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Abstract

Computational methods are increasingly gaining importance as an aid in identifying active sites. Mostly these methods tend
to have structural information that supplement sequence conservation based analyses. Development of tools that compute
electrostatic potentials has further improved our ability to better characterize the active site residues in proteins. We have
described a computational methodology for detecting active sites based on structural and electrostatic conformity -
CataLytic Active Site Prediction (CLASP). In our pipelined model, physical 3D signature of any particular enzymatic function
as defined by its active sites is used to obtain spatially congruent matches. While previous work has revealed that catalytic
residues have large pKa deviations from standard values, we show that for a given enzymatic activity, electrostatic potential
difference (PD) between analogous residue pairs in an active site taken from different proteins of the same family are similar.
False positives in spatially congruent matches are further pruned by PD analysis where cognate pairs with large deviations
are rejected. We first present the results of active site prediction by CLASP for two enzymatic activities - b-lactamases and
serine proteases, two of the most extensively investigated enzymes. The results of CLASP analysis on motifs extracted from
Catalytic Site Atlas (CSA) are also presented in order to demonstrate its ability to accurately classify any protein, putative or
otherwise, with known structure. The source code and database is made available at www.sanchak.com/clasp/.
Subsequently, we probed alkaline phosphatases (AP), one of the well known promiscuous enzymes, for additional
activities. Such a search has led us to predict a hitherto unknown function of shrimp alkaline phosphatase (SAP), where the
protein acts as a protease. Finally, we present experimental evidence of the prediction by CLASP by showing that SAP
indeed has protease activity in vitro.
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Introduction

The PDB database has more than 60,000 protein structures to

date [1]. Classification of proteins is the logical outcome of the

motivation to add a sense of order in this rapidly growing database

[2–7]. Identifying the catalytic sites in a protein is an important

first step towards characterizing its function. Active site determi-

nation by site directed mutagenesis methods is often time

consuming and labour intensive to apply on the large number of

new proteins being discovered on a continual basis.

Currently several methods are available for identifying active

site residues in a protein, amongst which methods based on

electrostatic potentials are increasingly gaining ground. Electro-

static interactions determine various properties of biomolecules

such as catalytic activity, ligand binding, structure and stability [8].

Finite difference Poisson-Boltzmann (FDPB) electrostatics is used

to compute potential differences (PD) and pKa values from charge

interactions in proteins [9–11]. This continuum model of charges

led to the development of tools for studying electrostatic

interactions [12–14]. These tools implement fast numerical

approximation of solutions to the linearized Poisson-Boltzmann

equation [15]. Active site residues have pKa values that differ

considerably from their intrinsic values [16,17]. These large pKa

deviations from standard values have been used for predicting

active site residues [18–20]. The pKa perturbations of the ionizable

residues on the surface of proteins are minimal, while those buried

in the interior of the protein show considerable shifts [21,22].

Significant shifts in pKa values usually stem from interactions with

other ionizable residues, hydrogen bonding with non-ionizable

residues and its exposure to the bulk solvent. The buried nature of

residues in active sites often results in their high electrostatic

potential which has been used as a differentiator between catalytic

and other residues [23,24].

There are essentially two flavors in the existing models of active

site prediction. The first one requires a motif of a known

enzymatic function to search for the same within a protein of

interest. Several web-servers give access to 3D motif based search

methods in proteins with known structures. SPASM [25] and

RASMOT [26] search for a specified motif in the queried protein.

MultiBind recognizes 3D-binding patterns common to several

protein structures against precomputed ligands [27]. PAR-3D uses

3D motifs to identify several different functions but is restricted to

a few protein activities [28]. Superimpose allows searching for a

specific 3D motif in protein structure databases [29]. A method
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that detects recurring three-dimensional side-chain patterns of

amino acids in proteins has concluded that alkaline phosphatases

and aminopeptidases have evolved convergently [30]. A recent

method, ProBis, detects structurally similar sites on protein

surfaces by a local structural alignment technique [31], and

compares its results with other analogous methods [32–34].

Though most of these methods do a spatial match of motifs, they

do not factor in properties related to electrostatic potentials for

eliminating false positive matches. Our current method addresses

this shortcoming.

The other approaches typically describe learning from known

active sites across a variety of catalytic functions and use these

learnt properties to predict active sites. Finally these results must

be tested either in silico, in vitro or in vivo in order to validate the

assigned putative activity. The search for active sites in these in

silico methods are generally guided by time tested thumb rules

[35]. Conservation of residues in a family of proteins, their

presence in a cleft, solvent accessibility and hydrophilicity are a

few such properties. RESBOOST integrates the characteristics of

catalytic residues and presents them as a logical expression of

simple rules [36]. DISCERN combines phylogenetic scores,

information from structure, properties computed for structural

neighbours and a statistical regularization to control for overfitting

[37]. Another method also combines multiple predictors into a

single classifier [38]. ConCavity uses evolutionary sequence

conservation estimates with structure-based surface pocket pre-

diction [39]. Other methods that analyze evolutionary conserva-

tion essentially rely on clusters of conserved sites [40], or create

databases of sequence segments that encode structural attributes of

the binding pockets [41]. However none of the above mentioned

methods use electrostatic features in the search process, while a

few do not provide much flexibility in modulating the specificity

and sensitivity.

Some methods developed recently use electrostatic properties to

discriminate active sites. Active sites are known to occur in

electrostatically unfavourable environments [18,42]. Often active

sites involve ionizable groups where anomalous pKa values have

been tagged with catalytic activity [19]. Q-SiteFinder does ligand

binding site prediction by computing energetically favourable

binding sites on the surface of a protein [43]. THEMATICS

reports that residues involved in catalysis can be differentiated

from ordinary residues based on chemical properties [20]. POOL

uses electrostatic features from THEMATICS and combines

geometric properties to estimate probabilities that specific residues

belong to an active site and assigns a likelihood ranking of all

ionizable residues in a given protein [44]. Another innovative

method [45] tries to dock high-energy intermediates of various

metabolites listed in a database [46] and successfully predicts the

function of an unknown protein.

Catalysis often involves movement of charges across specific

pairs of residues along paths that are spatially well defined.

Therefore, active site predictions must invoke methods that

combine analysis of electrostatic potentials with those of spatial

congruence. Our current method precisely does this (Fig. 1). In

this work we show a strong correlation in the electrostatic PD

between sets of cognate residues in active sites. For a given

enzymatic activity, pairs of residues in an active site taken from

various proteins of the same family show high correlation of

electrostatic PD with small standard deviation. In other words

these PD lie in a narrow band. We exploit this correlation to

prune out false matches from spatial congruence matches.

Therefore, PD analysis adds an additional filter for improving

accuracy in active site prediction. Moreover, electrostatic analyses

implicitly takes into account macroscopic features such as

substrate accessibility, cleft geometry, etc that are critically

involved in defining an active site.

