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Parkinson’s disease (PD) is a multifactorial disorder characterized by progressively
debilitating dopaminergic neurodegeneration in the substantia nigra and the striatum,
along with various metabolic dysfunctions and molecular abnormalities. Metabolomics
is an emerging study and has been demonstrated to play important roles in describing
complex human diseases by integrating endogenous and exogenous sources of
alterations. Recently, an increasing amount of research has shown that metabolomics
profiling holds great promise in providing unique insights into molecular pathogenesis
and could be helpful in identifying candidate biomarkers for clinical detection and
therapies of PD. In this review, we briefly summarize recent findings and analyze
the application of molecular metabolomics in familial and sporadic PD from genetic
mutations, mitochondrial dysfunction, and dysbacteriosis. We also review metabolic
biomarkers to assess the functional stage and improve therapeutic strategies to
postpone or hinder the disease progression.
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INTRODUCTION

As the second most common chronic neurodegenerative disorder after Alzheimer’s disease,
Parkinson’s disease (PD) is a multisystemic disease with multiple mechanisms and neurochemical
features, affecting around >2% of all persons above 65 years of age and >4% of all persons over
the age of 80 (GBD 2015 Neurological Disorders Collaborator Group, 2017; Santos Garcia et al.,
2019; Xu et al., 2019). E Ray Dorsey et al. make an important point about the global burden of
PD, with the number of affected individuals having risen from 2.5 million in 1990 to 6.1 million
in 2016, with projections that by 2050 the number of PD patients will be at 12 million (GBD
2016 Parkinson’s Disease Collaborators, 2018). From an etiological perspective, the two hallmarks
and indicators of a definite diagnosis of PD are the deterioration of dopaminergic neurons and
the accumulation of intracytoplasmic protein α-Synuclein (α-Syn), called Lewy bodies, in the
substantia nigra region of the brain (Spillantini et al., 1997; Spillantini and Goedert, 2018). They
are mainly relevant to various neuropathological insults, such as genetic mutants (Kim and Alcalay,
2017), oxidative stress (Puspita et al., 2017), apoptosis, neuroinflammation (De Virgilio et al.,
2016; Rocha et al., 2018), mitochondrial dysfunction (Bose and Beal, 2016), disrupting intercellular
communication (Hou et al., 2019), endocrine disorders (De Pablo-Fernández et al., 2017), and
inhibition of aberrant protein degradation pathways (Tofaris et al., 2001; Spencer et al., 2014;
Sugeno et al., 2014). The α-Syn is linked to PD pathology, which possesses prion-like behavior
and presents in various throughout the nervous systems before neuronal death and classical
symptoms (Grassi et al., 2018; Ma et al., 2019). However, as a multifactorial disease, PD is also
influenced by dietary factors (Tufi et al., 2014; Fitzgerald et al., 2017; Lehmann et al., 2017; Zhao
et al., 2019), microorganisms (Keshavarzian et al., 2015; Scheperjans et al., 2015), and different
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environmental elements, such as metal (Kim et al., 2018),
neurotoxins (Bove and Perier, 2012), light exposure (Willis et al.,
2018), and infection. The disease has complex etiopathogenesis
that has still not been fully elucidated. Though four categories
of biomarkers have been recommended to confer accurate
diagnosis and assess the condition of patients, including
clinical symptoms, genetic mutation, pathological, and
neuroimaging changes (Delenclos et al., 2016), markers for
an early diagnosis and effective treatments of PD are still
lacking. Clinically, there is a high rate of misdiagnosis of
the disease and clinical accuracy of PD diagnosis is only
76–84%. Therefore, a better understanding of the etiology
and pathogenesis, as well as molecular events associated with
clinical symptoms, will be significant for early diagnosis and
therapeutic strategies.

