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Informed Random Forest to Model

Associations of Epidemiological Priors,
Government Policies, and Public Mobility
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Abstract

Background. Infectious diseases constitute a significant concern worldwide due to their increasing prevalence, associ-
ated health risks, and the socioeconomic costs. Machine learning (ML) models and epidemic models formulated
using deterministic differential equations are the most dominant tools for analyzing and modeling the transmission
of infectious diseases. However, ML models can be inconsistent in extracting the dynamics of a disease in the pres-
ence of data drifts. Likewise, the capability of epidemic models is constrained to parameter dimensions and estima-
tion. We aimed at creating a framework of informed ML that integrates a random forest (RF) with an adapted
susceptible infectious recovered (SIR) model to account for accuracy and consistency in stochasticity within the
dynamics of coronavirus disease 2019 (COVID-19). Methods. An adapted SIR model was used to inform a default
RF on predicting new COVID-19 cases (NCCs) at given intervals. We validated the performance of the informed
RF (IRF) using real data. We used Botswana’s pharmaceutical interventions (PIs) and non-PIs (NPIs) adopted
between February 2020 and August 2022. The discrepancy between predictions and observations is modeled using
loss functions, which are minimized, interpreted, and used to assess the IRF. Results. The findings on the real data
have revealed the effectiveness of the default RF in modeling and predicting NCCs. The use of the effective repro-
ductive rate to inform the RF yielded an excellent predictive power (84%) compared with 75% by the default RF.
Conclusion. This research has potential to inform policy and decision makers in developing systems to evaluate inter-
ventions for infectious diseases.

This Creative Commons Non Commercial CC BY-NC: This article is distributed under the terms of the Creative Commons

Attribution-NonCommercial 4.0 License (http://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use,

reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and

Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Corresponding Author

Tsaone Swaabow Thapelo, Department of Computer Science and

Information Systems, Botswana International University of Science

and Technology, Khurumela, 2, Palapye, Botswana;

(swaabow@gmail.com).

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/23814683231218716
journals.sagepub.com/home/mpp


Highlights

� This framework is initiated by incorporating model outputs from an epidemic model to a machine learning
model.

� An informed random forest (RF) is instantiated to model government and public responses to the COVID-
19 pandemic.

� This framework does not require data transformations, and the epidemic model is shown to boost the RF’s
performance.

� This is a baseline knowledge-informed learning framework for assessing public health interventions in
Botswana.
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Infectious diseases such as coronavirus disease 2019
(COVID-19) constitute a significant concern worldwide
due to their increasing prevalence, associated health risks,
and socioeconomic costs. The determinants of a given
infectious disease are complex, and they include but are
not limited to 1) environmental factors (i.e., weather and
climate) and 2) human behavioral characteristics (i.e.,
public mobility) and political factors such as government
policies and interventions. Previous studies have shown
that machine learning (ML) models1 and epidemic com-
partmental models2 formulated using deterministic dif-
ferential equations are the dominant tools for examining,
modeling, and analyzing the transmission of infectious
diseases.

An ongoing discourse on the mentioned paradigms
of modeling highlights the various viewpoints and
approaches for epidemiological studies. Although ML
models enable the extraction of insights from data,3 their

performance may be inconsistent4 when exposed to sto-
chasticity, scenarios of an unpredictable nature with data
distributions that change over time. This can result in
biases due to model drifts5 that can lead to poor general-
ization on new cases.6 Likewise, the capability of epi-
demic models is constrained to the problem of parameter
dimensions and estimation.2

Currently, discussions persist as to whether knowledge-
informed learning (KIL) is a viable avenue to bridge
the gap between ML and dynamic models—to inform
decision support systems for ML practitioners, policy
developers, and decision makers. KIL,7 also framed as
physics-informed ML (PIML),6 entails the synthesis of
multiple viewpoints, principles, and evidence to provide
informative priors for modeling. There is no standard
method to incorporate prior knowledge in ML.

This research aims to construct a random forest (RF)
ensemble8 informed by the susceptible infected recovery
(SIR) model,9 then test it by conducting a retrospective
study of the evolution of the COVID-19 disease. The
study objective is 2-fold: 1) to predict new infections
using variables that have greater associations to the state
of the function dictating the growth rate of COVID-19
cases and 2) to extract the information about the con-
structed model using variable importance10 and partial
dependence11 functions. The next section discusses the
related literature. The third section presents the metho-
dology to achieve the research aim and objectives. The
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fourth section presents the findings. The fifth section pre-
sents discussions, while the sixth section concludes.

Related Literature

Previous scholars have discussed various approaches of
KIL7 to improve ML models, and they revolve around
the use of biases in observations, inductions, and learn-
ing.6 Observational biases12 can be achieved by introdu-
cing data characterizing the underlying dynamic system
of interest into an ML model.6 The inductive bias
approach13 uses mathematical expressions to 1) adapt
variables (feature engineering) for data assimilation or
augmentation or 2) tailor the model’s structure to satisfy
certain physical principles, assumptions, constraints, and
boundary conditions.6 The approach of learning biases
implicitly enforces prior knowledge to impose ML con-
straints by properly penalizing loss functions.6

Common methods for training, testing, and validating
ML models include percentage splitting and cross-
validation using a loss function.14 Strategies for reducing
computational time include testing models using only a
subset of instances15 or via online ML using individual
instances on the fly.16 Meanwhile, ML models are
known to be prune to concept drifts, phenomena in
which relationships between dependent variables and
independent variables change over time due to data
drifts.5 The term data drift defines the changes in data
distributions (indicated by the model’s variables) over
time.17 As new data accumulate, the model may struggle
to maintain accurate predictions, leading to model drift-
ing (reduced performance).

There is not a one-size-fits-all consensus to guide the
sampling of data for ML; researchers use different split-
ting ratios.14 Moreover, the topic of hyperparameter tun-
ing to optimize loss functions continues to be a
longstanding subject in predictive modeling.18 Loss func-
tions are used to strike a balance between fitting the
training data accurately and avoiding model overfit-
ting.19 Chicco et al.20 claimed that the coefficient of
determination is the only informative metric in regres-
sion. To test this claim, this work examines the accuracy,
consistency, and interpretability of a default RF8 and an
informed RF (IRF) when exposed to data drifts and sto-
chasticity using standard loss functions, taking COVID-
19 as a case study (see Appendix 1).