We present here a computational methodology, CataLytic Active

Site Prediction (CLASP), for active site detection. A motif from a

protein of known function and 3D structure provides the initial

template for searching spatially congruent matches. These

matches are then pruned by the observation that the PD in pairs

of residues in active sites is highly correlated. Our method can

interrogate any given hypothetical protein with known structure

for motifs derived from the Catalytic Site Atlas (CSA) [35]

database and rank the matches. This further allows CLASP in

classifying promiscuous activities associated with the protein

(Figure S1). Any method to classify proteins or predict catalytic

residues is subject to an inherent trade-off between sensitivity and

specificity. CLASP provides precise control to obtain acceptable

levels of sensitivity and specificity by enabling the choice of

stereochemically equivalent residues. Alkaline phosphatases (AP)

are one of the widely studied promiscuous proteins. We probed

APs for various motifs from CSA using CLASP. Such an analysis

uncovered a uniquely promiscuous proteolytic function in shrimp

alkaline phosphatase (SAP). The predicted protease active site

overlaps with the active site of AP. We substantiate this prediction

by providing experimental evidence in vitro: we have demonstrated

an additional protease activity of SAP, acting not only on a

substrate in trans but also on itself and that its AP activity is

inhibited by trypsin inhibitors. Interestingly, this inhibition has

been shown in other APs as well.

Results

Active Site Prediction
We first present the results of active site prediction by CLASP

for two enzymatic activities - b-lactamases and serine proteases,

two of the most extensively investigated enzymes. Subsequently,

Figure 1. CLASP flow. The flow for using a motif from a protein with
known function and 3D structure in identifying active sites in an
unknown protein. Electrostatic potentials are precomputed for proteins
already in the PDB Database or computed on the fly for new proteins.
These properties are then used to prune out false positives.
doi:10.1371/journal.pone.0028470.g001

Active Site Prediction Using 3D and Electrostatics
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the results of CLASP analysis is presented on motifs extracted from

CSA that demonstrates its ability to accurately classify any protein,

putative or otherwise, with known structure. Finally, we present in

vitro evidence of the prediction by CLASP that SAP has protease

activity.

b-lactamases. b-lactamases are the chief cause of bacterial

resistance to penicillin, cephalosporin and related b-lactam

compounds. Several well conserved motifs in b-lactamases have

been outlined in detail which reveals the amino acid residues

critically involved in catalysis [47]. We chose the catalytically

involved residues {Ser70, Lys73, Ser130, Lys234} to represent the

Class A, C and D b-lactamases (Table S1).

Adaptive Poisson-Boltzmann Solver (APBS) was used to

compute the electrostatic PD between pairs of residues in this

motif [14]. The values of the PD between residue pairs have high

correlation as evidenced by small standard deviation (Table 1 and

Table S2), implying chemical crosstalk between them. Although

correlated, certain residue pairs are charge neutral {Ser70,

Ser130} and therefore may not be functionally relevant as a pair.

A study which elaborates the acylation mechanism of b-lactamases

at 0.88 Å shows that the residue pairs with high PD and

correlation indeed crosstalk with each other, while the ones with

low PDs do not [48]. The pKa of Asp66 in hen egg white lysozyme

(PDB id: 2LZT) calculated from the PD obtained using APBS

concurs with the reported values [49], thereby validating the

accuracy of our PD estimations. Moreover the pKa of Lys73 in a b-

lactamase (PDB id: 2G2U) calculated by APBS matched well with

those values reported earlier by 3 different methods of pKa

computation [50].

The CLASP scores obtained on a list of ,3000 non-redundant

proteins (sequence-dissimilar PDB polypeptide chains, http://

www.ncbi.nlm.nih.gov/Structure/VAST/nrpdb.html) shows its

discriminating power (Fig. 2a). Lower scores denote lesser

deviation and consequently a better match. It is evident from

the analysis, more the number of specified residues in the active

site motif, lesser is the likelihood of scoring a non-related protein

(false positive). The rightward shift of the distribution of scores

obtained for the serine protease motif vis-a-vis that of b-lactamases

also highlights this point since the former motif has lesser (3)

residues for analysis. Expectedly, b-lactamases and related proteins

like penicillin binding proteins (PBP) and transpeptidases score the

best with b-lactamase motif (Table 2). Surprisingly, phospholipase

C also shows up as related protein with better score than a salt-

tolerant glutaminase (PDB id: 3IHB) that has been recently shown

to be related to b-lactamases [51]. The strong correlation in pairs

of residues in the active site as seen in b-lactamases is also found in

PBPs, which are known to interact with b-lactam antibiotics

(Table S2). We recorded a significant decline in the false positives

(80% to 20%) when we combined PD correlation to that of 3D

congruence, thereby enhancing the discrimination (Figure S2).

This was measured for a set of proteins that were scored as the top

500 hits in a 3D match on all the ,50,000 proteins in the PDB

database. An example of a protein that is pruned out as a false

positive is a calcium binding lysozyme (PDB id: 2EQL). In this

protein 3D congruence had revealed that the predicted active site

residues {Ser51/Lys62/Asn60/Lys46} showed a maximum pair

wise distance deviation of less than 1 Å, when compared to the b-

lactamase motif, thereby scoring this protein as a possible b-

lactamase. However, the PD between the same residue pairs did

not correlate well, suggesting that it is unlikely to be a b-lactamase

(pair wise deviation in the PDs are {9,229,122,219,113,106} in

units of kT/e, while the pair wise deviations in distances are

{0.2,0.7,0.5,0.3,0.7,1} in Å.

CLASP provides the ability to constrain the search by selecting

the groups of stereochemically equivalent residues (Table S1). The

predicted residues (Table S3) show the Tyr150 in Class C b-

lactamases as part of the active site in place of the stereochemically

equivalent Ser130 in Class A. Since CLASP has the flexibility of

choosing residues within a chemically equivalent group (e.g. Ser

group), Tyr150 is identified as the third residue which the methods

used by CSA could not predict. It is to be noted that for some

Class C b-lactamases, a different Tyr residue (Tyr112 in PDB id:

2QZ6) has a better match than Tyr150. While this might be a false

match, it is also quite possible that this residue is actually critical

for catalysis. Table S3 also highlights the fact that the scoring

definitely ranks Class A enzymes first since we have used a Class A

b-lactamase motif. A Class C b-lactamase (PDB id: 3GQZ) is an

exception and scores in the range of Class A b-lactamases, possibly

due to the fact that this enzyme has had conformational changes

due to fragment binding [52].

Serine Proteases. Serine proteases are grouped based on

structural homology and are then further subgrouped into families

with similar sequences [53,54]. The two major families,

chymotrypsin and subtilisin, are a classical example of

convergent evolution where the catalytic Ser-His-Asp triad

shows virtually similar geometry in the structurally different

chymotrypsin and subtilisin [55]. The motif from trypsin –

{Ser195, His57, Asp102} -was chosen for representing serine

proteases. All residue pairs show high correlation in serine

proteases in their PD (Table 3a).

Classification of proteins with known and unknown

catalytic activities based on CSA Motifs. CSA provides

catalytic residue annotation for enzymes in the PDB and is

available online [35]. The database consists of an original hand-

annotated set extracted from the primary literature and a

homologous set inferred by PSI-BLAST [56]. The CLASP score

Table 1. Adaptive Poisson-Boltzmann Solver (APBS) calculated potential differences in residue pairs in b-lactamases using a Class
A b-lactamase motif.