Metabolomics is an emerging and effective approach used in
the identification and discovery of metabolic biomarkers; it relies
on the assessment of various biological samples and provides a
series of metabolic signatures involving molecular processes that
elucidate pathological changes of diseases. The technology links
various metabolic molecular mechanisms to neuronal activity
alterations, protein changes or genetic mutations, mitochondrial
dysfunction, or dysbacteriosis. As an advanced technique of
omics, metabolomics can integrate endogenous and exogenous
cellular metabolic activities, holding great promise in its ability
to probe biochemical details about the pathological status,
progression, and treatment of many chronic metabolic diseases,
such as cancer, neurodegenerative disease, and kidney disease
(Kalim and Rhee, 2017; Willis et al., 2018). Interestingly, an
increasing number of scholars devoted to PD research have
indicated that metabolomics can be considered as a powerful
tool to define biochemical information, detect metabolomic
status, and speculate on underlying mechanisms in the disease
(Koeth et al., 2013; Pannkuk et al., 2015). Metabolomics’
high-sensitivity and high-throughput properties might support
detailed information of the end-product abnormalities arising
from interactions between genes, chemicals, protein structure,
and various environmental factors. In this respect, metabolomics
could be more applicable than other "omics" techniques,
including genomics, pharmacogenomics, and transcriptomics,
in the qualitative and quantitative analysis of metabolites from
cell or biologic specimens to effectively reflect subtle changes of
metabolites (Stoessel et al., 2018). Therefore, the introduction of
metabolomics in PD research would provide a new solution for
seeking underlying metabolic biomarkers for the predication and
treatment of the disease.

Considering clinical and experimental findings in pathological
mechanisms, we know that multiple mechanisms may
contribute to PD pathogenesis. Specially, most studies about
the metabolomics of PD mainly focus on gene alterations,
energy homeostasis, and redox reactions resulting from
mitochondrial dysfunction. Meanwhile, declined antioxidation
systems and mitochondrial disorders are also important
causes of neuron inflammation and senescence associated
with neuropathology (Boland et al., 2018). Updated preclinical
evidence indicated that the bidirectional communication
between the gut community patterns and the nervous system

of the brain, hereto dysbacteriosis, was identified and plays an
important role in both the metabolism and pathology of patients
with PD. So, in-depth research on the metabolomics regarding
potential metabolic indicators and pathways of PD should focus
on its effects on pathogenesis and the pathological process.

In this review article, we provide a concise overview on
technical methods and related operative procedures in the field
of metabolomics. We review recent research on the relationship
between metabolomics and neuropathological changes of PD
in terms of genetic mutation, mitochondrial dysfunctions,
and dysbacteriosis, and also summarize the molecular
mechanisms and metabolites underlying pathological signs
as promising biomarkers of pathogenesis in both sporadic and
familial PD.

METABOLOMICS

The metabolome is the entire collection of a wide range of
small molecules that participate in body metabolic responses,
such as saccharides, amino acids, nucleotides, lipids, and
acylcarnitines. Metabolomics, as an analytical technique to
investigate disorders in the metabolome of an organism, possess
substantial sensitivity, selectivity, and identification capabilities
of analyzing diverse varieties of molecular species in biofluids,
ranging from ionic compounds in cell lysates to various
organic compounds/composition in plasma, cerebrospinal fluid
(CSF), urine, and tissue (Figure 1). Compared with traditional
targeted approaches, the new untargeted metabolomics have
great potential to identify some novel biomarkers and help
in indicating the metabolite levels of body fluids, seeking
different disease biomarkers to provide useful information about
metabolic pathways, metabolites, and pathological mechanisms.

In the past decade, many analytical technologies have been
introduced and applied in various metabolomic research fields
and thus have furthered the understanding of neurodegenerative
diseases on the basis of relevant metabolites as biomarkers. In
general, the methodologies used for metabolic identification
mainly include proton nuclear magnetic resonance (NMR),
magnetic resonance spectroscopy (MRS), liquid chromatography
mass spectrometry (LCMS), gas chromatography mass
spectrometry (GCMS), flourier transform infrared spectrum
(FTIR), and high-performance liquid chromatography (HPLC).
The first two metrics utilize the magnetic properties of
molecular atomic nuclei in metabolic samples to obtain detailed
chemical, structural, and quantities information of metabolites in
little samples. By contrast, chromatography mass spectrometry
(CMS), which combines the efficient separation capability
of chromatography with the high detectability of mass
spectrometry, has high analytical precision and superior
reproducibility and versatility (Kiraly et al., 2016).