Current PIML literature is focused on deep learning
models,6 while the scope of RF is less explored despite its
successful applications.21 To support this premise, the
following search string ‘‘TS = (COVID-19 and Random
Forest (RF)) and English (Languages)’’ was used to

extract related work from the Web of Science collections,
focusing on the RF applications in addressing COVID-
19. Only 3 of 8 publications22–24 met our criteria. We
also queried ScienceDirect using the following search
string: ‘‘TS = (COVID-19 and Random Forest) and
TS = (prediction or forecast) and TS = (regression),’’
focusing on English as a language, and retrieved 1 of 33
publications (see Table 1 and Table 4 in the Appendices).

The output from the search process supports Biau and
Scornet26 in that there is a lack of agreement regarding
the optimal parameters of the RF. For instance, Biau
and Scornet26 noted that the forest’s variance decreases
as the number of trees grows, while accurate predictions
are likely to be obtained by choosing a large number of
trees. Meanwhile, Dı́az-Uriarte and Alvarez de Andrés21

argued that the value for the number of trees is irrele-
vant. In terms of the number of variables tried at split
nodes of a tree, Dı́az-Uriarte and Alvarez de Andrés21

argued that it has a little impact on the performance of
the RF and that larger values may be associated with a
reduction in the RF’s predictive performance. Likewise,
Genuer et al.27 claimed that the default value is either
optimal or too small.

Bentéjac et al.28 compared the performance of the
XGBoost, LightGBM, CatBoost, and the RF on 28 dif-
ferent data sets using default and tuned settings. They
found that the differences in terms of generalization
accuracy of the configured versions was small. Bentéjac
et al.28 found that default versions of the RF and
CatBoost produced consistent and stable results com-
pared with their tuned counterparts. Szczepanek29 made
the same remark after comparing default settings for
XGBoost, LGBoost, CatBoost, and RF in forecasting
stream-flow in mountainous catchment. We chose to use
the RF since it has few arguments to tune and can per-
form well in both default and tuned settings,30 with the
following contribution:

� This work focuses on investigating and evaluating
the performance of a RF ensemble to allow a thor-
ough analysis and understanding of its behavior,
strengths, and limitations using real data. This is
expected to provide insights into its accuracy and
consistency under different time frames in the pres-
ence of data drifts and prior domain knowledge.

� We integrate the basic principles of observational
bias and induction bias to optimize loss functions
used to evaluate the default RF algorithm, showcas-
ing its performance in predicting COVID-19 cases in
the context of Botswana.

Thapelo et al. 3



� This analysis can inform technology transfer when
incorporating known principles to enhance interpret-
ability of ML.

Methodology

Data Collection and Understanding

The Google mobility indices used to indicate visits to
public places are31 1) retail and recreation, 2) grocery
and pharmacy stores, 3) transit stations, 4) parks and
outdoor spaces, 5) workplace visitors, and 6) residential.
The economic indices include 1) income support and 2)
debt and contract relief. Epidemiological indices are 1)
new COVID-19 cases, 2) smoothed new COVID-19 tests,
3) total COVID-19 cases, 4) effective reproduction rate
(R̂), 5) positive rate, 6) new COVID-19 deaths, 7) total
COVID-19 deaths, and 8) new vaccinations smoothed.
The government Stringency Index (SI) is used to quantify
the containment measures based on the Oxford COVID-
19 Government Response Tracker (OxCGRT).

The Containment and Health Index (CHI), adapted
from the SI, was used to aggregate the effectiveness of
containment measures and health regulations comprising
public information campaign, face coverings, school clos-
ing, workplace closures, cancellation of public events,
cancel public gatherings, restrictions on gathering size,
travel restrictions, international travel controls, close
public transport, restrictions on internal movement, stay-
at-home requirements, contact tracing, and vaccination
availability. To introduce observational biases to the RF
model, we use the effective reproductive rate R̂ from the
modified SIR model32 to argument the observational
data directly in the training phase as seen in Table 2.

Table 2 shows the variables used in this work; the
right-most column reports the number of missing values in
the data set. Missing values indicate that the event did not
occur or say the count is zero. The positive rate index has
79
906

’9% of missing values (from December 31, 2021, to
January 14, 2022; from March 30, 2022, to April 5, 2022;
and from May 19, 2022, to August 18, 2022). These 3
batches are squeezed between constant values, so we
replaced them using the last observation carry-forward
(LOCF) method.34 LOCF assumes that the most recent
observation gives a reasonable estimate for missing val-
ues.34,35 We examined the SI, R̂, new COVID-19 cases
(NCCs), and new COVID-19 deaths (NCDs) and found
that no events were recorded in Botswana before their
dates of observation; thus, we imputed them using zeros.14

Hence, we use a structured labeled data set
D=(X , Y ), with m= 906 instances (observations) com-
posed of n= 32 variables, where X denotes predictorsT
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(inputs) variables while Y denotes the target (output)
variable (i.e., NCCs), represented as

(xm, njym)=

x1, 1 � � � x1, n y1

x2, 1 � � � x2, n y2

..

. . .
. ..

. ..
.

xm, 1 � � � xm, n ym

0
BBBB@

1
CCCCAsuch that :

x 2 X , and y 2 Y :

ð1Þ

Informed Machine Learning

Data sampling. The RF is trained and validated on data
in a sequential order, with each time frame building upon
the previous one. The process of training, testing, and

validating the constructed RF model has 3 phases as
follows36:

� Training: The informed RF is trained on a partition
of labeled data set, of 2

3
of the observations

’66:67%ð Þ, in the training data set to learn the hid-
den patterns in data and adjust its internal para-
meters8 based on the loss functions.

� Testing: The model’s hyperparameters are fine-tuned
based on its performance on a separate testing data
set (out of bag), a 1

3
partition left out during training.8

This testing data set ’33:33%ð Þ helps to prevent
overfitting. Moreover, it also enables the adjustment
(tuning) of the model’s hyperparameters (arguments)
to optimize its performance.