PDB id Class
S70/K73
OG/NZ

S70/S130
OG/OG

S70/R234
OG/NH1

K73/S130
NZ/OG

K73/R234
NZ/NH1

S130/R234
OG/NH1

2G2U A 2201.7 22.3 2250.3 224.0 248.6 2272.7

2QZ6 C 2196.5 15.9 2240.3 212.4 243.7 2256.1

2HP5 D 2215.1 212.8 2228.3 202.3 213.2 2215.5

Mean 2204.4 8.5 2239.6 212.9 235.2 2248.1

SD 7.8 15.3 9.0 8.9 15.7 24.0

Potential differences are in dimensionless units of kT/e (k is Boltzmann’s constant, T is the temperature in K and e is the charge of an electron).
doi:10.1371/journal.pone.0028470.t001

Active Site Prediction Using 3D and Electrostatics
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is always zero when we probe the motif in the reference protein

itself, i.e. when the template and the query are the same protein.

We expect the CLASP score to be low when we probe this motif in

another protein from the same family because of high spatial and

PD congruence.

CLASP scores for enzymatic activities represented by 3, 4 and 5

active site residues are presented in Table 4. A set of specific proteins

(left column) are queried for a given active site motif (top row) in its

entire structure. Such a bioinformatic scan is expected to reveal the

best spatial and electrostatic match as the least CLASP score. As

expected, the querying motif is detected as the best match in the

protein chosen from its cognate family in most cases. For example, a

dehydratase motif scores best in a known dehydratase (PDB id:

1JCT). Since we have ordered the enzymes and the motifs similarly,

the best matches should fall diagonally in the table. The analysis

indeed reveals that it is so for 5 residue motifs without any

exception. However for 4 residue motifs, pepsin (PDB id: 1AM5) is

an exception that matches slightly better with a de-aminase motif

than with itself. On the other hand, 3 residue motifs show larger

number of false positives, such as hexokinase and chitinase

matching well with each other. Most surprisingly CLASP matches

amino-transferase motif significantly better with hexokinase than

with itself (PDB id: 1IVR). We believe that CLASP analysis picks up

larger false positives in 3 residue motifs. However, unless validated in

vivo any low scoring match cannot be discarded as false based on the

existing knowledge about that protein. For instance, a hypothetical

protein (PDB id: 1P1M) matches best with a deaminase motif in

CLASP analysis, which a recent study has predicted and shown to

be a deaminase [45]. CLASP was able to predict catalytically active

residues in this protein (His55,Glu203,Asp279,Asp113) on the basis

of its close match (Table S4) with deaminase. This underscores the

predictive power of CLASP.

Performance measurement and comparison to existing

methods. We evaluated the results using the measures of

sensitivity, specificity and false positive rate (FPR), which are

defined as:

Sensitivity~TP= TPzFNð Þ; Specificity~TN= FPzTNð Þ;

FPR~1{Specificity; Precision~TP= TPzFPð Þ;

Table 2. Best matches on the set of ,3,000 non-redundant
proteins using a b-lactamase motif.

PDB Annotation Score

1JTG b-lactamase TEM 0.7

3HUM penicillin-binding protein 0.9

3DW0 Class A b-lactamase carbapenemase KPC-2 1.2

1SKF transpeptidase 2.5

1QME penicillin-binding protein 2.9

1FOF b-lactamase oxa-10 3.2

1DJH phospholipase C 4.5

3IHB salt-tolerant glutaminase 5.2

doi:10.1371/journal.pone.0028470.t002

Table 3. Pairwise distances and potential differences in the
catalytic triad in serine proteases (a) and in predicted active
sites in alkaline phosphatases (S/D, H/D, S/H) (b).

Distances Potentials

Serine Proteases

a 1A0J (Trypsin) 7.8 5.5 3.3 2144.1 2123.4 104.8

1OS8 (Trypsin) 7.5 5.5 2.8 2139.5 2124.8 168.3

1BH6 (Subtilisin) 6.5 4.9 4.1 290.5 2113.0 122.4

1GCI (Subtilisin) 5.6 4.55 4.7 2109.5 2108.0 69.6

Alkaline Phosphatases

b 2X98(HSAP) 4.9 3.1 4.7 2131.0 2151.3 84.1

1ALK(ECAP) 7.1 3.6 5.4 2210.0 2191.6 99.4

1K7H(SAP) 7.7 3.2 4.6 2139.0 2139.8 137.5

1EW2(PLAP) 5.0 3.7 5.1 2142.0 216.4 139.7

2IUC(TAP) 5.2 3.3 4.7 2136.0 2155.2 170.5

3E2D(VAP) 7.0 3.8 5.0 291.0 2115.4 116.9

Distances are in Å, potential differences are in dimensionless units of kT/e (k is
Boltzmann’s constant, T is the temperature in K and e is the charge of an
electron).
doi:10.1371/journal.pone.0028470.t003

Figure 2. CLASP scores. (a) CLASP scores on a set of ,3,000 non-
redundant proteins for serine proteases, b-lactamases and acetyl
esterase having 3, 4 and 5 residues in the active site motif. (b)
Sensitivity versus FPR curves for running CLASP on a set of ,500
proteins for a b-lactamase motif. The 500 proteins that were the best
candidates using a 3D match on all the ,50,000 proteins in the PDB
database, hence our results will be better on the whole set of proteins.
doi:10.1371/journal.pone.0028470.g002

Active Site Prediction Using 3D and Electrostatics
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(TP = true positives, TN = true negatives, FP = false positives,

FN = false negatives). Recall is identical to sensitivity. Ideally,

sensitivity and FPR should be 1 and 0 respectively. As an example,

one of the recent studies (RESBOOST) reported 90% sensitivity

for a 9.8% FPR and 73% sensitivity for a 5.7% FPR [36]. Another

method (DISCERN) reports 69% sensitivity at 18% precision [37].

The sensitivity versus FPR curves of CLASP results on a set of

,500 proteins for a b-lactamase motif is presented in Fig. 2b,

which shows a 86% sensitivity for a 10% FPR. In contrast, the

same set with analysis employing 3D congruence alone achieves

reduced sensitivity (70%) for the same FPR (10%), which

reinforces the contribution of PD filtering in improving

discrimination. The true positives (b-lactamases) have been

selected based on their PDB annotation. It is relevant to state

that the analysis pertains to a prefiltered set of 500 proteins which

were obtained following a 3D match for b-lactamases for all the

,50,000 proteins in the PDB database. Hence, our reported

results are an underestimate and the true sensitivity on an

unbiased whole set will be much higher.

Promiscuous proteolytic function in SAP. Based on this

predictive power, we queried a well known promiscuous protein

family, alkaline phosphatase (AP), using all motifs from the CSA

database. We found that the 3 residue serine protease motif scores

significantly well (Table 5a), thereby suggesting that AP may

indeed have protease activity. We describe below in vitro evidence

of the prediction made by CLASP.

Alkaline phosphatases (AP, EC 3.1.3.1) are homodimeric

metalloenzymes that act through a phosphoseryl intermediate to

produce free inorganic phosphate or transfer the phosphoryl group

to other alcohols [57–59]. This class of enzymes have a broad

range of substrate specificity which include proteins, DNA and

small organic molecules. It is known that AP family enzymes have

active sites with a high degree of promiscuity. CLASP predicted

that AP (PDB id: 1K7H) will exhibit promiscuous protease activity

at the metal binding site M2 (Fig. 3a). The spatial and electrostatic

congruence of this motif in several APs is compared with that in

Table 4. CLASP scores for enzymatic activities which have 3, 4 and 5 residues specified in their active sites.

