstrated that conventional human
thymocyte development in humanized mice is largely similar to that in
human samples. While we predicted enhanced CD8+ T-cell develop-
ment in the presence of HLA-A2 expression by murine TECs, overall
thymic and splenic T-cell reconstitution was similar in humanized
NSG and NSG-HLA-A2 tg mice. We also show that the motility of
human T cells in humanized mice is similar to that previously
described for mouse thymocytes and for human thymocytes within
human thymic slices. Despite these similarities, we also demonstrate
that the murine thymic environment in humanized mice does not
fully recapitulate non-conventional T lineage development.
Overall, low thymic cellularity was a major determinant of our

ability to consistently identify and isolate the chimeric human/mouse
thymus of humanized mice at 12 weeks post reconstitution. The small
size of the chimeric thymus may be a reflection of inefficient homing
of human T-cell progenitors to the mouse thymus, a paucity of
proliferation of immature human thymocytes, and/or reduced human
thymocyte:murine stromal cell cross-talk, among other possibilities. In
the thymus, limited niches exist for the development of certain T-cell
subsets, and thus, the small size of the humanized mouse thymus may
further impede the development of certain thymic subsets.
At first glance, our findings of enhanced CD4+, but not CD8+, SP

thymocyte cellularity might seem at odds with the observation that the
HLA-A2 transgene leads to enhanced development of HLA-A2
restricted T-cell responses in the periphery of humanized NSG
mice.10–12 However, the HLA-A2 transgene could enhance both
negative and positive selection, thus producing a similar overall thymic
output, but generating an altered TCR repertoire with a greater ability
to recognize foreign peptides presented by HLA-A2. It is interesting to
speculate that enhanced positive selection of CD8+ SP thymocytes
might support improved thymocyte:stromal cell crosstalk and expan-
sion of the medullary environment that, in turn, would promote CD4+

SP thymocyte cellularity, while the simultaneous improvement in
negative selection of CD8+ SP thymocytes might mask any advantages
in their development. Additionally, the improvement in CD4+ SP
cellularity in the thymus of NSG HLA-A2 tg mice appears to dissipate
in the periphery, supporting the notion that the HLA-A2 transgene
might also exert its effect in the periphery via the promotion of
homeostatic proliferation of HLA-A2 restricted T cells, for example.
Despite comparable conventional T-cell development, we found

that the murine thymic environment in humanized mice does not
fully recapitulate human non-conventional T lineage development.
This difference is most striking in the observed paucity of Foxp3+

CD4+ and CD8+ thymocytes in humanized mice as compared with
human thymus samples, despite the presence of Foxp3+ T cells in the

periphery. Since development of Foxp3+ T cells is thought to require
stronger TCR signals compared with conventional T-cell development,
it is possible that interspecies TCR:MHC interactions are unable to
provide sufficient TCR signal strength required for efficient Foxp3+

T-cell development.55–58 Alternatively, the chimeric murine thymus
may be unable to provide strong co-stimulatory signals on antigen
presenting cells required for the development and/or expansion of
Foxp3+ Treg cells.

59–63 We describe the presence of CB-derived human
thymic DCs with high MHC class II expression that could provide or
cross-present agonist peptide on human HLA molecules. We also
provide evidence to suggest that developing thymocytes in humanized
mice come in contact with these human hematopoietic-derived thymic
DCs. However, the presence of human thymic DCs alone may not
suffice to provide appropriate signals for human Treg development.
Thymic stromal lymphopoietin (TSLP) conditioning of DCs is
required for the development of human Treg cells,

39 yet the bulk of
TSLP is produced by non-hematopoietic derived TECs.64 The low
sequence identity between human and mouse TSLP (43%) and the
observation that human cells do not react to mouse TSLP65 may
explain the dearth of Foxp3+ CD4+ T cells in the thymus of
humanized mice. It remains to be determined whether thymic
Foxp3+ cells in neonatal chimera humanized mice have a competitive
advantage for survival in peripheral lymphoid organs or whether the
increased proportion of Foxp3+ T cells in the spleen is a result of
conversion in the periphery.
Human cord blood likely contains a mixture of fetal- and adult-like