Table 2 List of Variables Sourced from Multidomains, with the Time Frame of Observation and the Number of Missing Values

Variable Domain Source Time Span Type Missing

Retail and recreation (RRV) Mobility Google February 17, 2020, to August 10, 2022 Numeric 0

Grocery and pharmacy stores (GPSV) Mobility Google February 17, 2020, to August 10, 2022 Numeric 0

Transit stations (TSV) Mobility Google February 17, 2020, to August 10, 2022 Numeric 0

Parks and outdoor spaces (POSV) Mobility Google February 17, 2020, to August 10, 2022 Numeric 0

Workplace visitors (WV) Mobility Google February 17, 2020, to August 10, 2022 Numeric 0

Residential (RSV) Mobility Google February 17, 2020, to July 18, 2022 Numeric 0

School closures (SC) Policy OxCGRT February 17, 2020, to August 10, 2022 Factor 0

Workplace closures (WC) Policy OxCGRT February 17, 2020, to August 10, 2022 Factor 0

Close public transport (CPT) Policy OxCGRT February 17, 2020, to August 10, 2022 Factor 0

Restrictions on public gatherings (RPG) Policy OxCGRT February 17, 2020, to August 10, 2022 Factor 0

Face coverings (FC) Policy OxCGRT February 17, 2020, July 18, 2022 Factor 0

Public information campaigns (PIC) Policy OxCGRT February 17, 2020, to August 10, 2022 Factor 0

Public transport closures (PTC) Policy OxCGRT February 17, 2020, to August 10, 2022 Factor 0

Restrictions on internal movement (RIM) Policy OxCGRT February 17, 2020, to August 10, 2022 Factor 0

International travel controls (ITC) Policy OxCGRT February 17, 2020, to July 18, 2022 Factor 0

Testing policy (TP) Policy OxCGRT February 17, 2020, to August 10, 2022 Factor 0

Contact tracing (CT) Policy OxCGRT February 17, 2020, to August 10, 2022 Factor 0

Stay-home requirements (SHR) Policy OxCGRT February 17, 2020, to August 10, 2022 Factor 0

Vaccine availability (VA) Policy Rodés-Guirao

et al.33
February 17, 2020, to July 18, 2022 Factor 0

Containment and Health Index (CHI) Policy OxCGRT February 17, 2020, to August 10, 2022 Numeric 0

Stringency Index (SI) Policy OxCGRT March 30, 2020, to August 10, 2022 Numeric 0

Income support (IS) Economic WHO May 10, 2021, to August 10, 2022 Factor 0

Debt and contract relief (DCR) Economic WHO May 10, 2021, to July 18, 2022 Factor 0

Effective reproduction rate (R̂) Epidemiology Arroyo-Marioli

et al.32
June 30, 2020, to August 10, 2022 Numeric 0

Positive rate (PR) Epidemiology WHO April 10, 2020, to May 18, 2022 Numeric 79

New COVID-19 deaths (NCDs) Epidemiology WHO March 26, 2020, to August 10, 2022 Numeric 0

Total COVID-19 deaths (TCDs) Epidemiology WHO March 26, 2020, to August 10, 2022 Numeric 0

Smoothed new COVID-19 tests (SNCT) Epidemiology WHO April 10, 2020, to August 10, 2022 Numeric 0

Smoothed new vaccinations (SNV) Epidemiology WHO March 26, 2021, to May 18, 2022 Numeric 0

Total COVID-19 cases (TCCs) Epidemiology WHO March 31, 2020, to August 10, 2022 Numeric 0

New COVID-19 cases (NCCs) Epidemiology WHO March 30, 2020, to August 10, 2022 Numeric 0

OXCGRT, Oxford COVID-19 Government Response Tracker; WHO, World Health Organization.
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� Validation: The model is evaluated on a completely
separate (extra) data set that it has never encountered
before. This validation data set is optional14 to pro-
vide an unbiased assessment of the model’s perfor-
mance on new (unseen) data.

Mathematical statement. Our task is to build a regres-
sion f : X n ! R and predict y 2 R, where x 2 X n is a
matrix of n predictor variables, while y 2 Y is the target
variable of interest (i.e., NCCs). The following formula-
tion was used for modeling: [y ; X]. A number of ML
algorithms such as artificial neural networks (ANN), sup-
port vector machines (SVM), naive Bayes, and trees can
be used for predictive modeling. Our data set (see Table
2) has portion of the variables 53:6%ð Þ classified as a sig-
nificat, and only 43% are numeric. Tree-based algorithms
are ideal for this task since they can handle both numeric
and categorical (factors) variables (features) without addi-
tional data transformation.14

Random forest. A RF algorithm is one of the widely
used ensemble models in practice.8,14,26,37 The RF ensem-
ble is a decision tree (DT)–based model aimed at improv-
ing model accuracy and robustness.14 A DT uses a tree
like structure,38 in which each node denotes a decision
based on the values of xi. Basically, a DT is an interpre-
table model that recursively partitions the set x using a
sequence of binary decisions based on ‘‘if-then-else’’
rules, as seen in Figure 1.

DTs are built recursively by splitting x at each test
node A based on the chosen variable x 2 X , its value,
and the splitting criterion. The value of x is used to make
a decision at each node A, and each leaf node represents
a predicted output �y= f (x, y). The DT regression imple-
ments Eq. 2 to calculate numeric values of �y for each
instance in the set of predictors x by summing up all the
numeric values V assigned to the leaf nodes, as deter-
mined by the DT rules (see Song and Lu38):

�y= f (x, y)=
XJ

j= 1

Vj1(x 2 Aj), ð2Þ

where �y is the predicted value given xm, x is the input
instance to use in predictions, J is the total number of
leaf nodes Aj

� �
in the DT, Vj is the value assigned to Aj,

and 11(x 2 Aj) is an indicator function (returns 1 if x 2 Aj

and 0 otherwise). Building on DTs, the RF8 uses boot-
strapping (sampling with replacement) to build a DT
from each bootstrapped sample D

�. The RF introduces
randomness by considering only a subset of variables at

each node Aj when building the tree. Predictions from K

trees are aggregated into a single composite score by
averaging using the DT regression8,26 as

ŷ= f̂ (x, y)=K
�1
XK
k = 1

fk(K,D�k ,Dm, n,vk ,fk): ð3Þ

Here, D
� denotes bootstrap samples created from the

original data set Dm, n, ŷ= f̂ ( � ) is the predicted value by
the ensemble, K is the number of trees, fk( � ) is the pre-
dicted value for x based on the kth tree, v=Mtry is the
number of randomly chosen variables at each node, and
f= nodeSize is the minimum number of samples
required to create a split at a node. Theoretically, the
narration of the RF method is less conclusive, as noted
in Biau and Scornet26; little is known about the mathe-
matical properties of the method. For that reason, we
focus only on the RF ensemble (in its default and tuned
settings) to examine its hyperparameters with and with-
out the presence of outputs from the SIR model dis-
cussed in the next section.

