

2

3

4

5 **Medial malleolus: Operative Or Non-operative**

6 *A prospective randomized controlled trial of operative versus non-*
7 *operative management of associated medial malleolus fractures in*
8 *unstable fracture dislocations of the ankle joint*

9

10

11 Chief Investigator: Mr Tim O White MD, FRCSEd

12

13 Co-Investigators: Mr Tom H Carter MRCSEd

14 Mr Andrew D Duckworth PhD, FRCSEd

15

16 Sponsors: NHS Lothian R&D

17

18

19

20

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

Co-sponsors	<i>Scottish Orthopaedic Research Trust into Trauma (SORT-IT). Registered charity: SCO20955</i>
Funder	N/A
Funding Reference Number	N/A
Chief Investigator	Mr Tim White – Consultant Orthopaedic Trauma Surgeon
EudraCT Number	2017-003713-25
REC Number	17/SS/0124
ISRCTN Number	
Version Number and Date	Version 2.0, 22 nd September 2017

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

48 **SUMMARY**

49

STUDY TITLE	Medial malleolus: Operative Or Non-operative. A prospective randomized controlled clinical trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint.
BACKGROUND	There are limited data reporting the outcome of patients with non-operatively managed medial malleolus fractures compared to those treated surgically in the presence of lateral malleolus fixation. Conservative management would potentially result in fewer complications, reduced operative times and cost.
STUDY OBJECTIVES	<p>To determine whether:</p> <p>(a) PRIMARY OUTCOME: any difference exists in the patient-reported outcome measures (OMAS) at one-year after injury between operative and non-operative treatment of the medial malleolus in combination with operative fixation of the lateral malleolus</p> <p>(b) SECONDARY OUTCOME: any difference in surgical complications, loss of reduction, pain, satisfaction, return to activity</p>
STUDY POPULATION	Patients aged 16 years and older with isolated, closed unstable fracture dislocations of the ankle joint.
STUDY TREATMENT	<ol style="list-style-type: none"> 1. Open reduction internal fixation of the medial malleolus in combination with operative fixation of the lateral malleolus. 2. Non-operative management of the medial malleolus in combination with operative fixation of the lateral malleolus.
STUDY ASSESSMENTS	<p>Primary: Olerud-Molander Ankle Score (OMAS) at one year</p> <p>Secondary: Complications, Manchester-Oxford Foot Questionnaire (MOXFQ), EQ-5D, Tourniquet time, Range of movement, Pain, Return to work & sport, Satisfaction, Radiographic union & early degeneration, Cost.</p>

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

50 Table of Contents

51	1	BACKGROUND	6
52	1.1	Current literature.....	8
53	2	RESEARCH AIMS	10
54	2.1	Primary aim and null hypothesis.....	10
55	2.2	Secondary null hypothesis.....	10
56	3	PATIENTS AND METHODS.....	11
57	3.1	Patients and centres	11
58	3.2	Inclusion criteria.....	12
59	3.3	Exclusion criteria.....	13
60	3.4	Patient identification and consent.....	13
61	3.5	Interventions	16
62	4	OUTCOME AND FOLLOW-UP ASSESSMENTS.....	18
63	4.1	Primary outcome.....	18
64	4.1.1	Power analysis.....	18
65	4.2	Secondary outcomes	19
66	4.2.1	Statistical Analysis.....	19
67	4.3	Assessment Points	21
68	5	ETHICAL STATUS AND FUNDING.....	23
69	5.1	Ethical Status	23
70	5.2	Funding	23
71	5.3	Data Protection	23
72	5.4	Data Storage.....	24
73	5.5	Confidentiality	24
74	6	References	25

75

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

76 **1. BACKGROUND**

77 Ankle fractures are the second most common Orthopaedic trauma presentation,
78 accounting for approximately 10% of the acute workload.¹ The annual incidence of
79 ankle fractures is approximately 122-184/100,000 person years (1:800).² The
80 incidence amongst elderly patients has increased over the last 30 years and with the
81 average age expectancy constantly rising this trend will no doubt continue.^{3,4} The
82 most basic classification system for ankle fractures, put forwards by Pervical Pott,
83 takes into account the number of malleoli involved.⁵ The lateral and medial malleoli
84 are important contributors to ankle stability in conjunction with their associated
85 ligaments, the lateral ligament complex and medial/deltoid ligament respectively.

