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Abstract 
 
Nature's molecular diversity is not random but displays intricate organization stemming from 
biological necessity. Molecular networking connects metabolites with structural similarity, 
enabling molecular discoveries from mass spectrometry data using arbitrary similarity 
thresholds that can fracture natural metabolite families. We present molecular community 
networking (MCN), that optimizes connectivity for each metabolite, rescuing lost relationships 
and capturing otherwise “hidden” metabolite connections. Using MCN, we demonstrate the 
discovery of novel dipeptide-conjugated bile acids. 
 

Main Text 
 
Metabolites synthesized by common enzymatic pathways share key functional motifs and 
structural characteristics. The constraints of biosynthesis yield not a disjointed chemical 
landscape, but an expansive yet organized “molecular terrain” composed of interrelated 
molecular families. Although we don’t know the true extent of the molecular diversity, and 
possibly billions of molecules may exist1, we can be fairly certain that underlying structural 
patterns of biology restrain molecules within definable “families”, preserving order amidst 
expansive molecular individuality. In our exploration of vast molecular complexities of biology, 
we can leverage this context by understanding structural relationships across metabolic 
landscapes.  

The contextualization of molecular space to propagate structural information between 
related molecules has been implemented as a strategy of molecular networking, a method that 
operates on mass spectrometry (MS) data2. Mass spectrometry, in combination with 
chromatography (liquid, LC-MS and gas, GC-MS) is an indispensable platform for the discovery, 
characterization, and quantification of diverse molecules, ranging from methane to proteins3. 
The breadth of applications of MS spans elucidation of biomarker profiles that distinguish 
diseased and healthy states, to explore molecules produced by microbes to mediate ecological 
interactions and impact human health. Molecular networking harnesses the molecular context 
present in MS data by connecting molecules with similar spectral fragmentation patterns 
(tandem MS (MS/MS) for LC-MS2,4 and electron ionization (EI) for GC-MS5) into clusters. 
Spectral similarities translate into structural similarities, since the same substructures of different 
molecules tend to give rise to the same peaks in fragmentation spectra. This, in turn, enables 
propagating structural information from known (annotated) to unknown molecules across 
network connections to then glean into the “metabolomics dark matter”, i.e. molecules that are 
detected but do not match known structures. Currently, the molecular “dark matter” of 
metabolomics in a typical untargeted tandem LC-MS analysis comprises upward of 90% of 
observed molecular space6.  

Leveraging molecular context has proved to be a useful approach that has resulted in 
discoveries of thousands of new metabolites over the past decade. As an example, molecular 
networking revealed a novel microbial pathway producing amino acid-conjugated bile acids 
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through steroid core deconjugation and reconjugation7. Bile acids are some of the most studied 
metabolites due to their central role in a multitude of biological processes, from fat solubilization, 
to cell signaling8. Yet, these microbially-made molecules have eluded discovery for over a 
century despite intense scrutiny, and were only noticed via molecular networking. 

While molecular networking has become an indispensable tool, it has inherent 
limitations. Conventionally, the methodology relies on arbitrarily setting global spectral similarity 
thresholds to link structurally similar metabolites across molecular space. Yet, the optimal 
connectivity is ostensibly molecular class-specific - fragmentation patterns vary greatly for 
different molecular families, both in variability and richness. Common threshold for all molecules 
may lead to fracturing molecular families and leaving large swaths of metabolites unconnected, 
currently, depending on the data, somewhere between 25 to 75% of detected molecular 
features (Figure 1e-f, S14). These features, and fractured clusters without annotated node(s) in 
a cluster, are not amenable to annotation propagation, thus leaving this portion of the 
metabolome to remain “dark”6. 

To resolve this challenge, we present a new rendition of the molecular networking 
methodology. This approach utilizes full connectivity metabolite networks that are parsed using 
network science tools to determine naturally present "molecular communities", via optimization 
of connectivity patterns for each metabolite class. We then construct networks that preserve 
intra-community connectivity information. We call this approach “Molecular Community 
Networking” (MCN). 

In conventional molecular networking, the network is pruned to keep only the 
connections that surpass an arbitrary cosine similarity cutoff of 0.7 or similar. In the MCN 
approach, we consider the unpruned network, with all the available information contained from 
all edges within this network. Then, we deploy the clustering algorithm, Louvain method9, on the 
unpruned network to detect molecular communities, i.e. groups of metabolites that exhibit high 
mutual connectivity (Figure 1a,b, S1). The number of communities identified by the Louvain 
method is not fixed or predefined; instead, the algorithm finds communities that arise “naturally” 
from the input data, without any initial restrictions on the number or sizes of those communities.  