We chose the RF for several reasons: 1) reproducibil-
ity, it has few arguments to tune26 and is easy to repro-
duce; 2) uncertainty quantification, as an ensemble, a RF
uses aggregations to reduce overfitting, thus improving
generalization performance8; 3) scalability, it also scales
well with varying sample sizes and high-dimensional
spaces,8 and robustness, it is a nonparametric model and
hence not sensitive to assumptions about data distribu-
tions37,39; and 4) model interpretability, lost in the RF
compared with DT,14 we circumvented this problem
using post hoc interpretations such as variable

Figure 1 A tree structure with the root node on the left,
branches in the middle, and leaf nodes on the right. Every
instance in the training data set must end up in 1 and only 1
leaf node. Leaf nodes are collectors of instances matching the
decision tree rules.

6 MDM Policy & Practice 8(2)



importance37 and partial dependence functions.11 The
SIR model is deployed to inform the RF ensemble.

SIR model. The SIR model is used to understand the
dynamics of infectious diseases in a population of size N

composed of 3 compartments: S, I , and R, such that
N = S(t)+ I(t)+R(t)40:

S(t +Dt)= S(t)� b � Dt � N�1 � S(t) � I(t) j 0\b\1,

ð4aÞ

I(t+Dt)= I(t)+b � Dt � N�1 � S(t)�
I(t)� g � Dt � I(t) j 0\g\1,

ð4bÞ

R(t+Dt)=R(t)+ g � Dt � I(t): ð4cÞ

where S is a compartment of susceptible individuals
probable of being infected at time t and I denotes infec-
tious individuals. Rt are removed individuals from the I

compartment (those who have gained immunity or have
passed away),32Dt is a small interval of time t, b � Dt is
the probability that an infected can infect a susceptible,
and g � Dt is the probability of an infected to be removed
from the It group in Dt time. Taking differences of these
equations leads to a system of differential equations:

dS(t)

dt
= � b � S(t) � I(t), ð5aÞ

dI(t)

dt
=b � S(t) � I(t)� g � I(t), ð5bÞ

dR(t)

dt
= g � I(t): ð5cÞ

We extend the SIR model to include vaccinations (V)
and hospitalizations (H) to get 5 compartments
C = S, I ,R,H ,Vð Þ and 10 parameters p= l, b,m1,ð

m2, n, h, z, g1, g2, g3Þ, where l are the recruits for test-
ing, m1 is the natural deaths, m2 is the death rate of hos-
pitalized people, n is the vaccination rate, z is the death
rate due to vaccine complications, and g1 and g2 are the
recovery rates due to natural immunity and vaccinations,
respectively, whereas g3 is the recovering rate of hospita-
lized COVID-19 patients as:

dS(t)

dt
= l� b � S(t) � I(t)� (n1 +m1) � S(t), ð6aÞ

dI(t)

dt
=b � S(t) � I(t)� (h+ g1 + n2 +m2) � I(t), ð6bÞ

dH(t)

dt
= h � I(t)� (g3 +m2 + n3) � H(t), ð6cÞ

dV (t)

dt
= n1S(t)+ n2 � I(t)+ n3 � H(t)� (g2 + z+m1) � V (t),

ð6dÞ

dR(t)

dt
= g1 � I(t)+ g2 � V (t)+ g3 � H(t)� m1 � R: ð6eÞ

where l denotes tested people. Deaths of people in S, V ,
and R are assumed to be natural, while deaths of people
in I and H are assumed to be caused by COVID-19. Data
on natural deaths are scarce, so we assume that removed
people are no longer infectious nor susceptible; thus, m1

will be ignored when modeling. Figure 2a and b show the
SIR and SIRVH models.

Effective reproductive rate (R̂). This is an estimate of the
reproduction rate of COVID-1932 assuming the trans-
mission rate bt varies over time depending on factors
such as COVID-19 interventions and public responses.
The basic reproduction rate (average number of individ-
uals infected by a single infected individual when

A

B

Figure 2 The basic susceptible infectious removed (SIR)
model and its modification to accommodate vaccinations and
hospitalizations. (a) Basic SIR model. (b) Adapted epidemic
disease model (SIRVH).
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everyone else is susceptible) is given as R0 = g�1 � bt

such that Rt =R0 � btN
�1 � St�1. The plug-in estimator

for R̂ at time t+Dt is given in Arroyo-Marioli et al.32 as

R̂(t+Dt)= 1+ g�1ĝr½I(t+Dt)�; ð7Þ

where ĝr½I(t +Dt)� is an estimate of the daily growth rate
gr½I( � )� in the number of infected individuals at time
t+Dt:

gr½I(t+Dt)�[½I(t+Dt)��1 � ½I(t +Dt)� I(t)�=
g � ½R(t +Dt)� 1�:

ð8Þ

Using Eq. 6c, we solve b � S(t) � I(t)� g � I(t)= 0 for b as
b= S(t)�1 � g. This is achieved by following Arroyo-
Marioli et al.,32 taking NCC as the daily cases, It as the
total number of infectious cases at time t = t0, and
g�1 = 7 days, then rearrange Eq. 4b:

I(t+Dt)= I(t)+b � Dt � N�1 � S(t) � I(t)� g�
Dt � I(t)= (1� g � Dt) � I(t)+NCC(t+Dt):

ð9Þ

Informed RF Model

Embedding physics principles in to the RF. Our final mul-
tidomain data set contains observations for the period
from February 17, 2020, to August 10, 2022, with 32
variables (31 independent and 1 dependent) of which
15
32

’46:9% are categorical (factors), 16
32

’50% are
numeric, and 1

32
’3:1% for date. We set the problem

under the context of concept drift. Our aim is to under-
stand the spread of COVID-19 disease by examining

changes in Y—the confirmed NCCs with respect to X

(the predictors). Algebraic equations used for data aug-
mentations are described as follows:

1. The SI is a mean score41 computed using the
adopted COVID-19 policies R of dimension k on a
0� 100 scale:

SI = k�1
Xk

i= 1

Ri: ð10Þ

2. The positive rate (PR) is the proportion of con-
ducted COVID-19 tests (SNCT) that yielded a posi-
tive (NCCs):

PositiveRate=
NCCs

SNCT
: ð11Þ

The final data set D also includes the effective reproduc-
tive rate from the SIRVH model, Google mobility data,
government policies (NI and NPI), and their averages (SI
and CHI) to train the RF ensemble versions fk from Eq.
3 as shown in Figure 3.