86 There has been considerable historical debate regarding the significance of the
87 contribution of the medial malleolus to ankle joint stability. Yablon et al (1977)
88 concluded that the lateral malleolus is fundamental in anatomical reduction of
89 bimalleolar fracture patterns as the talus always faithfully followed the lateral
90 malleolus upon reduction.⁶ This was confirmed with cadaveric ankle stress testing
91 which found that upon sectioning of the deltoid ligament or fracture of the medial
92 malleolus ankle stability was minimally affected. Yablon's theory went against the
93 views of others including Hughes (1980) who felt that it was the medial malleolus,
94 which helped to re-establish a stable and congruent mortice.⁷ In fact, up until this
95 point the majority of surgeons considered the medial malleolus to be the most
96 important stabiliser and consequently unstable bimalleolar ankle fracture dislocations
97 were commonly treated with open reduction and internal fixation of the medial
98 malleolus in conjunction with closed reduction of the lateral malleolus.

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

99 When assessing load bearing in the ankle joint the majority of the bodyweight is
100 distributed over the central zone of the distal tibial plafond. During standing and
101 walking 90% of the loading occurs in this area with the remaining load being shared
102 between the medial and lateral malleoli.⁸ Consequently good results have been
103 published in patient cohorts with conservatively managed isolated medial malleolus
104 fractures. Hersovici et al (2007) identified 57 patients with conservatively managed
105 isolated medial malleolus fractures, accepting any degree of fracture reduction.⁹
106 Only 2 cases required further treatment with an overall union rate of 96%. In general
107 patients reported good outcomes as per the SF-36 form and AOFAS hindfoot and
108 ankle score. Importantly there were no cases of medial instability, skin compromise,
109 malalignment of the mortice or post-traumatic degenerative changes after a mean 3-
110 year follow-up. They concluded that isolated medial malleolus fractures could be
111 treated non-operatively, but consideration should be given to fixation in the cases of
112 bimalleolar and trimalleolar fracture dislocations, which were deemed more
113 inherently unstable.

114 Any operation, especially on the foot and ankle is associated with a risk of surgical
115 site infection (SSI), particularly in elderly patients who may have contributing risk
116 factors such as diabetes, immunosuppression and peripheral vascular disease.
117 Infection rates between 8% and 13% have been quoted, with up to 10% requiring
118 further surgery for removal of metalwork or wound debridement.^{10,11} With this in
119 mind, the benefits of minimising skin incisions and implantation of metalwork are
120 clear. Over the last 12-months a number of surgeons in our trauma unit have left the
121 medial malleolus without fixation during bimalleolar and trimalleolar fracture surgery.
122 To our knowledge only one randomised controlled trial has been conducted on this

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

123 subject by Hoelsbrekken et al (2013) and is discussed in more detail below.¹² A
124 further randomised controlled trial based at our trauma unit could provide additional
125 key information that would hopefully take us closer to settling this heavily contended
126 debate.

127 **1.1 Current literature**

128 Hoelsbrekken et al (2013) conducted up a prospective randomised controlled trial
129 recruiting one hundred patients with bimalleolar and trimalleolar ankle fractures.
130 Randomisation created two groups: fixation and non-fixation of the medial malleolus
131 after stabilisation of the distal fibula.¹² Four patients in the non-fixation group
132 developed radiological non-union on the medial side, but reported no functional
133 deficits with this and comparable PROM results to the fixation group. There was a
134 significantly lower tourniquet time/operative time in the non-fixation group (75
135 minutes vs. 102 minutes, $p<0.01$). More patients in the surgical group suffered a mal-
136 union of the medial malleolus, required repeat surgery, and had subsequent
137 radiographic osteoarthritis. This however, was not statistically significant. The
138 authors concluded, rather conservatively and cautiously, that non-operative
139 management was a possible treatment option but despite the advantages shown
140 stopped short of making a clear recommendation because of their uncertainty
141 relating the long-term consequences of medial-sided non-union.