Hexokinase-2 aminotransferase protease chitinase

1IG8 1ECX 1A0J 1CTN

3 residues 2NZT (Hexokinase-2) 1.3 3.0 4.6 1.3

1IVR (aminotransferase) 0.4 4.0 5.8 3.6

2TBS (protease) 2.1 5.3 0.4 3.9

1RD6 (chitinase) 0.8 4.2 8.0 1.7

deaminase b-lactamase lysozyme pepsin

1CD5 2G2U 1OBA 1MPP

4 residues 1P1M (deaminase) 4.3 10.9 5.4 9.4

1JTG (b-lactamase) 11.3 0.7 3.8 11.1

3H12 (lysozyme) 6.0 8.2 5.1 7.7

1AM5 (pepsin) 5.0 12.0 6.1 6.0

cutinase dehydrogenase dipeptidase dehydratase

1AGY 1J49 1FY2 1EC9

5 residues 1CUJ (cutinase) 7.4 16.8 16.2 17.0

1F0X (dehydratase) 16.0 5.6 10.8 6.8

2RAG (dipeptidase) 9.5 7.0 5.8 9.6

1JCT (dehydratase) 10.7 7.1 12.8 3.2

The reference protein in which the motif is chosen from (top row) and the query protein (left column) belong to the same family. Ideally, the diagonal scores should be
the lowest.
doi:10.1371/journal.pone.0028470.t004

Table 5. (a) CLASP scores in SAP (PDB id: 1K7H) using about
400 motifs in CSA (b) CLASP scores in the AP superfamily
motif using a serine protease motif.

PDB Annotation Score

a 2ISD phospholipase C 1.087

2AMG maltotetrahydrolase 1.120

2GSA aminotransferase 1.264

1CNS chitinase 1.316

1JS4 endo/exocellulase E4 1.329

1EYI fructose-1,6-bisphosphatase 1.381

2OAT aminotransferase 1.500

1A0J trypsin 2.084

1JKM esterase 2.372

1AZW iminopeptidase 2.606

1ORD decarboxylase 2.688

1ESC esterase 2.940

2LPR alpha-lytic protease 2.958

b 2GSN pyrophosphatase(NPPs) 1.735

1K7H alkaline phosphatase 2.084

1HDH arylsulfatase 5.42

1EJJ phosphoglycerate mutase 5.46

2VQR phosphonate monoester hydrolase 5.620

doi:10.1371/journal.pone.0028470.t005

Active Site Prediction Using 3D and Electrostatics
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serine proteases (Table 3). We tested this prediction by performing

a protease assay in vitro on commercially available APs -shrimp

alkaline phosphatase (SAP), E. coli alkaline phosphatase (ECAP)

and calf intestinal alkaline phosphatase (CIAP). Trypsin (0.73 mM)

digested the entire substrate protein (Fig. 4a, lane 2), while under

similar reaction conditions SAP cleaved a measurable fraction

(22.5% as measured by band quantification using Image J) of the

substrate (lane 7). However, there was no detectable protease

activity in CIAP and ECAP (Fig. 4b) (see discussion). Known

inhibitors of serine proteases such as Phenylmethylsulfonyl fluoride

(PMSF) and trypsin inhibitor inhibited the protease activity of both

trypsin and SAP (Fig. 4a, lanes 3–4 and lanes 8–9, respectively).

SDS treatment followed by heat also inhibited protease activity in

both the proteins (Fig. 4a, lanes 5 and 10). Thus all the three

treatments individually inhibited protease activity of both trypsin

and SAP.

Since we conjecture that the active site involved in phosphatase

catalysis is also responsible for its protease action (Fig. 3a), any

inhibitor of protease should result in the loss of phosphatase

activity also. We tested the same with PMSF and trypsin inhibitor.

Interestingly, these inhibitors resulted in the loss of phosphatase

activity in all the three APs tested, where PMSF and trypsin

inhibitor led to about 20% and 50% loss of AP activity,

respectively (Fig. 4c). Further, we have demonstrated the increased

mass (169.5 Da) of SAP by MALDI-mass spectrometry using

AEBSF (4-(2Aminoethyl) benzenesulfonyl fluoride), a serine

protease inhibitor (Fig. 4d). The expected increase in mass due

to AEBSF binding is 183 Da. We chose AEBSF since it is more

stable than PMSF, binds irreversibly to the active site serine and

was also shown to inhibit 53% of the native phosphatase activity of

SAP. Finally, we tested whether SAP can auto cleave itself. We

found that the auto cleavage of SAP was specific to the condition

where EDTA (10 mM), a metal ion chelator, was added (Fig. 4e).

The auto cleavage activity of SAP in the absence of EDTA was

much reduced. However, in the same conditions the protein

showed a measurable extent of protease on a substrate protein

added in trans (UVI31+) (Fig. 4a, lane 2).

We believe that SAP protease observed in the absence of EDTA

is facilitated by an alternate serine (Ser89) that is unliganded by

Zn2+ and therefore is free to perform proteolysis (Fig. 3b). The

limited activity observed through this alternate serine perhaps

reflects the sub-optimal substrate configuration of the protein

tested. However, in the presence of EDTA both serines become

catalytically available, thereby bringing about much more efficient

auto cleavage. Nevertheless, we hypothesize that it is the alternate

serine which is better placed than the liganded serine (Ser86) for

the metal ion independent serine protease action.

Thus, as predicted by CLASP, we have uncovered an additional

protease activity of SAP, acting not only on a trans substrate but

also on itself and that its AP activity is inhibited by trypsin

inhibitors.

Discussion

Catalytic Site Machinery
The specificity of active sites has been a long established fact.

Over the last few decades studies have correlated their stringent

spatial requirements with the electrostatic steps critical in the

catalytic process [9,16–19,21,24]. We elaborate this using two very

well studied enzymatic activities - b-lactamases and serine

proteases.

b-lactamases and Serine Proteases. b-lactamases very

efficiently catalyze the irreversible hydrolysis of the amide bond

of the b-lactam ring, thus yielding biologically inactive products.

The roles of Lys73 and Glu166 in the acylation step (Figure S3) as

the catalytic base required to deprotonate the Ser70 is still

controversial [48,60]. While the important role of Lys73 in the

catalysis is established by the high correlation in the PD between

Figure 3. Active site in SAP. (a) The active site for SAP (PDB id: 1K7H) consists of 3 metal binding sites -M1 (Asp315,His319,His432) in blue binds a
zinc, M2 (Asp37,Ser86,Asp356,His357) in red binds another zinc, while M3 (Asp37,His149,Thr151,Glu130) in green binds either a zinc or a magnesium
ion. CLASP predicted active site residues for protease activity (Ser86,Asp356,His357) coincides with the M2 site containing serine. Another serine
(Ser89), shown in purple, shows up as an alternative to Ser86 in the protease motif in CLASP analysis. (b) The protease activity in SAP might be
ascribed to either of the two serines -Ser86 and Ser89. The distance of these serines from Asp356 and His357 is also shown.
doi:10.1371/journal.pone.0028470.g003
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this residue and Ser70 in a set of b-lactamases in our current study

(Table 1), the ambiguity on the role of Lys73 in deprotonating

Ser70 as the sole base is evident from the reversed sign of the PD

(Fig. 5a). The reversed sign here denotes that Lys73 by itself

cannot act as the base required to abstract the proton from Ser70

(see discussion later).