HPCs,23 leading us to expect that development of non-conventional
T-cell lineages in humanized mice might segregate with either fetal or
postnatal human T-cell development. Thymic selection of many non-
conventional T-cell subsets is thought to be mediated via atypical
thymocyte interactions with other thymocytes, or with other bone
marrow-derived hematopoietic cells.19,26,27 Further, it has been
suggested that inefficient selection of human T cells on mouse
MHC might skew selection toward non-conventional T-cell popula-
tions selected on hematopoietic cells in humanized mice.2,19,20

Consistent with this notion, the proportion of PLZF+ cells among
TCRβ+ thymocytes in humanized mice was comparable to that of fetal
thymocytes. Unlike other innate-like T-cell subsets, human PLZF+

T cells demonstrate diverse Vβ usage comparable to that of conven-
tional CD4 T cells, and are thus unlikely to develop in response to
agonist selection.19 This might predict that homotypic thymocyte:
thymocyte interactions lead to positive selection signals in response to
the additive effect of serial, weak interactions, resulting in a pattern of
repeated dynamic contacts observed with low affinity TCR:MHC
interactions.66 While our data does not allow us to determine whether
the observed thymocyte:thymocyte contacts lead to productive TCR
signaling and lineage fate determination, it does suggest that human
thymocytes engage in short, serial interactions with other thymocytes
in this model.
The well-described signaling inefficiency between mouse cytokines

and human receptors is in stark contrast to the interspecies conserva-
tion of chemokine signaling.45,67 We have previously demonstrated
that human thymocytes maintain their developmental stage-specific
localization and motility within murine thymic stroma.13 In this study,
we further these observations by demonstrating that human thymo-
cytes whose maturation has occurred entirely within a murine thymic
environment maintain their characteristic patterns of motility. Given
the limitations of certain interspecies receptor:ligand interactions, it is
remarkable that the T-cell maturation process, which involves the
step-wise integration of multiple signaling cues, can proceed with
enough efficiency to maintain the characteristic slow migration of
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immature cortical thymocytes and the faster motility of mature,
medullary cells.
Our work adds to the existing data supporting efficient interspecies

TCR:MHC encounters and provides new insight into the behavior of
human T cells developing in the murine thymus of humanized mice.
Differences between mouse and human signaling interactions have led
to significant advances in our understanding of the cytokine require-
ments during human thymopoiesis.68 Similarly, the observed differ-
ences in non-conventional T-cell development between humanized
mice and human thymus may help to uncover the signaling cues
involved in alternate human T-cell lineage fate decisions. Our findings
emphasize the importance of studying human immunology in vivo,
and may help to design humanized mice that more accurately and
efficiently recapitulate human T-cell development and function.

METHODS

Human tissue procurement
Advanced Bioscience Resources (Alameda, CA, USA) and StemExpress
(Placerville, CA, USA) procured 18- to 20-week-old fetal thymic tissue and
term umbilical cord blood, respectively, after informed consent and in
accordance with the Declaration of Helsinki, as well as federal, state and local
law. Postnatal thymus samples (1 week to 2.5 years) were collected as surgical
byproducts during corrective pediatric cardiac surgeries, and were obtained in
accordance with the Declaration of Helsinki and were approved by the
institutional review board of UCSF Benioff Children’s Hospital Oakland.

Mice
Mice were bred and housed under pathogen-free conditions at the American
Association of Laboratory Animal Care approved facility at the Life Sciences
Addition at the University of California, Berkeley. Protocols were approved by
the University of California, Berkeley Animal Care and Use Committee. NOD
SCID γcnull (NSG) and NOD SCID γcnull HLA-A2-tg (NSG-HLA-A2) mice
were purchased from Jackson Laboratories (Bar Harbor, ME, USA).10,69 At
birth to 5 days of age, NSG and NSG-HLA-A2+ littermates underwent total
body irradiation (100 rads), followed by intrahepatic injection of 2–6× 105 lin−

CD34+CD38− human hematopoetic progenitors purified from umbilical cord
blood (480% purity, StemExpress, Placerville, CA, USA) or BALB/c bone
marrow. Mice were analyzed 11–13 weeks post reconstitution. A total of 71
mice from 7 litters were injected with cord blood from 8 different donors. Of
these, 33 (21 HLA-A2 Tg− and 12 HLA-A2 Tg+) mice had an identifiable
thymus 11–13 weeks post reconstitution and were used for analysis.