142

Study	Intervention	Males/Females	Patient reported outcome measures	Comments
	No of patients	Mean age (yrs)		
Hoelsbrekken (2013)¹² PRCT	Non-operative vs ORIF of medial malleolus n=100 Non-op: n=45 Op: n=37 No follow-up: n=18	31/51 53	OMAS AOFAS	All patients (≥18yrs) 18 lost to follow-up (100 patients initially) Mean FU 44 months No statistical difference in OMS + AOFAS between groups Increased infection in non-fixation group, but not significant (p=0.55) Four cases of medial malleolus non-union in non-op group (although not symptomatic) Reduced tourniquet time in non-fixation group (p<0.01)

143 **Table 2.1:** Single previous RCT comparing fixation of the medial malleolus with non-operative
144 treatment.¹²

145

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

146 **2 RESEARCH AIMS**

147 **2.1 Primary aim and null hypothesis**

148 The aim of this trial is to determine whether any difference exists in the primary
149 outcome measure (OMAS) at one-year post injury between open reduction & internal
150 fixation (ORIF) of associated well-reduced medial malleolus fractures AND non-
151 operative management of medial malleolus fractures in patients undergoing surgery
152 for an unstable fracture of the ankle.

153 Our primary null hypothesis is that there is no difference in outcome (primary
154 measure – OMAS) after one year between ORIF of associated medial malleolus
155 fractures AND non-operative management in patients undergoing surgery for an
156 unstable fracture of the ankle.

157

158 **2.2 Secondary null hypothesis**

159 The secondary aim of this trial was to determine whether any difference exists in the
160 complication rate at one-year post injury between ORIF of associated medial
161 malleolus fractures AND non-operative management in patients undergoing surgery
162 for unstable fracture of the ankle.

163 Our second null hypothesis is that there is no difference in outcome (secondary
164 measure – complications) after one year between ORIF of associated medial
165 malleolus fractures AND non-operative management in patients undergoing surgery
166 for an unstable fracture of the ankle.

167 **3 PATIENTS AND METHODS**

168 **3.1 Patients and centres**

169 This trial will include adult patients (≥ 16 years) presenting to the single centre;
170 Edinburgh Orthopaedic Trauma Unit, Royal Infirmary of Edinburgh, with an isolated
171 unstable fracture of the ankle joint requiring operative intervention. The trial will
172 commence once NHS research ethics committee (REC) approval and NHS R&D
173 Management approval is granted.

174

175 All patients will be treated in the Emergency Department (ED) with closed reduction
176 and casting under procedural sedation and then referred to Orthopaedics via the on-
177 call service. Patients will be considered for the trial if the following criteria are met:

178 1. Aged 16 years or older.

179 2. An unstable fracture dislocation of the ankle joint, defined as a bimalleolar or
180 trimalleolar fracture pattern with or without any of the following:

181 - Radiographic evidence of talar shift

182 - Posterior malleolar fracture of $>25\%$ articular involvement or $>2\text{mm}$ step-off

183 - Syndesmosis injury

184

185 Patients who consent to participate in the trial will be enrolled into the trial pre-
186 operatively, but the result of their randomisation will not be revealed until after fibular
187 fixation and assessment of medial malleolus reduction intra-operatively. Patients will

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

188 only be eligible to continue in the trial if the medial malleolus reduces to acceptable
189 limits without open reduction (≤ 2 mm of displacement as seen on a radiographic
190 antero-posterior view). If the medial malleolus fracture does not reduce within this
191 2mm limit, the patient will require formal open reduction and internal fixation and
192 consequently not suitable to continue as per their pre-operative randomisation. In
193 this situation, the result of randomisation will not be revealed and the participant will
194 be excluded from the trial at this stage.