Serine proteases cut peptide bonds in proteins using a well

known catalytic triad [54]. The carboxylate side-chain of Asp

hydrogen-bonds to a nitrogen-bonded proton on the His imidazole

ring. This is possible because Asp is negatively charged at

physiological pH. The other nitrogen on His hydrogen-bonds to

the OH proton of Ser. This allows the nucleophilic oxygen atom of

Ser to attack incoming substrates (peptide bonds). This step is

similar to the deprotonation of Ser70 in b-lactamases. Though

Ser, Asp and His are far apart in their primary sequence, they

converge in the 3D structure to form the active site. The precise

synchronized action between these residues is played out within a

cleft in which the substrate fits in and is subsequently cleaved off.

Associating Electrostatics and the catalytic region. In

1923 Debye Huckel formulated a simple model for calculating the

chemical potentials due to ionic species. The ions are considered

smeared into a continuous distribution of charge, leading to a net

charge density per unit volume. Water is considered as a

continuous dielectric medium with a different dielectric constant

than that of the protein. Current tools solve for the electrostatic

potential using finite difference methods after assigning charge and

radius parameters in a protein using a force field model.

Proteins possess ionizable groups and the pKa values of the

ionizable residues in the active sites tend to be different from their

intrinsic values [17,21]. These large pKa deviations from standard

values are used for the prediction of catalytic residues [19,20]. pKa

shifts are obtained by computing the difference in electrostatic

energy of a charged residue with that of its neutral form -the

resulting shift is added to the intrinsic pKa value [22,61]. In

contrast, our method relies on the PD between residues rather

than the electrostatic energies in the active site. We have reported

a high correlation in the electrostatic PD between pairs of residues.

This feature has been exploited in CLASP to refine the matches

obtained from spatial congruence to predict the catalytic residues.

We now discuss our results in the light of recent controversies

associated with the acylation mechanisms proposed for b-

lactamase activity. The reversal of PDs between two cognate

pairs, namely Ser70-Lys73 and Ser195-His57 in b-lactamases and

serine proteases respectively may be explained as follows. In both

cases, the serine is rendered nucleophilic by deprotonation. This

function is indisputably known to be carried out by the imidazole

group (His) in serine proteases. However, the mechanism of proton

abstraction and donation in b-lactamases by the active-site serine

is still debated (Fig. 5a) [48,60]. The PD between Ser195 and

His57 in serine proteases is positive, thereby suggesting a high

tendency of Ser to be deprotonated. This propensity is not

apparent in b-lactamases, since the PD between Ser70 and Lys73

is negative implying that Lys73 could not possibly act as the sole

general base, abstracting a proton from Ser70. However, it has

been proposed that Lys73 could in fact abstract a proton only

under the influence of Glu166 while forming the preacylation

complex [62]. The high positive PD between Lys73 and Glu166

(Table S5) is consistent with the theory that Lys73 acts as the

general base only after transferring a proton to Glu166 (Fig. 5b).

Therefore, proton transfer from Ser70 to Lys73 is facilitated by the

presence of Glu166 inspite of PD between Ser70 and Lys73 being

negative. Induced fit imposed by the substrate binding is supposed

to be instrumental in facilitating the directional proton abstraction

initiated by Glu166 [63]. In the case of b-lactamases, such

dramatic conformational changes in the course of this hydrolysis

have been reported [64]. Another mechanism invokes Glu166

acting as the base responsible for proton abstraction via

intervening water molecules [48,65] (Fig. 5c). Our PD results are

consistent with either mechanism, since the overall PD between

Ser70 and Glu166 (independent of Lys73) is positive. The roles of

Figure 4. Experimental results. (a) Protease activity of SAP and the effect of different protease inhibitors. Substrate protein (UVI31+; lanes 1 & 6)
was incubated with either Trypsin (lanes 2–5) or SAP (lanes 7–10) for over night at 37uC. Lanes 3–5 and 8–10 shows the effect of different protease
inhibitors on the protease activity of Trypsin and SAP, respectively. The enzyme was pre-incubated with trypsin inhibitor (lane 3 & 8), PMSF (lanes 4 &
9) and SDS plus heat for 5 min before substrate addition (lanes 5 and 10). (b) Protease activity of CIAP and ECAP. Substrate protein (UVI31+; lane 2)
was incubated with either CIAP (lanes 3) or ECAP (lane 4) overnight at 37uC, followed by sample analysis on a 15% SDS-PAGE. Lane 1, molecular
weight marker. (c) Effect of different protease inhibitors on the phosphatase activity of SAP, CIAP and ECAP. Readings are a mean of three
independent experiments. The AP activity of SAP, CIAP and ECAP in the absence of inhibitor have been normalized to 100%. (d) MALDI-mass
spectrometry of (i) Native SAP and (ii) AEBSF-SAP complex. SAP was pre-incubated with AEBSF for 30 mins at room temperature. The reaction was
stopped by adding 0.5% Trifluoroacetic acid. (e) Effect of EDTA, a metal ion chelator on the autolysis activity of SAP. SAP was incubated with (lane 3)
or without (lane 2) EDTA (10 mM) for overnight at 37uC followed by analysis on a 12% SDS-PAGE. Lane 1, molecular weight marker.
doi:10.1371/journal.pone.0028470.g004

Figure 5. Proton abstraction in b-lactamases and serine proteases. The magnitude of the PD are annotated on the edges, the direction of the
edge indicating the direction of the PD. (a) The differences in the way the nucleophilic serine is deprotonated in b-lactamases and serine proteases.
Ser70 cannot donate proton to Lys73 because of reverse potential gradient in b-lactamase, but can do so in case of proteases (CLASP analysis, also
see Discussion). (b) Mechanism in which the Lys73 abstracts a proton from Ser70 after it transfers a proton to Glu166. (c) Mechanism in which Glu166
abstracts a proton from Ser73 directly via a water molecule.
doi:10.1371/journal.pone.0028470.g005
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Lys73 and Glu166 in the acylation step in b-lactamases have also

been investigated using calculated pKa values [66,67]. Lys73 would

require an unusually low pKa value to act as a general base, while it

has been experimentally shown that the pKa values of Lys73 is

above 10 [68], thereby underscoring the importance of Glu166.