With the development of technologies and current research,
there are different groups of metabolic biomarkers used
in susceptivity, diagnosis, pharmacodynamic response, and
prognostic assessment of diseases (Correia et al., 2017). Emerging
evidence has revealed that related metabolomics would be
a potential tool for screening and monitoring molecular
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FIGURE 1 | Metabolomics analysis methods. Molecular metabolites were extracted from different samples, ranging from ionic compounds in cell lysates to various
organic compositions in plasma, cerebrospinal fluid (CSF), urine, and tissue. Samples chromatography and mass spectrometry were prepared and administrated for
analysis and identification.

mechanisms and chemical phenotypes and seeking metabolic
signatures as diagnostic and prognostic biomarkers of familial
and idiopathic PD. For instance, Bogdanov et al. reported the
differences of metabolomic profiling of plasma from idiopathic
PD and LRRK2 patients with the G2019S mutation, implicating
that the familial PD has unique metabolomic profiles associated
with the purine pathway and oxidative processes (Bogdanov
et al., 2008; Johansen et al., 2009; Bolner et al., 2011). Similarly,
metabolic profiles of blood in idiopathic PD are also different
from healthy groups, such as alpha-synuclein, tau protein, urate,
and a series of amino acid metabolism (Bolner et al., 2011; Luan
et al., 2015; Saiki et al., 2017; Chang et al., 2018; Goldman
et al., 2018). These disturbances in the metabolic pathways
are related to mitochondrial dysfunctions and the concomitant
changes in energy homeostasis and redox reaction, which are
thought to be the final common pathways of most endogenous
and exogenous factors that are involved in the etiology of PD
(Bhinderwala et al., 2019). Recent studies have revealed that there
are metabolic differences between treated and drug-naïve PD
patients (Bogdanov et al., 2008; Troisi et al., 2019), as well as
patients with and without dementia or depression (Hatano et al.,
2016; Dong et al., 2018). In addition, biofluids metabolome has
potential to distinguish the phenotype of PD. For example, James
Roede et al. (2013), used mass spectrometry-based metabolic
profiling and showed that polyamine dopamine metabolism
was significantly altered in the rapid motor progression of
PD compared to both healthy subjects and slow progression
PD subjects, which potentially effects of neurodegeneration on

neuroinflammation or dopamine metabolism. The metabolomics
of animal models demonstrated disturbed metabolic pathways
in acylcarnitines, glycerophospholipid, and 4-hydroxypoline in
serum, indicating the metabolism influence on the onset and
progression of α-Syn pathology (Graham et al., 2018).

GENETIC METABOLOMICS IN PD
PATIENTS

Genomics is the upstream regulator of metabolomics and
participates in the modulation of differential metabolite
concentrations. Since 1977, studies have provided initial insights
into molecular genetics and identified the key contributors that
give rise to the occurrence and progression of familial PD cases
(Polymeropoulos et al., 1997; Kruger et al., 1998; Braak et al.,
2003; Zarranz et al., 2004). Until now, 27 PD-associated genes
regions have been identified, affecting 20% of all PD patients
(Klein and Westenberger, 2012; Correia et al., 2017; Arkinson and
Walden, 2018). There are six genes contributing to the clinically
classical form of PD, including three autosomal dominant
(SNCA, LRRK2, and VPS35) and three autosomal recessively
(PINK1, PARK2, and DJ-1). Additionally, some singular gene
mutations are associated with an increased risk of developing
PD, including autosomal dominant (PARK3, GIGYF2, HTRA2,
EIF4G1, RAB39B, TMEM230, CHCHD2, RIC3, and GBA) and
autosomal recessive (ATP13A2, PLA2GB, FBXO7, DNAJC13,
SYNJ1, and VPS13C). Previous studies revealed that three
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types of metabolic defects mainly play important roles in the
progression of PD: a-Syn protein aggregation, mitochondrial
dysfunction, and related oxidative damage. From the structural
and functional perspectives, these cellular dysfunctions are
associated with different sites and types of alterations in these
genes (Figure 2). Even though most familial monogenic forms
of PD are identified, metabolic research mainly focuses on
the minority of PD related-genes mutations, including SNCA,
LRRK2, PARK2, and GBA. Therefore, a thorough understanding
of these gene-related metabolomics will provide available
biomarkers for diagnosing and tracking familial PD.