For networks of complex metabolomes, the natural density of links is very high, as many 
similar molecules are present, leading to “hairballs” - convoluted and difficult to interpret 
clusters. Conventionally, the “hairballs” are pruned by artificially limiting the number of 
connections to ~10 for each node and limiting cluster size to ~100 nodes. Such an arbitrary 
pruning without considering local patterns may remove important connectivity information. In 
MCN, clusters are pruned to enable network interpretation, but preserve connectivity (avoid 
disconnecting any nodes), while retaining only the most meaningful information. We treat each 
community as a separate network and identify the maximum weight spanning tree10 for each of 
these clusters. A spanning tree is a subnetwork that does not contain cycles and connects all 
the given nodes with a minimum possible number of links (detailed methodology is described in 
SI). The weight of each link represents the similarity score; thus, the maximum weight spanning 
tree for a network cluster would represent each cluster with only the most important links 
necessary to maintain full connectivity (Figure 1c,d, S1). The MCN is thus a partition of the 
entire original unpruned network into innate communities with a continuum of molecular space 
within, where the connections represent the most similar pairs of metabolites across the entirety 
of detected metabolome. Consequently, MCN connects nodes that otherwise may not have 
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been connected by conventional molecular networks. As an example, on a “global” network of 
all public data across the GNPS/MassIVE repository2, increased connectivity captured by MCN 
leads to linking of ~95% of all nodes (over ~8 million out of approximately 8.4 millions of 
metabolites). Compared to the conventional network, this translates into additional ~3.5 millions 
of nodes connected to an annotated node and thus becoming amenable to annotation 
propagation. This is, in large part, due to the reduction from 57.4% of unconnected nodes 
(“singletons”) in the conventional network to 4.9% in MCN (Figure 2e-f). We show that these 
connections are meaningful and link structurally-related molecules (Figure S17). It is important 
to understand that an MCN connection does not guarantee that metabolites are closely 
structurally related. Rather, it indicates that no other more similar MS/MS spectra can be found 
in the data. As with conventional molecular networks, a researcher's best judgment is essential 
when interpreting the network. 

We show how MCN allows assembling the molecular space for both LC-MS/MS and EI 
GC-MS data to reflect the continuum of structures. We explored MCNs for the reference spectra 
(Figure 1g-i, S2-11) to establish the validity of the connection in generated networks, and 
experimental data to showcase extraction of insight from the data. In one example, we show 
how MCN rescues lost connectivity between related molecules that conventional networking 
fractures into separate clusters (Figure 1j,k). In another example, we show how MCN links 
sodiated ion variants to the corresponding protonated precursors (Figure S12,13). Because 
metal adduction alters fragmentation, these features are disconnected in conventional networks 
and post-hoc analysis is needed to identify different versions of the same molecule11. However, 
spectra of sodiated metabolites are still more similar to the corresponding parent compounds 
than any other molecules, which is captured by MCN.  

Linking previously stranded nodes allows propagating structural information. We 
demonstrate this utility of MCN by showing discovery of  new bile acid structures, with dipeptite 
conjugation to the steroid core produced by human microbiome (Figure 2, S15-16), revealing 
the metabolic capacity of the human microbiota to synthesize these compounds. One of these 
molecules appears to be present in the stool of infants and is associated with Bifidobacterium 
breve and other unclassified Bifidobacterium species (see Supplemental for details).  Such 
molecules have lower similarity connections that could not be captured by conventional 
networks.  