The statistical significance of the narrow range within which the

electrostatic PD between pairs of residues in the active site falls

needs to be established. One test of significance would be to find

the potentials of all randomly occurring motifs of SXXK. The

SXXK motif consists of the first two residues that we have used in

defining the querying motif for b-lactamases (Ser70, Lys73,

Ser130, Lys234). Clearly, these potentials should not trivially

exhibit the patterns that we detect in b-lactamases. For the list of

,3000 non-redundant proteins we extracted all the SXXK motifs

and evaluated their PD (Figure S4). Numerically, approximately

two-thirds of the values were found to lie outside the range for b-

lactamases. When supplemented with distance congruence, these

one-third proteins get pruned out further, thereby increasing the

discriminatory power (Figure S2). It is to be noted that the

querying motif for b-lactamases {Ser70, Lys73, Ser130, Lys234}

offers a total of 6 residue pairs. Since CLASP integrates the PD

scores of all 6 residue pairs, the final sensitivity would be

significantly higher than what one obtains using only the

{Ser70, Lys73} pair in the SXXK motif. This implies that more

the number of residues in the motif, better is our accuracy in

prediction.

Probing a promiscuous protein using CLASP
The result of CLASP analysis on motifs extracted from CSA

demonstrates its ability to classify any protein, putative or

otherwise, with known structure (Figure S1 and Table 4). APs

are one of the most widely researched promiscuous enzymes -they

are known to have sulfate monoesterase, phosphate diesterase, and

phosphonate monoesterase activities [69–71]. Recently another

phosphite-dependent hydrogenase activity was also found in

ECAP [72]. This hydrogenase activity is absent in APs from

other organisms. Similarly other proteins from this superfamily

show cross activity - for example the Pseudomonas aeruginosa

arylsulfatase (PAS) which has the primary activity of hydrolyzing

sulfate monoesters, also catalyzes the hydrolysis of phosphate

monoesters [73]. On probing APs for additional promiscuous

activities using all CSA motifs, we found that one of the APs,

namely SAP (PDB id: 1K7H), showed good match with serine

protease motif (Table 5a) among other matches. We tested the

protease activity in SAP by in vitro experiments and corroborated

the above prediction.

Alkaline Phosphatases
APs are non-specific metalloenzymes that catalyze the hydro-

lysis of phosphomonoesters of various kinds into inorganic

phosphate and alcohols [57–59]. They are found in several

isoforms in prokaryotic, archeal and eukaryotic species, of which

several crystal structures have been solved -SCAP (Shewanella sp),

HSAP (Halobacterium salinarum), Tab5 AP (TAP; antarctic bacteri-

um), Vibrio AP (VAP), human placenta AP (PLAP), ECAP

(Escherichia coli) and shrimp AP (SAP) [57,74–79]. While these

enzymes have dissimilar sequences (Table S6) and structure, the

central active-site comprising of three metal-binding sites is highly

conserved.

The widely believed notion of ‘‘single enzyme, single substrate,

single reaction’’ has been lately challenged by the observation that

promiscuity is not that rare in enzymes [80,81]. Promiscuity is now

accepted as an advantageous feature for the divergent evolution of

new catalysts [82]. While CLASP analysis detected various

matching motifs in APs (Table 5a), we chose to test one of the

better matches, namely serine protease. In vitro experiments

showed that SAP indeed exhibits serine protease activity (Fig. 4a).

However, the activity of SAP was vial dependent with some

batches of SAP showing prominent activity while the others did

not. To rule out any possibility of protease contamination in the

commercial SAP, we purified it further by passing the protein

through a 50 kDA centrifugal filter device followed by gel elution

of a single polypeptide band corresponding to the size of SAP from

an 8% Native PAGE gel by electroelution (Centrilutor microelec-

troelutor from Millipore). Gel elution is a technique used to extract

a single polypeptide of the desired molecular weight from a

polyacrylamide (SDS or Native) gel following electrophoresis.

MALDI-TOF mass spectrometry of the purified SAP confirmed

the presence of a single polypeptide of the expected size (55,263

Da) (Figure S5). We recovered protease activity even in the

purified SAP (Figure S6), thereby ruling out any contribution by a

contaminating extraneous protein. More convincingly the AP

activity of all the APs tested (ECAP, SAP and CIAP) and across

different batches was inhibited with trypsin inhibitor. This is

conclusive evidence of the presence of a serine protease like

scaffold in the active site of all the APs tested. Lack of protease

activity in ECAP can be explained by the significant difference in

PD between pairs of residues in ECAP from that of serine protease

(Table 3)). It is a known fact that certain promiscuous activities are

not universally present in all APs -for example, hydrogenase

activity is present only in ECAP but not in other APs [72]. Since

there are no known structures for CIAP, it is unclear why they do

not exhibit protease activity. It has been shown recently that a cold

AP responds differently to mutagenesis in the active sites as

compared to ECAP due to intrinsic differences in the charge

transfer network which is essential for the octahedral coordination

in the catalytic site [83]. This might well explain why SAP, a cold

enzyme, shows protease activity whereas the heat stable APs

(ECAP and CIAP) do not.

The phosphatase activity of AP is known to decline by protease

treatment [84]. We speculate that auto protease activity may have

evolved in APs to regulate the level of phosphatase activity, which

is known to change dramatically under various physiological

conditions. Auto cleavage of AP in the absence of metal ions

(Fig. 4e) is a good switch from AP to protease, since APs are

rendered non-functional in the absence of metal ions.

The AP superfamily includes members like nucleotide pyro-

phosphatases/phosphodiesterases (NPPs), cofactor-independent

phosphoglycerate mutases (iPGMs), phosphonoacetate hydrolases,

phosphonate monoester hydrolases (PMHs) and arylsulfatases

(ASs) apart from APs, and is inferred based on structural homology

[85–87]. However, the active site residues in the superfamily are

quite distinct - AS and PMH have one metal ion, NPP and iPGM

have two while the APs have 3 metal ions [88,89]. It will be

insightful to apply CLASP analysis on these divergent enzymes for

a protease motif. The result of such an analysis reveals that NPPs

and APs are likely candidates to show protease activity (Table 5b),

and that they are more strongly related to each other than other

proteins in the superfamily.

Limitations, Future Directions and Conclusions
An inherent limitation of CLASP is its inability to distinguish

between mirror images. This is typical of methods that use RMSD.

Another shortcoming in CLASP is that it is limited to single

polypeptide chains in proteins. Composite active sites using

different subunits cannot be handled currently. This limitation

can be overcome with degraded runtimes. Complex active sites

comprising of several residues can in principle be analyzed
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provided one specifies the complete set of involved residues. Once

again, this involves a runtime penalty. One must note that CLASP

relies only on static parameters associated with protein structures

and does not include any dynamics associated with catalysis.

Integrating methods such as molecular dynamics simulations

based on quantum mechanical calculations with CLASP based

predictions will improve the accuracy of detecting catalytic sites

that rely heavily on substrate induced dynamics [90,91].

CLASP raises a few important points that need to be

investigated further. The relationship between activity rates and

the physical 3D signature and electrostatic properties is something

that needs to be probed in depth. CLASP provides us with an

ordered set of proteins, which exhibit a particular enzymatic

function. An intriguing question is whether this ordering would

also apply to the kcat values of these proteins. Previous work in our

laboratory has established that the protein UVI31+ has weak b-

lactamase activity, although sequence alignment with known b-

lactamases has failed to identify the active site [92]. CLASP based

predictions and site directed mutagenesis are underway to

ascertain the active site.