195

196 **3.2 Inclusion criteria**

197 1. Age ≥ 16 years

198 2. Able to consent to treatment

199 3. Unstable fracture dislocation of the ankle joint requiring operative
200 intervention as defined in section 3.1

201 4. Closed injury

202 5. Weber B & Weber C fractures

203 6. Surgery date within two weeks of date of fracture

204

205

206

207

208 **3.3 Exclusion criteria**

- 209 1. Patients unable to comply with post-operative data gathering including
210 completing questionnaires in English language
- 211 2. Additional lower limb injury, which may impact on patient rehabilitation
- 212 3. Open fracture
- 213 4. Confirmed severe associated neurovascular injuries
- 214 5. Distal tibial intra-articular fractures/ pilon type injuries
- 215 6. Supination-adduction type 2 (SAD-2) fracture configurations with a medial
216 malleolus vertical shear fracture
- 217 7. Patients medically unfit for surgery
- 218 8. Patients declining operative management
- 219 9. Non-residents, unable to return to the unit for follow-up for a period of 1-year
- 220 10. Current engagement in a pharmaceutical/drug trial
- 221 11. Where the treating surgeon does not feel that inclusion in the trial is in the
222 patients' best interest either due to the fracture pattern or patient factors

223

224 **3.4 Patient identification and consent**

225 All adult patients (≥ 16 years) presenting with an unstable fracture dislocation of the
226 ankle joint that satisfy the inclusion and exclusion criteria will be invited to participate
227 in our study. All adult patients with an ankle fracture best treated operatively are
228 eligible for enrolment in this study regardless of sex, race or ethnicity. Vulnerable

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

229 populations, including patients unable to give consent and complete post-operative
230 questionnaires, will not be recruited.

231 Patients will be predominately recruited either in the Emergency Department (ED) or
232 on the Orthopaedic ward when they are admitted pre-operatively. A small number of
233 patients may be recruited from the outpatient clinic where a patient may initially have
234 had a suspected stable fracture, which has then displaced on subsequent
235 radiographs or when patients are referred into the service from other hospitals. The
236 treating on-call clinical team will introduce appropriate patients to the study and
237 initiate the process of informed consent. A patient information sheet will be provided
238 for them to read before agreeing to take part (**see attached patient information**
239 **sheet**). If the patient agrees, a member of the research team will review the study
240 protocol in detail and address any questions the patient may have. If the patient is
241 willing to participate, the research team member will complete the informed consent
242 process. If this is during an out-of-hours period, consent will be taken by the
243 appropriately qualified on-call orthopaedic trainee or consultant. All trainees and
244 consultants within the unit will have ongoing briefing regarding the aims and
245 methodology of the trial. With the permission of the patient, a letter will be sent to
246 their General Practitioner informing them of their involvement in the trial (**see**
247 **attached letter to GP**).

248 Patients will be given a copy of their consent form (**see attached patient consent**
249 **form**), informed that their participation is voluntary and that they can withdraw at any
250 time during the study without detriment to their normal care in any way. Patients
251 may take as long as they like to consider participation, provided that they still meet

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

252 all the eligibility criteria documented above. Patients who require additional time to
253 make a decision will be contacted the following day by a further face-to-face inpatient
254 discussion. They will also be given the contact details of an Orthopaedic specialist,
255 independent of the trial to allow them access to further information if they require. Mr
256 John Keating, Consultant Orthopaedic Surgeon has agreed to be an independent
257 point of contact for the trial.

258 Upon agreeing to take part, patients will be randomised into one of two treatment
259 groups intra-operatively by closed opaque envelope: operative or non-operative
260 management of the medial malleolus fracture. Randomisation will be stratified
261 according to age to allow an even distribution of both young (<65 years) and older
262 (\geq 65 years) patients between the operative groups. The result of their randomisation
263 will only be revealed if the fracture reduces spontaneously following lateral malleolus
264 fixation with \leq 2mm of residual displacement. On enrolment, a data collection form
265 will be started with demographic and injury-related information collected. Regardless
266 of the treatment randomised, the patients will be followed up at the following post-
267 operative stages: 2 weeks, 6 weeks, 3 months, 6 months and one year. This will be
268 either in person in the outpatient clinic or via postal questionnaire (assessment
269 points 2.10).