Flow cytometry
Thymus and spleen were prepared as single-cell suspensions with glass tissue
grinders, and filtered. For preparation of epithelial cells, thymic tissue was
injected with 1mgml− 1 Collagenase 1A (Sigma-Aldrich, St Louis, MO, USA)
and 0.4 mgml− 1 DNase I (Roche, Indianapolis, IN, USA), incubated for
30min at 37 °C, then pipetted until dissociated. Cells were stained with a fixable
viability dye eFluor 506 (eBioscience, San Diego, CA, USA), and then blocked
with 24G2 and anti-human CD32/Fc Receptor block (StemCell Technologies,
Vancouver, BC, Canada). The following antibodies were used for analysis of cell
surface antigens: anti-human CD3-eFluor450, CD4-eFluor780, CD8α-PeCy7,
CD19-PerCP, CD45-PerCP or -eFluor450, TCRβ-FITC, -APC, or -biotin,
TCRγδ-FITC, EpCAM-FITC (eBioscience), HLA-A2-PE (Abcam, Cambridge,
MA, USA), HLA-DR-PE and CD56-PECy5 (BD Bioscience, San Jose, CA,
USA). For intracellular staining, cells were fixed and permeabilized following
surface staining with the Foxp3/Transcription Factor Staining Buffer Set
(eBioscience) according to the manufacturer's instructions. The permeabiliza-
tion buffer was supplemented with anti-human CD32/Fc Receptor block
(StemCell Technologies), and 5% mouse serum (Jackson ImmunoResearch,
West Grove, PA, USA). Following fixation and permeabilization, cells were
stained with anti-human PLZF-APC (R&D Systems, Minneapolis, MN, USA),
Eomesodermin-PerCP and FoxP3-FITC (eBioscience). Data were acquired with

an LSRII flow cytometer (BD Biosciences) and analyzed with FlowJo software

(Tree Star, Ashland, OR, USA).

Lentiviral transductions
Phoenix cells were transfected with the FUCGW lentiviral vector expressing

GFP along with packaging and envelope plasmids using Lipofectamine Plus

reagent according to the manufacturer’s instructions (Life Technologies, Grand

Island, NY, USA). Viral supernatant was harvested 48 h post transfection, and

CD34+CD38− cells were transduced in media containing 4 µg ml− 1 polybrene

(Sigma, St Louis, MO, USA), and 20 ngml− 1 recombinant human IL-7, SCF

and TPO (R&D Systems). Transduced progenitors were intra-hepatically

injected into newborn NSG and NSG-HLA-A2 tg mice as described above.

2-Photon imaging
Thymus tissue was adhered to a coverslip using Vetbond tissue adhesive

(3M, Saint Paul, MN, USA) maintained in warm, oxygenated phenol red-free

DMEM, and imaged as previously described.70 Images were acquired using

ZEN software on a Zeiss 7 MP microscope (×20/1.0 Zeiss objective) with a

Coherent Chameleon laser tuned to 920 nm (Zeiss, Jena, Germany). Second

harmonic and GFP fluorescence were separated using 495 nm, 510 nm and

560 nm dichroic mirrors, and image areas of 175× 175 μm were scanned every

30–40 s over 40 time points with 3-μm z-steps to depths of up to 400 μm
beneath the thymic capsule.

Image analysis
Imaris software (Bitplane Scientific Software, Saint Paul, MN, USA) was used to

process the 2-photon movies to obtain migration behavior and interaction data.

2-Photon image data were further analyzed using standard and custom written

MATLAB scripts (Mathworks, Natick, MA, USA), Image J and Excel. Custom

codes are available upon request. Graphing and statistical analysis was done

using GraphPad Prism (La Jolla, CA, USA).
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