Model Evaluation Using Loss Functions

To measure the average magnitude of the differences
between the predicted and actual values, we used the
coefficient of determination R2ð Þ, mean absolute error
(MAE), symmetric mean absolute percentage error
(SMAPE), the mean squared error (MSE)42 and the root

Figure 3 Framework for informed RF using outputs from the SIR model and observed data to predict COVID-19 cases.
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mean squared error (RMSE). The RMSE measures the
average magnitude of the errors as:

RMSE=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�1 �

Xm

i= 1

½yi � f (xi, yi)�2
s

: ð12Þ

The MAPE20 measures the average percentage difference
between the predicted values and actual values as:

MAPE=m�1
Xm

i= 1

yi � f (xi, yi)

f (xi, yi)

����
���� � 100%: ð13Þ

The SMAPE20,43 is a scale-invariant metric of the aver-
age percentage difference between predicted and actual
values:

SMAPE=m�1
Xm

i= 1

yi � f (xi, yi)j j
2�1( yij j+ f (xi, yi)j j) � 100%: ð14Þ

We use the R2 to measure44 the percentage of the var-
iance of the target variable (NCCs) that is explained by
the RF as

R2 = 1�
Pm

i= 1 ½yi � f (xi, yi)�2Pm
i= 1 ½~yi � f (xi, yi)�2

: ð15Þ

In this context, m is the number of instances, f (xi, yi) is
the predicted NCCs, yi is the actual NCCs, while ~y in
Eq. 15 is the mean of the actual values y. The values of
MSE, RMSE, MAPE, and MAE are bounded below by
0 and bounded upper by +‘, where 0 indicates a perfect
fit,20 while +‘ suggest a larger discrepancy between the
predicted values and the actual values. The SMAPE
metric is bounded below by 0, its upper bound is 200%
to imply that the actual values and predictions are of
opposite sign.20 R2 values range between �‘ and 1,
where �‘ is the worst-case scenario, R2 = 0 means that
the model explains none of the variance of the target
variable, while 1 indicates that the model perfectly
explains the variability.

Post Hoc Interpretation

We also used post hoc interpretation to analyze the
results generated by the proposed informed RF ensemble
as follows.

Variable importance (VI) functions. We used the vip
package10 as an interface to the model-agnostic
approach of quantifying how important a given variable
xi is to the dependent variable y= f (x, � ), under the con-
dition that the variable xi attains a certain value
w(xi)=V 2 <, where w is the function operating on a
given predictor variable. The variable importance of the
dependent variable is the standard deviation of the func-
tion qw : < ! <,45 denoted by Qw 2 <:

Qw =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½qw(w(xi))�

p
=

ð
<
(qw(y)� �qw)

2
Pr(w(xi)= y)dy

� �1
2

,

ð16Þ

where: qw =E(f (X )jw(xi)= y), �qw =E½qw(w(xi))�=Ð
< qw(y)Pr(w(xi)= y)dy. Thus, the variable importance
function determines the importance of a given variable xi

as the variability of the corresponding expected score
qw.

10,45

Partial dependence (PD) function. The partial depen-
dence of f̂ on predictors xs � X is defined11,46 as:

f̂s(xs)=Exc
s

f (fxs, x
c
sg, y)

� 	
=

ð
f (fxs, x

c
sg, y)p(xc

s)d(x
c
s);

ð17Þ

where xc
s � x of dimension l\n is the complement of

xsj xs [ xc
s = x and p xc

s

� �
is the marginal probability den-

sity of the variables in xc,
46 and d(xc

s) is a differential
function that allows us to break the dependence function
into small increments whose contribution are to be con-
sidered to the overall integration process. In other words,
the PD function shows the marginal effect of 1 or more
chosen predictors in the set xs on the model’s output ŷ. It
is computed by taking the expectation of ŷ with respect
to xc

s , by varying values of xs 2 X while fixing other vari-
ables in xc

s and observing the estimate ŷ= f (fxs, x
c
sg, y).

According to Friedman,46 letting p(xs, x
c
s)= p(x) to be

the joint probability density over of all predictor vari-
ables in x gives:

p xc
s

� �
=

ð
p(xs, x

c
s)dxs: ð18Þ

Although p(xc
s) is unknown, the PD function in Eq. 17

can be approximated using Monte Carlo47 for a single
tree46 as
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�fs(xs, y)=m�1
Xm

i= 1

f (fxs, x
c
sg, y); ð19Þ

where m is the number of instances in the bootstrapped
sample D�i such that f̂s is the average over the K trees for
the RF:

f̂s(xs, y)=K�1
XK

i= 1

�fk(fxs, x
c
sg, y): ð20Þ

Friedman46 argued that taking the marginal distribution
instead of the conditional distribution preserves the addi-
tive structure in f̂ (x, y), such that Eq. 20 is able to recover
the components of an additive function up to a certain
constant48:

f (x, y)= fs(xs, y)+ fc(x
c
s , y): ð21Þ

Correlation Analysis

COVID-19 disease exhibits temporal dynamics in which
interventions and their impacts change over time. Thus,
we divided the data into batches of differing time frames
and then used the Spearman’s rank correlation coeffi-
cient49 to identify the strength and direction of the non-
linear relationship between numerical variables based on
the ranks of the data points as:

r= 1� 6
P

q2
i

m(m2 � 1)
j � 1� r� 1; ð22Þ

where qi = rank(x1)� rank(x2) is the difference between
the ranks of m paired variables (x1, x2) for i= 1, . . . ,m.
In this context, r= 1 signifies a perfect monotonically
increasing relationship; r= �1 depicts a perfect mono-
tonically decreasing relationship, whereas r= 0 signifies
that the variables considered are not related in a consis-
tent monotonic manner. As a rule of thumb, redundant
variables have correlation values greater or smaller than
a threshold e such that e=60:95.14 In this work, we use
the correlation matrix to gain insights on the nonlinear
relationships between the predictors and target variable.

Our design method makes use of a dynamic rolling
window approach, in which the RF ensemble is incre-
mentally updated with new modeling data and para-
meters as the time frame progresses. A window is
basically a set of labeled instances defining a context of
interest. In our COVID-19 case, the rolling window
approach can be considered a form of cross-validation,
in which the RF ensemble is trained and validated on

different subsets (i.e., by adding or dropping data) from
different time frames.