Finally, we note that for all of the examined data, both LC-MS/MS and EI GC-MS (Table 
S1), the MCNs consistently exhibit high modularity (the metric of the ratio between “intra-cluster” 
vs. “inter-cluster” links; high modularity is indicative of stronger community structure). This is 
suggestive of the natural tendency of molecules to group into communities in metabolomics 
networks. We further note that molecular connectivity patterns in MCNs exhibit so-called “small-
world” structure12 with the power-law distributions of degree of connectivity - a distinctive shape 
close to a straight line in the logarithmic scale (see Supplemental Figure S18), in a notable 
similarity to that of online social networks13 and other connected systems. Such connectivity 
described by power law distributions can be found in diverse domains, including  languages, 
neuronal firing patterns, organization of firms, protein-protein interaction networks, etc. These 
systems are characterized by self-organization into hierarchical structures with functional 
modularity (organization into distinct, semi-independent units or modules that perform specific 
functions). The similarity of molecular networks to these networks may further enable deeper 
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biological insight by transposing known properties and patterns in various systems. The 
topology of these networks may be informative in itself, and reveal informative patterns of 
molecular space in general, such as identifying the most “central” nodes, groups of nodes, or 
paths in these networks14. We anticipate this approach to empower molecular discovery, in 
areas such as natural products research, including reanalysis of existing data to explore 
molecules previously unconnected in conventional networks. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.02.606356doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606356
http://creativecommons.org/licenses/by-nd/4.0/


 

 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.02.606356doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606356
http://creativecommons.org/licenses/by-nd/4.0/


 

Figure 1. The principles and applications of molecular community networks (MCNs).  
Schematic description of MCN generation: a) An unpruned network is generated for either LC-
MS/MS2,4 or EI GC-MS5 data. b) A clustering algorithm (Louvain method9) is used to determine 
the naturally present molecular communities within the data. c) Each community is pruned via 
the maximum spanning tree algorithm10. d) The resulting pruned community cluster is obtained 
by removing low-weight edges; the full connectivity is retained by keeping at least one strongest 
connection for each node. e-f) Comparison of the number of size-k connected components in 
conventional (e) and community molecular networks (f) for all values of k, using publicly 
available data from GNPS (total of ~8.4 million metabolites). Both conventional and molecular 
community global networks have been generated with the MASST+ approach29. The number of 
nodes found in clusters with each size k have been counted and the percentage of the nodes 
within different cluster sizes is shown for the conventional network (left) and MCN (right). The 
coloring corresponds to the k size of the cluster, with darker colors indicating progressively 
larger clusters. The size-k distribution in conventional network is found to be very similar to that 
previously reported in29. The community network results in substantially higher connectivity, and 
exhibits approximately an order of magnitude lower number of singletons and small, 
uninformative clusters (2-11 nodes) compared to the conventional network. Conversely, the 
nodes in the community network are predominantly located within larger clusters of above 1,000 
nodes, with the majority of nodes located in "superclusters" spanning thousands to hundreds of 
thousands of nodes. This distribution is indicative of continuity of molecular structures present in 
large-scale metabolomics data, i.e. molecular continuum where large numbers of metabolites 
are interconnected due to iterative structural variations, forming a swath of inter-related 
compounds rather than discrete, isolated groups. This continuity reflects the nature of metabolic 
processes and pathways in biological systems, where molecules often differ by small 
modifications or transformations, creating a vast network of structurally related compounds. In 
this global network of publicly available data, the additional connectivity in MCN amounts to 
linking over 8 million out of 8.4 million metabolites in the community network, as opposed to 
approximately 3.6 million connected in conventional network. g) A conventional molecular 
network generated for the reference data of 800 standards collected with different LC-MS/MS 
methodologies (RP, HILIC chromatography and positive, negative ionization modes), as 
described in Supplemental. More than one node is possible for one compound, as the same 
compound may be detected with different methodologies. These compounds span a variety of 
molecular families.  A typical cosine connectivity threshold of 0.7 is used. The large portion of 
the molecular features remains unconnected (single nodes at the bottom of the network); 
positive and negative ions tend to cluster separately. h) The conventional network for the same 
reference data as in i), with the cosine threshold of 0.5. Even with such a permissive threshold, 
a significant portion of molecular features remain unconnected. i) MCN for the same data as in 
g) and h). Molecular families are assembled into distinct communities comprised of features 
detected across all methods. For the networks shown in panels g), h) and i), two members of 
the family of electron carrier metabolites central in the cell's RedOx reactions are highlighted. 
The two shown metabolites are structurally similar, but fall into different clusters in conventional 
networks (g),h)); other related molecules span several other clusters. The highlighted 
molecules, along with all of the other various structurally related molecules all are within the 
same community cluster in MCN i). The close up view of these clusters is shown in Figure S9-
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11. j) A conventional molecular network generated from the LC-MS/MS data of the indoor 
metabolome of a house, the HOMEChem study15. The insets show clusters where different 
variants of polyethylene glycol (PEG) molecules can be found (the PEG analogues have been 
identified via the use of the propagated nearest neighbor, “suspect” library16). Usage patterns of 
PEG-containing personal care items leads to sizable and persistent indoor presence15. In a 
conventional network, various versions of PEGs span several clusters and many remain entirely 
unconnected (only a few clusters and single nodes containing PEG “suspects” are shown for 
visual clarity), which obscures the diversity of this molecular family in the indoor metabolome. k) 
MCN of the data shown in j). In MCN, PEG variants form a molecular community that spans 
molecules fractured to different clusters in j). Gathering the molecular family in a single cluster 
helps to better appreciate the variety of PEGs in indoor metabolome. 
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Figure 2. Discovery with molecular community networks.  a) A conventional molecular 
network generated from LC-MS/MS data for the analysis of human microbial cultures in a study 
of reverse metabolomics as a discovery strategy17. The total of 202 isolates from skin, gut, and 
vaginal microbiomes were tested for bile acid conjugation capabilities. The resulting molecular 
distribution comprised an array of structurally dissimilar molecules, leading to a very low 
connectivity in the conventional network, as shown on the inset. As much as 80% of all MS/MS 
comparisons of bile acids have cosine similarities below 0.7 threshold and are not amenable to 
structure propagation in conventional molecular networks18. b) MCN of the data shown in a). 
The coloring in both panels a) and b) corresponds to the identified molecular communities. c) 
An up close view of a portion of a molecular community that contains bile acid molecules where 
the cholate core is conjugated to various amino acids, the new class of microbially-made 
metabolites7. The edge thickness is proportional to the cosine similarity score; the color 
indicates whether the node has any connection in the conventional network (green, connected; 
red, not connected; the connection may be in any cluster across the network). Proposed 
structures* from library matching and annotation propagation are listed for nodes across the 
cluster. d) The proposed structure* for the unannotated node with m/z 760.3537 highlighted by 
the orange box on panel c). The structure features an unexpected disulfide bond between 
cysteines instead of the peptide bond. This molecule is absent in public data outside of the 
culturing experiment**, suggesting that it is likely of artifactual, rather than biological origin. The 
formation of this structure provides a plausible explanation for the scarcity of free cysteine 
amidates across biological data, as air oxidation would have been sufficient to generate the 
dimers. e) The proposed structure* for the unannotated node with m/z 699.3781 highlighted by 
the orange box on panel c). Based on the MS/MS spectrum, the structure is proposed as Met-
Glu-CA. An example of a dipeptide-conjugated bile acid, a glycine-taurine conjugate, has been 
previously reported in rabbits19. However, the proposed structure, featuring a different dipeptide 
conjugation to a steroid core, has not been described before. This structure is present in 
biological data** (Figure S15, S16), can be found in infant fecal samples and is associated with 
Bifidobacterium breve and other unclassified Bifidobacterium species. 
* The structural confirmation at level 2 has been carried out as described in the Supplemental20.  
** The detailed description of structures searched in public data is given in Supplemental. 