270

271

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

272 **3.5 Interventions**

273 Patients randomised to operative management of the associated medial malleolus
274 fracture will be treated routinely with standard medial malleolus fixation techniques.
275 The most common being the use of 2x 3.5mm partially threaded cancellous screws
276 (35mm – 45mm length) inserted at 90° to the fracture line, following satisfactory open
277 reduction. Other techniques, used far less frequently include the use of a tension
278 band wire construct and Kirschner wires. This is usually reserved for smaller or
279 comminuted fragments, which would not hold a 3.5mm screw sufficiently. The
280 technique employed will be at the discretion of the treating surgeon and aims to
281 reproduce the decisions that are made in day-to-day trauma care. Those participants
282 who are not suitable for randomisation intra-operatively as the medial malleolus does
283 not reduce within acceptable limits will be excluded from the trial. The result of their
284 randomisation will not be revealed and their envelope will be returned to the study
285 office and allocated in order to the next eligible patient. This will limit disruption to the
286 randomisation sequence. The patient subsequent care of that patient will then be at
287 the discretion of their treating consultant.

288 Post-operative immobilisation and weight bearing restrictions will be at the discretion
289 of the treating surgeon. This is determined by a number of factors including
290 injury/fracture pattern, bone quality, co-morbidities and patient compliance. This
291 again reflects everyday practice when managing this common orthopaedic injury.
292 However, the default immobilisation will be in a removable supportive orthosis
293 (walking boot) and patients will be allowed to fully weight bear unless there is a
294 clinical indication, as highlighted above. Post-operative physiotherapy will be

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

295 arranged at the discretion of the treating surgeon, as occurs in routine clinical
296 practice.

297

298

299

300

301

302

303

304

305

306

307

308

309

310

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

311 **4 OUTCOME AND FOLLOW-UP ASSESSMENTS**

312 **4.1 Primary outcome**

313 Our primary outcome measure is the Olerud-Molander Ankle Score (OMAS).¹³ The
314 OMAS is a functional rating scale developed in 1984, which has been used
315 extensively as a research tool in foot and ankle surgery. It includes nine parameters:
316 pain, stiffness, swelling, stair climbing, running, jumping, squatting, supports and
317 work/activities of daily living. A final score is awarded from 0 – 100, with 100
318 representing a better functional outcome. This score will be monitored at the set
319 assessment points (2.10) with the one year score defined as the final primary
320 outcome.

321

322 **4.1.1 Power analysis**

323 Prior to the study a power analysis determined the number of patients required in
324 each arm of the trial. The primary outcome measure will be the OMAS at one year.
325 To show a clinically meaningful difference in means OMAS at one year between the
326 groups of 10 points, assuming a common standard deviation of 20 points, 80%
327 power and 5% level of significance we would require 64 participants per groups (i.e.
328 a total of 128). However, to account for potential dropouts through the duration of the
329 study we will increase this by 20% to 77 per group (i.e. a total of 154). A p value of
330 <0.05 will be considered statistically significant.

331 Statistical analysis for the trial will be performed by an independent statistician, Cat
332 Graham, employed through the local University statistics department/Edinburgh
333 Clinical Research Facility.

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

334 **4.2 Secondary outcomes**

335 Secondary outcome measures will include any of the following occurring during the

336 study period:

337 • Complications including superficial & deep infection, nerve injury,
338 chronic/complex regional pain syndrome, failure of fixation, re-operation, non-
339 union and hardware complications.

340 • Individual components of the Olerud-Molander Ankle Score.

341 • Manchester-Oxford Foot Questionnaire (MOXFQ) (Isis Innovation Ltd, Oxford,
342 UK).¹⁴ A validated and reliable PROM for surgery of the foot and ankle, it
343 consists of 16-items from three domains: walking/standing (7 items), pain (5
344 items) and social interaction (4 items). Each item is scored on a 5-point Likert
345 scale ranging from no limitation to maximum limitation (0,1,2,3,4). A raw score
346 out of 64 is then converted to a 0 – 100 metric score, with 100 being awarded
347 for the most severe limitation.

348 • EQ-5D-5L: EQ-5D™ is a standardised instrument for use as a measure of
349 health outcome.

350 • Operative tourniquet time.

351 • Pain assessment (visual scale 1 – 10).

352 • Satisfaction with service (visual scale 1 –100).

353 • Time to taken to return of activities of daily living (ADL).

354 • Time taken to return to work and sport (if relevant).