Engineering enzymes to mimic evolution has been previously

applied to obtain promising results [93,94]. A pioneering work has

shown that four amino acid substitutions convert an oleate 12-

desaturase to a hydroxylase [95]. Similarly, trypsin has been

converted to work as chymotrypsin by suitably altering the surface

loops [96]. Such work typically chooses enzymes with weak

promiscuous activity and go on to strengthen this activity through

site directed mutations. CLASP provides the perfect platform to

check the viability of such an effort in any protein for any given

activity. A more challenging task is to alter an enzyme in such a

way that a new activity is imparted. CLASP can achieve this with

improvised algorithms. We are implementing such a task on E. coli

bolA protein [97] that shares strong domain homology with

UVI31+, but lacks b-lactamase activity. A web server is also being

designed to allow users the ability to run CLASP on their protein

of interest.

CLASP integrates the features that are most critical to the active

site machinery - spatial configuration and electrostatic properties -

to identify active sites in proteins. Spatial congruence reveals

putative matches. These are refined based on the observation that

a strong correlation exists in the electrostatic potentials among

residues in active sites for any particular activity. This is

corroborated by data on the PD in pairs of residues for a set of

proteins from the same family showing very small standard

deviation. In addition, CLASP also takes into account the diversity

in protein configurations that account for the same enzymatic

action. CLASP can be run quickly on known motifs to classify

proteins with unknown functions. Promiscuous functions un-

earthed using CLASP should be substantiated by in vitro tests in

tandem. We have unravelled a promiscuous proteolytic activity in

SAP using our method, which has been validated here using in vitro

experiments.

Methods

Table S7 lists the datasets of the proteins used.

Flow
CLASP starts with a motif of the active sites. First all sets of n

residues with the constraint that each residue should be from the

group specified are obtained (Figure S7). To obtain matches for

the reference motif in the query protein, we use an exhaustive

search procedure for the pattern similar to the one used in

SPASM [25] taking advantage of the labelling data with the motif

and the protein to prune the search space. The search space is

limited to a user defined distance, such that all residues in a given

match are within this distance from each other. Another similar

technique is also frequently used but shares the same limitations

with motif sizes [98]. Other techniques are able to handle longer

motif searches [99]. Since CLASP has quick runtimes, revising

the algorithm was not required. For each such match, the 3D

distances and PD are computed. These values are then compared

with the corresponding feature values obtained from the

reference protein and adjusted with the user defined weights to

obtain a score. The distance scores are normalized to take in

account the fact that the same pair wise distance deviation should

count more when the reference distance is less. For example, a

deviation of 1 Å is more significant if the distance between 2

residues is 4 Å, than if the distance between them is 8 Å in the

reference protein. In order to score potential differences, we

ignore deviations if the potential difference in the cognate pair in

the query and the reference residue pair are both close to 0.

Similarly for higher potential differences, the deviations are more

loosely constrained than for lower potential differences. The

differences are absolute values. The best scoring match is

considered as the representative for that protein and defines

our predicted catalytic site which can be subjected to mutational

analysis for verification. Thus each motif represents a function to

be searched within a protein of unknown function. A motif can be

manually provided (Fig. 1). By automatically extracting all

specified motifs from the Catalytic Site Atlas (CSA) database

(Figure S1), we can query an unknown protein for all listed

functions (www.sanchak.com/CLASP).

Calculating electrostatic potential difference
Adaptive Poisson-Boltzmann Solver (APBS) package was used

to calculate the PD between the reactive atoms of the

corresponding proteins [14] using the PARSE force field [100].

Assigning charge and radius parameters in a protein using a force

field model, current tools solve for the electrostatic potential using

finite difference methods [15]. PDB2PQR calculates the grid

dimensions, grid spacing, grid lengths and grid centre, and the

charges on the atoms [101] using the PARSE force field [100].

The charge assignment is static -for example the OG atom of Ser

always has a charge of 20.49e. However, the potential on this

atom will depend on how it is placed with respect to other atoms in

the protein. The PBE is solved using a lattice representation where

the charges and dielectric properties are mapped on the cubic

lattice in the so called grid points where the PD is calculated. The

APBS parameters are set as follows -solute dielectric: 2.000,

solvent dielectric: 78, solvent probe radius: 1.4 Å, Temperature:

298 K and 0 ionic strength. A method that has created a database

of pre-calculated values reported on a per residue basis for all PDB

protein structures suggests a grid spacing of 0.4 Å [102]. We have

used the PDB2PQR calculated grid spacing which varies from

0.4 Å to 0.6 Å. The electrostatic potential is in dimensionless units

of kT/e where k is Boltzmann’s constant, T is the temperature in

K and e is the charge of an electron. The grid potential value

depends quite strongly on the grid spacing and on the system

position relative to the lattice [102]. Other sources of variations

are discretization of the continuously-specified problem coeffi-

cients. However, the potential differences and most other

observables (like solvation energies or forces) rely on the difference

in two calculations on the same grid, This eliminates most of the

grid-sensitivity for sufficiently fine grids. The largest deviations in

potential differences are found inside clefts and indentations that

occur on the dielectric boundaries, as in the active sites [103].

Nonetheless the correlation between the potential differences
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measured in dimensionless units is apparent and this correlation of

PD is used in our method for screening the active sites.

Protein, Substrate and Reagents
SAP was purchased from USB, CIAP from Gibco BRL and

ECAP from Sigma. PMSF (Phenylmethylsulfonyl fluoride) and

trypsin inhibitor from chicken egg white was obtained from

Roche. pNPP (p-Nitrophenyl phosphate Disodium salt Hexahy-

drate) was obtained from SRL. We used trypsin from Sigma and

the 50 kDa centrifugal filter device from Millipore. AEBSF used

was from Calbiochem.

Protease Assay
Each reaction mixture (30 ml total volume) contained 13 mM of

purified UVI31+ protein [92] (14 kDa) and 3 units of AP in

50 mM ammonium bicarbonate, followed by overnight incubation

at 37uC. The protein was then denatured by the addition of 7 ml of

SDS-denaturing solution (200 mM Tris-HCl pH 6.8, 8% SDS,

40% Glycerol, 4% 2-mercaptoethanol, 50 mM EDTA pH 8.0,

and 0.08% bromophenol blue) and heating it at 100uC for 3 min.

The sample was subjected to 15% SDS-PAGE analysis followed

by staining with Coomassie Brilliant Blue and band quantification

using Image J. For the inhibition of protease activity of SAP, three

different conditions were employed i.e., (i) 0.1% SDS followed by

heating at 100uC for 5 min, (ii) 1 mM PMSF, and (iii) 500 ng/ml

of trypsin inhibitor, before substrate addition. UVI31+ protein

(13 mM) was then added as the substrate and residual enzyme

activity was measured.

Alkaline Phosphatase Assay
Reaction of AP (1 unit) with p-nitrophenylphosphate (0.2 mM)

as substrate, in a total volume of 200 ml was set up in 50 mM

ammonium bicarbonate buffer, and incubated at room temper-

ature for 2 min. Absorbance at 405 nm was measured against

deionized water. Inhibition studies were performed as mentioned

above for protease assay.

MALDI-TOF Analysis
MALDI-TOF mass spectrometric analysis was performed using an

UltraFlex II TOF/TOF of Bruker Dal-tonics (Germany). Positive

ionization and linear mode were used. The experimental parameters

are as follows: laser power 60%, voltage 25 kV, and the mass

difference in linear mode with external calibration of the machine

(Ultraflex II, Bruker Daltonics) is less than 6100 ppm i.e. less than

60.01%. The matrix was sinapinic acid. The external calibration

standard consisted of insulin, ubiquitin, cytochrome C and myoglobin.