 
Data availability 

All data used for testing and validating molecular community networking are deposited in 
GNPS/MassIVE2. All data and links to the GNPS jobs underlying figures present in the Main 
Text and Supplementary Note are included as Supplementary Data.  

Code availability 

We have deposited the code at github https://github.com/Alexander0/molecular_communities. 
The molecular community networking notebook is written in Python. It is open source and 
released under an LGPL-3 license. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.02.606356doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606356
http://creativecommons.org/licenses/by-nd/4.0/


 

 

Acknowledgements 

AAA, AL were supported by the USDA NIFA GRANT13665683. PCD was supported by
 R01DK136117.  

Author information 

 

Contributions 

AAA proposed the concept of molecular community networking. AS, VB devised mathematical 
underpinning of the methodology. AS performed the code engineering to enable molecular 
community networking. AAA, AL, DM, EAC curated data used in analyses. AAA, AL, DM, EAC, 
AVM generated data for the manuscript. WG, AM, SB established structures for the novel bile 
acids. PCD, WG, AP, BA conducted synthesis of bile acids to verify the proposed structures. 
AVM performed the reference data collection for Figure 1e-f. AAA, EAC generated unpruned 
networks for all data. AS, VB tested the molecular community networking code. AAA provided 
supervision and funding for the project. AAA, VB, AS wrote and edited the manuscript. All 
authors reviewed and approved the manuscript. 