355 • Radiographic assessment using standard anteroposterior (AP) and lateral
356 radiographs of the ankle joint. Outcome will also be assessed in detail with
357 regards to fracture position on healing, radiographic complications, union,

358 failure of fixation and the development of radiographic degenerative changes.
359 Pre-operative/injury radiographs will be analysed by an expert blinded to the
360 subsequent treatment. The two weeks, 6 weeks, and one-year radiographs
361 will be analysed but blinding to treatment method will not be possible.

362

363 **4.2.1 Statistical Analysis**

364 The primary outcome of total OMAS at 12 months will be compared between the two
365 treatment groups using a two-sample t-test or non-parametric equivalent as
366 appropriate. This method will also be used to compare the other continuous outcome
367 measures between the two treatment groups i.e. MOXFQ, OMAS individual
368 component scores etc. The pattern of change in continuous measures over the study
369 period will be presented graphically broken down by treatment allocation.
370 Comparison of binary outcomes such as presence of non-union, reoperation etc. will
371 be compared between the two treatment groups using a binomial test for the
372 comparison of proportions.

373

374

375

376

377

378

379

380 **4.3 Assessment Points**

381 All follow-up assessment will take place during follow-up visits initially with the
382 treating consultant surgeon's team.

383 Follow-up assessment will be collected over a one-year period (2 weeks, 6 weeks,
384 and one year). Routine follow-up in our institution for patients who have sustained an
385 ankle fracture requiring operative intervention varies. Frequently outpatient clinic
386 reviews may be conducted with radiographs at 2 weeks, 6 weeks and one year. Trial
387 participants will not require outpatient review at 3 months and 6 months, as we do
388 not intend to perform radiographs at this stage. Data collection on these two
389 occasions will be performed purely through postal questionnaires. The flexibility
390 around assessment points will be as follows: 2 weeks (+/- 3 days), 6 weeks (+/- 1
391 week), 3 months (+/- 2 weeks), 6 months (+/- 4 weeks), one year (+/- 6 weeks).

392 At each visit physical examination, treatment, complications and re-operation (e.g.
393 hardware removal) for each patient will be recorded. Participants will be asked to
394 complete their outcome scores independently, as they would with the postal
395 questionnaires. This will reduce potential bias produced by the presence of a
396 research investigator influencing patient selection. The presence or absence of a
397 medial sided incision and obvious differences with respect to metalwork on
398 radiographs means neither the patient nor the investigator can be blinded to the
399 treatment group. We will also follow up patients' records to assess whether they
400 underwent any subsequent surgery on the affected ankle during the study period.
401 This would include debridement/irrigation for infection and/or removal of metalwork
402 for a variety of reasons. Assessment points are found below in Table 4.1.

	Baseline/ Injury	Week 2	Week 6-8	Week 12*	Week 26*	Week 52
Informed Consent	X					
Demographics	X					
Inclusion/Exclusion Criteria	X					
Randomisation	X					
Radiographs	X	X	X			X
OMAS			X	X	X	X
MOXFQ			X	X	X	X
EQ-5D-5L			X	X	X	X
Wound review +/- suture removal		X	X			
Pain score			X	X	X	X
Return to work & sport		X	X	X	X	X
Satisfaction		X	X	X	X	X
Complications		X	X	X	X	X

403 **Table 4.1:** Schedule of assessments. *Data collected purely through postal questionnaire.

404 OMAS: Olerud-Molander Ankle Score; MOXFQ: Manchester-Oxford Foot Questionnaire,

405 EQ-5D: EuroQol-5D

406

407

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

408 **5 ETHICAL STATUS AND FUNDING**

409 **5.1 Ethical Status**

410 This study has not yet been approved by NHS Research Ethics Committee (South
411 East Scotland REC 02) and by NHS Lothian R&D. Application for this is in progress.

412

413 **5.2 Funding**

414 Funding will be provided by the Scottish Orthopaedic Research Trust into Trauma
415 (SORT-IT). There will be no additional costs for the NHS.

416

417 **5.3 Data Protection**

418 All Investigators and study staff involved with this study will comply with the
419 requirements of the Data Protection Act 1998 with regard to the collection, storage,
420 processing and disclosure of personal information and will uphold the Act's core
421 principles. Access to collated participant data will be restricted to the study team.
422 Computers used to collate the data will have limited access measures via user
423 names and passwords. Published results will not contain any personal data that
424 could allow identification of individual participants. Participants will be provided with a
425 summary of the study results at their request. This will be sent via postal service.