External Tools
We extensively integrated and used the freely available BioPerl

[104] modules and Emboss [105] tools. All protein structures were

rendered by PyMol (http://www.pymol.org/).

CSA Motif extraction
The Catalytic Site Atlas (CSA), available online, provides

catalytic residue annotation for enzymes in the PDB [35]. The

database consists of two types of annotated sites: an original hand-

annotated set containing information extracted from the primary

literature and a homologous set containing residues inferred by

PSIBLAST [56]. We downloaded the file CSA_2_2_12.list from

the CSA site and extracted about ,400 motifs. The motifs picked

were those that were extracted from literature, had 3, 4 or 5

residues and were all confined to one polypeptide. Multiple chain

active sites (those shared by subunits) were ignored.

Runtimes
The runtimes for CLASP are presented in Figure S8. The

typical run time for a single protein is about an hour. A cluster of

128 processors has been used to implement parallel processing on

mutually exclusive aspects of the program.

Supporting Information

Figure S1 The flow for assigning functions to putative proteins

based on the motifs in the CSA Database. Any unknown protein is

compared with each motif. Precomputed values help to achieve

quick runtimes. Parallel computation has been possible through a

cluster of 128 processors to speed up this process due to the

mutually exclusive nature of each comparison.

(PDF)

Figure S2 ,500 non-redundant proteins that have the best 3D

matches with the Class A b-lactamase motif. We demonstrate that

electrostatic conformity leads to a considerable reduction in false

positives. The dashed line denotes the highest scoring b -lactamase

(PDB id: 2QZ6). When 3D conformity is the sole criteria, there are

80% of the proteins that are below this score, and qualify as

possible b -lactamases. This number reduces to 20% when

electrostatic conformity is combined with 3D congruence. This

analysis was performed on a set of ,500 proteins that were the

best candidates using a quick 3D match on all the ,50,000

proteins in the PDB database. It is to be noted that the 4 fold

enrichment achieved on this set is an underestimation of the power

of our method since the chosen set of proteins was a filtered

category through 3D congruence.

(PDF)

Figure S3 The overall pathway for b -lactam hydrolysis. There

are two main steps - acylation and hydrolysis. The acylation is

common to b-lactamases and penicillin-binding proteins (PBP).

Thus antibiotic resistance essentially arises from the deacylation

reaction. Starting with the ground state (a) and passing through a

high energy acylation state (b) the acyl-enyzme intermediate is

formed (c) due to the nucleophilic attack of the serine on the b-

lactam. The next step is hydrolysis (d) and finally the product is

formed (e), and the enzyme is ready for another cycle.

(PDF)

Figure S4 The potential difference between the Ser and Lys

residues in all the SXXK motifs (in a sample of 1500 motifs where

each one is numbered arbitrarily) found in the ,3000 non-

redundant proteins.

(PDF)

Figure S5 MALDI mass spectra of the purified SAP. The small

peak at approximately 28 kDa represents the doubly charged

molecular ion at half the m/z value.

(PDF)

Figure S6 Protease activity of SAP after purification. Sub-

strate protein (UVI31+; lane 1) was incubated overnight at

37uC with stock SAP (lane 2) and purified SAP (lane 3).

Purification was done by passing the protein through a 50 kDA

centrifugal filter device followed by gel elution of a single

polypeptide band corresponding to the size of SAP from a 8%

native PAGE gel by electroelution (Centrilutor micro-electro-

elutor from Millipore).

(PDF)

Figure S7 Algorithm ScoreSingleProtein - score any given

protein for enzymatic function F.

(TIF)

Active Site Prediction Using 3D and Electrostatics

PLoS ONE | www.plosone.org 11 December 2011 | Volume 6 | Issue 12 | e28470



Figure S8 (a): Runtimes for running CLASP. The runtimes

have been divided into the three most time intensive parts. - the

3D matching, running PDB2PQR which assigns charges on the

proteins and APBS which calculates calculates the potential. (b):

Runtimes when each of ,50 putative proteins was run on ,400

motifs that were automatically extracted from the CSA

Database.

(PDF)

Table S1 Config File: Input to CLASP which allows the user to

set the reactive atoms for each amino acid, and to control features

of stereochemically equivalent amino acid side chains in the active

sites and thus obtain acceptable values of sensitivity and specificity.

Motif in b-lactamases – and grouping: We have taken the motif

{Ser70, Lys73, Ser130, Lys234} from a Class A b-lactamase (PDB

id: 1G68) to represent b-lactamases. For example the group

Lysgrp has three residues {Lys, Arg, His}, whereas the more

restricted group Lysonly has only one residue Lys.

(PDF)

Table S2 (a) APBS calculated potential differences in b-

lactamases when queried using a Class A b-lactamase motif. (b)

APBS calculated potential differences in residue pairs in penicillin-

binding proteins (PBP). Potential differences are in dimensionless

units of kT/e (k is Boltzmann’s constant, T is the temperature in K

and e is the charge of an electron).

(PDF)

Table S3 Predicted residues and pairwise distances for a list of

Class A, C and D b-lactamases using a Class A b-lactamase motif

{Ser70, Lys73, Ser130, Lys234}. The distances are specified in the

reference protein (PDB id: 2G2U) in A. For the remaining, we

show the deviation from the reference value. In the Class C b-

lactamases (2QZ6 for example), Ser is replaced by the stereo-

chemically equivalent Tyr in the third position of the match.

However, in some of the Class C b-lactamases (2QZ6 for

example), the predicted Tyr (Tyr112) is different from the one

known to be responsible for catalysis (Tyr150). The inherent

shortcoming of any method that uses RSMD is its inability to

distinguish between two mirror image configurations. This is

evident for the Class A b-lactamase 3DW0 and the Class D b-

lactamase 2HP5, which is a mirror image configuration with

respect to other motifs in this set. It can also be seen that the Class

A proteins match better than the Class C and Class D proteins,

since we are using a Class A b-lactamase motif. One Class C b-

lactamase (PDB id: 3GQZ) is an exception, possibly because this

protein has had conformational changes due to fragment binding.

(PDF)

Table S4 Pairwise distances and potential differences between

pairs of residues in the reference motif from the demaminase (PDB

id: 1CD5) (Residues listed in CSA database: {His143,Glu148,As-

p141,Asp72}) and the unknown protein Tm0936 from Thermotoga

maritima (PDB id: 1P1M) (CLASP predicted residues: {His55,-

Glu203,Asp279,Asp113}).

(PDF)

Table S5 Identity/Similarity among all Aps.

(PDF)

Table S6 Potential difference between Lys73 and Glu166 for a

motif from a Class A b-lactamase which now includes the Glu166

for a list of Class A b-lactamase proteins {Ser70, Lys73, Ser130,

Lys234, Glu166}, the high potential differences observed are

consistent with the theory that Lys73 is protonated in the initial

stages, and acts as the general base to Ser70 only after transferring

a proton to the Glu166.

(PDF)

Table S7 Dataset.

(PDF)
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