Corresponding author 

Correspondence to Alexander A. Aksenov 

Ethics declarations 

Competing interests 

AAA, and AVM are founders of Arome Science, Inc. and BileOmix, Inc. PCD is an 
advisor and holds equity in Cybele, BileOmix and Sirenas and a Scientific co-founder, 
advisor and holds equity to Ometa, Enveda, and Arome with prior approval by UC-San 
Diego. PCD also consulted for DSM animal health in 2023.  

 

Supplementary Note 

Supplementary Table S1 

Supplementary Table S2 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.02.606356doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606356
http://creativecommons.org/licenses/by-nd/4.0/


 

Underlying data for the Figures 

Underlying data for Figures in the Supplementary Note. 

 

 

 

References 
 

1. Kind, T. & Fiehn, O. Seven Golden Rules for heuristic filtering of molecular formulas 

obtained by accurate mass spectrometry. BMC Bioinformatics 8, 1–20 (2007). 

2. Wang, M. et al. Sharing and community curation of mass spectrometry data with Global 

Natural Products Social Molecular Networking. Nat. Biotechnol. 34, 828–837 (2016). 

3. Aksenov, A. A., da Silva, R., Knight, R., Lopes, N. P. & Dorrestein, P. C. Global chemical 

analysis of biology by mass spectrometry. Nature Reviews Chemistry 1, 1–20 (2017). 

4. Nothias, L.-F. et al. Feature-based molecular networking in the GNPS analysis 

environment. Nat. Methods 17, 905–908 (2020). 

5. Aksenov, A. A. et al. Auto-deconvolution and molecular networking of gas 

chromatography–mass spectrometry data. Nat. Biotechnol. 39, 169–173 (2020). 

6. da Silva, R. R., Dorrestein, P. C. & Quinn, R. A. Illuminating the dark matter in 

metabolomics. Proceedings of the National Academy of Sciences of the United States of 

America vol. 112 12549–12550 (2015). 

7. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid 

conjugations. Nature 579, 123–129 (2020). 

8. Chiang, J. Y. L. Bile acid metabolism and signaling. Compr. Physiol. 3, 1191–1212 (2013). 

9. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities 

in large networks. (2008) doi:10.48550/ARXIV.0803.0476. 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.02.606356doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606356
http://creativecommons.org/licenses/by-nd/4.0/


 

10. Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. Introduction to Algorithms. (MIT 

Press, 2009). 

11. Schmid, R. et al. Ion identity molecular networking for mass spectrometry-based 

metabolomics in the GNPS environment. Nat. Commun. 12, 1–12 (2021). 

12. Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 

440–442 (1998). 

13. Semenov, A. et al. Exploring social media network landscape of post-soviet space. IEEE 

Access 7, 411–426 (2019). 

14. Matsypura, D., Veremyev, A., Pasiliao, E.L., Prokopyev, O.A. Finding the most degree-

central walks and paths in a graph: Exact and heuristic approaches. Eur. J. Oper. Res. 308, 

1021–1036 (2023). 

15. Aksenov, A. A. et al. The molecular impact of life in an indoor environment. Sci Adv 8, 

eabn8016 (2022). 

16. Bittremieux, W. et al. Open access repository-scale propagated nearest neighbor suspect 

spectral library for untargeted metabolomics. Nat. Commun. 14, 1–15 (2023). 

17. Gentry, E. C. et al. Reverse metabolomics for the discovery of chemical structures from 

humans. Nature 1–3 (2023). 

18. Bittremieux, W. et al. Comparison of Cosine, Modified Cosine, and Neutral Loss Based 

Spectrum Alignment For Discovery of Structurally Related Molecules. J. Am. Soc. Mass 

Spectrom. 33, 1733–1744 (2022). 

19. Hagey, L. R., Schteingart, C. D., Rossi, S. S., Ton-Nu, H. T. & Hofmann, A. F. An N-acyl 

glycyltaurine conjugate of deoxycholic acid in the biliary bile acids of the rabbit. J. Lipid 

Res. 39, 2119–2124 (1998). 

20. Sumner, L. W. et al. Proposed minimum reporting standards for chemical analysis 

Chemical Analysis Working Group (CAWG) Metabolomics Standards Initiative (MSI). 

Metabolomics 3, (2007). 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.02.606356doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606356
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.02.606356doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606356
http://creativecommons.org/licenses/by-nd/4.0/


.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.02.606356doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.02.606356
http://creativecommons.org/licenses/by-nd/4.0/