Our tailored algorithm embodies the following ideas
from5 1) modification of the concept description in
response to changes in the contents of the window, 2)
decision on when and how many old instances to include
or delete from the window, and 3) assessment of the relative
merits of concept hypothesis. We refer to our strategy as
sequential learning with cross-validation (SLCV). The
SLCV is useful when evaluating the model’s performance
on temporal (time-dependent) data over time. It allows ML
practitioners to manually dissect, simulate, and examine
how the model would perform when trained and adapted
to new data. We use human feedback and annotations to
identify the occurrences of context change in our data.

This research methodology received no external
funding.

Results

The main question was whether KIL is a viable avenue
for bridging the gap between pure ML (i.e., RF) models
and dynamic epidemic models (i.e., SIRVH). This is vital
to inform decision support systems for ML practitioners,
policy developers, and decision makers. The objective
was to inform the RF using outputs from the SIRVH
model (i.e., the effective reproductive rate) then examine
the appropriate loss function to assess the IRF model.
This section showcases the performance of the IRF on 2
random data frames; later on, the process is generalized
to other data frames.

A data set of m instances was divided into 2 sets36:
a training set and a validation set, based on the pre-
determined splitting ratios: DTrainingjDValidation

� �
=

{ 75%j25%½ � or 80%j20%½ �, 85%j15%½ �, 90%j10%½ �}.
Two-thirds of the observations were used for training,
and one-third of the observations in the training data
were left out of the bootstrap sample to serve as a test
set (out of bag).8 Table 6 shows the results of using 0.75,
that is, 75% for training and testing (i.e., D1 =

2
3
� m and

D2 =
1
3
� m) and 25% for validation D3ð Þ using data

from February 17, 2020, to August 10, 2020, where D1 is
the training set, D2 is the testing set, and D3 is the valida-
tion set. The IRF attained R2 = 0:7, RMSE= 12:6, and
MAE= 5 in the training phase.

Figure 4 shows that the IRF attained R2 = 0:2,
RMSE= 21:3, and MAE= 8:8 in the validation phase.
Figure 5 shows the results of using 0.75 as a splitting
ratio on data from June 19, 2021, to December 31, 2021.
Figure 5 shows that the IRF attained R2 = 0:9,
RMSE= 552:8, and MAE= 298:4 on training and
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R2 = 0:9, RMSE= 575:1, and MAE= 334:3 on valida-
tion. It can be noted that the variability of the predic-
tions is higher on the first data frame (see Figure 4) than
on the second one (see Figure 5).

Using the evidence in Figures 4 and 5, it is impossible
to tell whether PIML (i.e., the effective reproductive rate)
can improve the performance of a default RF. To further
interpret the model outputs, the partial dependence

Figure 4 Outputs of the informed random forest on training and validation using the data from February 17, 2020, to August
10, 2020.

Figure 5 Outputs of the informed random forest on training and validation using data from June 19, 2021, to December 31, 2021.
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functions are next used to depict relationships between
predictors and the target variable, and the process is later
on generalized to various data frames.

Dependence of COVID-19 Cases on Adopted
Policies and Public Mobility Patterns

Figures 6 and 7 show the top 6 predictor variables of
NCCs for 2 randomly selected batches (February 17,
2020, to August 10, 2020 and June 19, 2021, to December
31, 2021). The black line is the PDP trend, which illus-
trates a fluctuating monotonic relationship between the
predictors and NCCs. The blue line shows the smoothed
relationship between the predictor and the NCCs. The
shaded region around the blue line represents confidence
intervals showing the uncertainty in the partial depen-
dence of the predicted NCCs for a particular predictor; a
wider shaded region indicates more uncertainty.

Figure 6 reveals that the RF predicts on average low
numbers of NCCs when high stringency measures such
as lockdown (indicated by negative values) were adopted
to restrict visits to public places like groceries and phar-
macy stores (GPSV), parks and outdoor spaces (POSV),
retail and recreation spaces (RRV), and transit stations
(TSV). However, the number of predicted NCCs

increased when restrictions on public mobility were
relaxed. Likewise, the more COVID-19 tests (SNCT)
were conducted, the more infectious individuals were
recorded, which makes sense. Not surprisingly, the num-
ber of new cases (NCCs) predicted by the RF increased
as the total number of infected individuals (TCCs)
increased.

Figure 7 shows that a decrease in the values for mobi-
lity indices (i.e., visits to grocery and pharmacy store
[GPSV], transit stations [TSV], retail and recreation
[RRV] is associated with a decrease in the predicted
NCCs, but later on, the predicted NCCs increase as these
indices increase, and these agree with the reproductive
rate (R), as also illustrated in Appendix 3.

Generalization of the Informed RF
to Different Time Frames

Figure 8 shows a visual and informative way to intui-
tively assess the performance of the RF on validation
using different time frames. Results show that the RF
has captured a significant portion of the underlying rela-
tionship between the predictors and the target variable
(NCCs). The closeness of the black points to the red line
suggests that the IRF’s predictions are accurate and

Figure 6 The dependency of predicted new COVID-19 cases (NCCs) on grocery and pharmacy (GPSV), parks and outdoor
spaces (POSV), retail and recreation, COVID-19 tests (SNCT), total COVID-19 cases (TCCs), and transit stations (TSV).
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consistent across the entire time span of the data, with
the IRF attaining R2 values greater than or equal to 0.7
(except for batch 2). This indicates that the IRF’s predic-
tions are very close to the true values; thus, the IRF is a
good fit for our data.

Thus, to assess the overall fit of the RF model, we
focused on the R2 and MAE metrics using 4 different
splitting ratios (i.e., 0.75, 0.80, 0.85, and 0.95). To select
the optimal splitting ratio, we used the percentage hits
gained by the default RF per data batch. A hit is defined
as a prediction with a score that is greater than or equal
to a given threshold. We set our threshold as 0.714 on a
scale from 0 to 1, thus penalizing R2� 0:7. The model
producing more hits is considered better.

Table 3 shows that the default RF performed better
when using 0.75 as a splitting ratio by yielding 93%;
however, using 0.90 as a splitting ratio yielded the lowest
performance (61%). In general, the default RF performs
better (84%) when including the effective reproductive
rate R̂

� �
from the SIRVH model, compared with (75%)

when this variable R̂
� �

is not included in the data set.
This information indicates that the PIML strategy
applied to the RF ensemble helped to improve its predic-
tive performance. To further interpret outputs generated
by the IRF, we provide a visual assessment of the

impacts of policies and public mobility responses on the
predictability of new COVID-19 cases using variable
importance functions (see the next section).