426

427

428

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

429 **5.4 Data Storage**

430 All paper records with patient identifiable data will be kept in a locked cupboard in
431 the SORT-IT office. The Chief Investigator will be responsible for the key. All
432 computer records will have limited access via user names and passwords, and no
433 identifiable data will leave the hospital computer system. Records will be kept for 5
434 years to allow follow up reviews of the accuracy of our conclusions.

435 **5.5 Confidentiality**

436 All evaluation forms, reports, and other records will be identified in a manner
437 designed to maintain participant confidentiality. All records will be kept in a secure
438 storage area with limited access. Clinical information will not be released without the
439 written permission of the participant. The Investigator and study staff involved with
440 this study will not disclose or use for any purpose other than performance of the
441 study, any data, record, or other unpublished, confidential information disclosed to
442 those individuals for the purpose of the study. Prior written agreement from the
443 sponsor or its designee must be obtained for the disclosure of any said confidential
444 information to other parties.

445

446

447 **6 References**

448 1. Court-Brown C.M., Caesar B. Epidemiology of adult fractures: A review. *Injury*
449 2006;37(8):691-7.

450 2. Donken CC, Al-Khateeb H, Verhofstad MH, van Laarhoven CJ. Surgical
451 versus conservative interventions of treating ankle fractures in adults.
452 *Cochrane Database Syst Rev.* 2012;8;CD008470

453 3. Salai M, Dudkeiwicz I, Novikov I, Amit Y, Chechick A. The epidemic of ankle
454 fractures in the elderly: Is surgical treatment warranted. *Arch Orthop Trauma
455 Surg.* 2000;120:511-3.

456 4. Court-Brown C, McBirnie J, Wilson G. Adult ankle fractures: an increasing
457 problem? *Acta Orthop Scand* 1998;69:43-7.

458

459 5. Pott P. Some few general remarks on fractures and dislocations: 175B. *Clin
460 Orthop.* 2007;458:40-1.

461

462 6. Yablon IG, Heller FG, Shouse L. The key role of the lateral malleolus in
463 displaced fractures of the ankle. *J Bone Joint Surg [Am].* 1977 Mar;59(2):169-
464 173.

465

466 7. Hughes J. The medial malleolus in ankle fractures. *Orthop Clin North Am.*
467 1980;11:649-60.

468

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

469 8. Kimizuka M, Kurosawa H, Fukubayashi T. Load-bearing pattern of the ankle
470 joint: contact area and pressure distribution. Arch Orthop Trauma Surg
471 1980;96:45-9.

472

473 9. Herscovici D, Scaduto JM, Infante . Conservative treatment of isolated
474 fractures of the medial malleolus. J Bone Joint Surg [Br]. 2007;89B:89-93.

475

476 10. Pagliaro AJ, Michelson JD, Mizel MS. Results of operative fixation of unstable
477 ankle fractures in geriatric population. Foot Ankle Int. 2001;22:399-402.

478

479 11. Zaghloul A, Haddad B, Barksfield R, David B. Early complications of surgery
480 in operative treatment of ankle fractures in those over 60 : A review of 186
481 cases. Injury. 2014;45:780-783.

482

483 12. Hoelsbrekken SE, Kaul-Jensen K, Mørch T et al. Nonoperative treatment of
484 the medial malleolus in bimalleolar and trimalleolar ankle fractures: A
485 randomised controlled trial. J Orthop Trauma. 2013;27:633-637.

486

487 13. Olerud C, Molander H. A scoring scale for symptom evaluation after ankle
488 fracture. Arch Orthop Trauma Surg. 1984;103(3):190-4.

489

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint

490 14. Dawson J, Doll H, Coffey J, Jenkinson C. Responsiveness and minimally
491 important change for the Manchester-Oxford foot questionnaire (MOXFQ)
492 compared with the AOFAS and SF-36 assessments following surgery for
493 hallux valgus. *Osteoarthr Cart.* 2007;15:918-931.

494

495

496

497

498

499

500

A prospective randomised controlled trial of operative versus non-operative management of associated medial malleolus fractures in unstable fracture dislocations of the ankle joint