Impact of Adopted Policies and Public Mobility
Patterns on COVID-19 Cases

Figure 9 shows that the stay-home requirements (SHR)
variable, having a variable importance value of 8:75, is
the most important when predicting new cases (NCCs)
between February 17, 2020, and June 19, 2020. Thus,
changes in SHR have the most significant impact on the
RF’s predictions. The second variable is total COVID-19
cases (TCCs) with 6:28, followed by positive rate (PR)
with 5:31. Meanwhile, closing public transport (CPT)
with 3:76 and parks and outdoor spaces (POSV) with
3:13 were ranked in the 9th and 10th positions, respec-
tively. Likewise, POSV was the most important variable
in the second batch (February 17, 2020, and June 19,
2020) with 5:72, followed by smoothed new COVID-19
tests (SNCT) with 5.23 and transit station visits (TSV)
with 4:99, while PR with 3:73 and total COVID-19
deaths (TCDs) with 2:25 were ranked 9th and 10th,
resepectively.

Figure 7 The dependency of the predicted new COVID-19 cases on visits to grocery and pharmacy (GPSV), new COVID-19
deaths (NCDs), effective reproductive number (R), residential, retail and recreation (RRV), and transit stations (TSV).
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The COVID-19 deaths (NCDs) variable is a strong
predictor for NCCs from batch 3 to 14. The prominence
of NCDs in these batches suggests that it may contain
valuable information for predicting NCCs during these

time frames. However, looking at Table 10 and 11 are in
the Appendices, we see that a number of COVID-19
waves occurred in these time frames, which were also
accompanied by many COVID-19 deaths, and this

Figure 8 Report on the outputs of the informed random forest model on the validation data using the selected 14 data batches.

Table 3 Aggregated Results of the Random Forest (K=500, v= 10, f= 5) with and without the Effective Reproductive
Rate R̂

� �
Splitting Ratio Without R̂ With R̂ Overall Performance Ranking

0.75 93% 93% 93% 1
0.80 79% 93% 86% 2
0.85 71% 86% 79% 3
0.90 57% 64% 61% 4
Overall performance 75% 84%
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inflated other variables. The effective reproductive rate
R̂
� �

was among the top 10 predictors except in batches
1, 5, 8, 10, and 11. It is important to note that variable

importance scores are based on the correlation between
the predictors and the target variable (NCCs) and that
correlation does not imply causation. Moreover, these

Figure 9 Importance of variables on predicting new COVID-19 cases (NCCs) with a random forest.
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scores do not tell us about the impact of each predictor
on NCCs; for that, we used the partial dependence
functions.

Discussion

We have discussed a basic yet powerful approach of
incorporating prior knowledge into a data-driven model.
This approach 1) can be instantiated using any super-
vised ML algorithm. 2) has a post hoc phase that takes
into account the effect of each predictor variable on the
dependent variable (NCCs) in the model, 3) is consistent
and uses the same interpretation regardless of the time
frame it is exposed to, and 4) has the potential to help
interpret nonlinear interaction effects in the presence of
data drifts and outliers. In the end, we built an informed
RF to predict the number of new COVID-19 cases for a
given location (i.e., Botswana). We chose the RF model
due to its ability to handle outliers8,14 that may arise due
to novel data drifts.

The approach used so far involves a dynamic and
iterative process of training, testing, and validating the
RF ensemble using the data sets D1, D2, and D3, respec-
tively, over time. We fix the starting date, increasing time
horizons, and moving the starting or final point into the
future. Moving these points into the future implies that
we are periodically updating the RF ensemble with
unseen data streams, which can be of a different distribu-
tion. This technique helps the model in learning relation-
ships within the data, allowing it to make predictions
based on relevant data. This approach has potential to
aid in assessing how well the RF generalizes to unseen
data streams and whether it provides accurate predic-
tions in the presence of data drifts.

Research Contribution

We proposed a reproducible framework for KIL that
integrates ML and epidemic model outputs to examine
government responses and public responses. This work
extends the existing evidence on epidemiology by addres-
sing both prediction and inferences using observational
biases (i.e., multiple data sources) and induction biases
(feature engineering to generate variables such as SI,
CHI, and PR) for data aggregation. Following the evi-
dence in YeSx_Ilkanat,36 we note that the default RF per-
forms well in predicting COVID-19 cases with an average
of 75%. Using outputs from the SIRVH model (i.e., R̂)
significantly improved the performance of the default RF
to obtain an average performance of 84%, clearly show-
ing the benefits of KIL.

Besides confirming the power of KIL7 in boosting a
default RF ensemble, the steps taken in this work can be
packaged into a reproducible framework to help current
and future users of ML in identifying appropriate ways
to use prior knowledge in mitigating ML challenges (i.e.,
handling noisy data, missing data, and insuffı̈cient data)
for policy analysis and assessment.

Figure 7 shows that between February 17, 2020, and
August 10, 2020, a decrease in mobility indices (i.e., visits
to grocery and pharmacy store [GPSV], transit stations
[TSV], and retail and recreation [RRV]) was associated
with a decrease in the predicted NCCs, but later on, the
predicted NCCs increased as these indices increased. The
same applies to time period between June 19, 2021, and
December 31, 2021, during which an increase in the val-
ues for mobility indices (i.e., visits to transit stations and
residential, retail, and recreation, see Figure 11; parks
and outdoor spaces, see Figure 10) was associated with
an increase in the predicted NCCs. This can be attrib-
uted to unpredictable public health measures and public
responses.

In terms of previous published work on the examina-
tion of adopted government policies and their impacts on
public mobility and COVID-19 cases, our findings corro-
borate studies from China,50 South Korea,51 and the
United States,52 which reported that stringent COVID-
19 policies and mass vaccination campaigns reduced the
number of daily COVID-19 new cases and deaths. Such
hypotheses are also made for populated countries such as
Brazil, China, India, and the United States53 as well as
for low- and middle-income countries (Botswana, India,
Jamaica, Mozambique, Namibia, and Ukraine).54 This
work extends the study by Lane et al.54 by exploring
analyses of up to 906 (they used 100) days from the onset
of COVID-19.

This study contributes to ongoing debates on the
effect of parameter tuning or estimation in the context of
RF. Bentéjac et al.28 compared the performance of the
XGBoost, LightGBM, CatBoost, and the RF on 28 dif-
ferent data sets using default and tuned settings and
found that default versions of the RF and CatBoost gen-
erated consistent and stable results compared with their
tuned counterparts. Szczepanek29 made the same claim
after comparing default settings for XGBoost, LGBoost,
CatBoost, and RF in forecasting daily stream flow in
mountainous catchment. This study confirms the case of
a default RF.

The use of MSE, RMSE, and MAPE seems to be less
informative when the model is exposed to data drifts
(COVID-19 waves). In our case, the RMSE can range
from 0.3 to as large as 3075.1 (see Table 12 in the
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Appendices), indicating that data drifts and outliers have
a significant impact on RMSE.14,20 Compared with
RMSE, the MAE showed to be more robust to outliers,
with values ranging between 0.2 and 834.5 (see Table 12
in the Appendices). We believe that MAE and R2 are
more informative and robust to data drifts.

Chicco et al.20 argued that the MSE, RMSE, MAE,
and MAPE are unsuitable for regression analysis.55

Prior studies suggested the use of R2 because ‘‘it consid-
ers the distribution of all the ground truth values, and
produces a high score only if the model correctly predicts
most of the actual values.’’20(P. 17) To corroborate such
claims, we suggest that R2 is ideal for evaluating the per-
formance of the RF since both R2 and the RF do not
require any data transformations.20 This results in a
model that is quick to deploy, guided by prior knowl-
edge, and has evidence to inform policy and decision
making in emergency responses.

Lessons Learnt

There is no universal approach to best develop an
informed model that is interpretable and efficacious.
Different tasks require different approaches. The best
strategy might vary across problems, and at times one
needs to integrate different actors, tools, methods, and
techniques. When fitting KIML models to data contain-
ing data drifts, it is essential to use specific expertise
(domain knowledge) to inform the choice of appropriate
data (observational bias), model structures (induction
bias), and the choice and even modification of loss func-
tions (learning bias) to enable model assessment and
interpretation (see the ‘‘Related Literature’’ section).

Research Implications

� This work shows an efficacious way to combine epi-
demic model outputs with RF to accurately forecast
the complex spatiotemporal dynamics of COVID-19
while capturing key model properties such as consis-
tency, accuracy, and interpretability.

� The study contributes to health care by offering
insights into relationships between the indices derived
based on policies, public mobility, epidemiology, and
economic interventions during a pandemic. It pro-
vides evidence-based information on the effectiveness
of different interventions in reducing the spread of
COVID-19 at a national level.

� The integration of ML (i.e., RF) and epidemic (i.e.,
SIRVH) models to examine COVID-19 interventions
can contribute to knowledge and technology transfer

from research into practice. This can enhance colla-
boration between ML researchers, health care provi-
ders, and policy makers to develop decision support
systems for infectious diseases.56

Research Limitations

� The data used is an aggregation of indices from mul-
tiple sources, making it difficult to pinpoint data for
specific locations (i.e., towns, villages, or districts).
Moreover, we used only Google mobility data
because they are openly available, making other
potential sources to be ignored due to data access
implications beyond the researchers’ control. This is
a challenge that may lead to selection bias, a scenario
in which certain locations are overrepresented or
underrepresented.

� We used only the RF model for predictions; other
ML models of deep learning could be used to enable
comparisons.

� This work is limited to the batch approach of build-
ing RF models in an offline fashion (i.e., using per-
centage splitting). The proposed IRF uses raw data
as they are, which might not accommodate direct
integration and comparison with ML models such as
ANN and SVM, which require additional data trans-
formation. Likewise, the consolidated information is
from public documents, such as government gazettes
reporting on the adopted policies; links to the sources
could be modified by the time of publication. Finally,
the domain knowledge was fuzzy, hence limiting the
analyses for inferences. To compensate for this lim-
itation, we collected the data from various sources to
complement the extracted evidence.

Generalization, Reliability, and Validity

We used historical data comprising government strin-
gency policies, public mobility indices, economic indices,
and epidemiological priors. The distributions of the cho-
sen data sets differ due to evolving factors (i.e., strin-
gency policies and human behavioral changes). To assess
external validity, we examined whether a default RF and
an IRF can effectively predict the number of COVID-19
cases of different time frames. Specifically, we examined
whether the predictions generated by the RF model
remain accurate and consistent when applied to shorter
and longer time series with different data distributions.

This study showed that both the default RF and the
IRF can accurately and consistently capture variations
and trends specific to selected data batches of time series

Thapelo et al. 17



with data drifts and outliers (see Figure 8). These findings
can be generalized and applied to other domains such as
weather forecasting and financial markets, in which the
data distributions are characterised by stochasticity.

Conclusions

This study proposed an informed learning approach that
integrates ML with an epidemic model to accurately
depict, analyze, and infer the dynamics of infectious dis-
eases. For that, we used a case study of COVID-19 dis-
ease, incorporating prior knowledge on epidemic
modeling into a default RF using known assumptions,
mathematical expressions, and equations. We used mul-
tidisciplinary indicators that include epidemiological
indices, government policies, public mobility, and eco-
nomic indicators to predict the number of COVID-19
cases. We used the effective reproductive rate to inform
the RF and compare it with the default RF. We assessed
the models to test and validate their feasibility, predict-
ability, and consistency in the presence of data drifts.
Experimental results revealed that both the default and
IRF generate accurate and effective results that are con-
sistent in capturing the hidden nonlinear relationships in
the presence of stochasticity (i.e., COVID-19 waves).
Interestingly, our approach can be easily transferred
from research into practice without background knowl-
edge on numerical analysis (i.e., stability conditions) and
mathematical optimization. However, the proposed
approach needs some technical knowledge of program-
ming and detailed awareness of the functions to process
fuzzy data for implementation of the appropriate models
using available packages or libraries. This approach can
be extended to perform parameter estimation of com-
partmental models for related infectious diseases. The
proposed IRF to analyze and forecast time series pro-
vides extracts with potential to improve preparedness
and response strategies to health outbreaks. Further
investigations are needed (i.e., using transformed data
and other ML models, using data from different coun-
tries) to strengthen the reliability and validity of this
study. Most importantly, this work seeks to motivate
multidomain collaboration to inform continuous devel-
opment of ML-based decision support systems for track-
ing, monitoring, and assessing health outbreaks and
their interventions.
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