SNCA
The SNCA gene is the first gene to be implicated in PD.
Of note, the gene encodes a-Syn protein and its pathogenic
mutations were linked with the abnormal accumulation of the
presynaptic protein. The initial link between the SNCA gene
and PD was found by Polymeropoulos et al. (1997) when a
missense mutation (A53T) of SNCA was implicated in patients
with autosomal dominant Parkinsonism from a large Italian
family. Shortly thereafter, accumulating evidence has shown the
mutations of A30Pro (Kruger et al., 1998), E46K (Zarranz et al.,
2004), H50Q, G51D, and A53E in the alpha-synuclein gene
(Parajuli et al., 2020). All six-point mutants have been involved in
a-Syn overexpression, accumulation, and aggregation, conferring
the risk of the disease’s onset or causing familial PD (Singleton
et al., 2013). In addition, the SNCA duplication or triplication
events (PARK4 variant), as well as the promoter’s variation, were
also involved in the formation of toxic oligomers, misfolded
α-Syn, and nigrostriatal denervation, which are vital causes of the
disease (Gatto et al., 2010; Koros et al., 2018).

Apart from protein-encoding, research has suggested the role
of the SNCA gene in fatty acid synthesis, lipid metabolism
(Golovko et al., 2007), mitochondrial membrane composition
(Barcelo-Coblijn et al., 2007), and inflammatory responses in the
brain (Castagnet et al., 2005; Golovko et al., 2009). Consistent
with previous reports, a current study supports previous findings
of the SNCA involvement in substance metabolism of the brain.
It is worth noting that the authors identified a range of metabolic
changes related to the gene through untargeted metabolomic
profiling of the brain, such as glycogen depletion, impaired
activity of succinate dehydrogenase, and the abnormality of
taurine and glutamine (Musgrove et al., 2014). The metabolic
alterations not only reflect impaired mitochondrial function in
energy production, but also indicate the pathologies associated
with other metabolic pathways. Similar to deteriorating metabolic
abnormalities in the brain, the SNCA gene-related mutations
could affect peripheral tissue metabolism in PD patients, which
are useful in understanding the metabolic status of the brain
and providing molecular signatures. Demonstrated in a cross-
sectional study by Heather et al., the premotor A53T SNCA
carriers have decreasing serotonin transporter densities and
serotonergic pathologies compared with healthy controls (Wilson
et al., 2019). In addition, the serotonergic abnormalities preceded
dopaminergic neuron loss and clinical symptoms, suggesting the
potential role of the serotonergic neurotransmitter system in
screening and monitoring the progression of the disease

(Qamhawi et al., 2015; Wilson et al., 2018). In a longitudinal
study, the comparison between A53T transgenic mice and
controls revealed that the A53T mutation could substantially
increase guanosine levels as a positive regulation against
neurodegeneration (Chen et al., 2015).

LRRK2
LRRK2 (Leucine-rich repeat kinase 2) is the most common
gene related to PD, with a frequency of 10% in familiar cases
(Paisan-Ruiz et al., 2008; Hernandez et al., 2016). Located in
a region on chromosome 12, the gene consists of 51 exons
which encode a 2,527 amino acid member of the ROCO protein
family (Paisan-Ruiz et al., 2008), and relates to mitochondrial
functions, cytoskeletal dynamics, and cellular processes
(Guaitoli et al., 2016; Bae and Lee, 2019). Based on current
research, eight pathogenic substitutions (p.Arg1441Cys/Gly/His,
p.Asn1437His, p.Tyr1699Cys, p.Gly2019Ser, p.Ile2020Thr, and
p.Ile2012Thr) and two susceptibility variants (p.Arg1628Pro
and p.Gly2385Arg) in LRRK2 have been identified. The G2019S
substitution is most frequent LRRK2-related mutation. These
PD-associated LRRK2 mutations might increase intracellular
ROS production and contribute to oxidative stress and the loss of
dopaminergic neurons.

The correlation between the increase of oxidative stress
markers and reduced antioxidant capacity and LRRK mutation
was assessed in the current study (Loeffler et al., 2017).
They measured oxidative stress and antioxidant markers in
CSF from LRRK2-related PD patients, sporadic patients, and
control subjects. Two direct indicators of oxidative stress,
the 8-hydroxy-2’-deoxyguanosine (8-OHdG) and 8-isoprostane
(8-ISO) concentrations, were increased in LRRK2 patients
compared with healthy groups, while antioxidant capacity might
decrease during the progression of the disease. Similar to the
SNCA gene, the metabolomic profiles of low molecular weight
substances in PD patients with LRRK2 mutations are also
different from idiopathic PD and healthy controls (Johansen
et al., 2009). In this study, the LRRK2 mutation patients showed
significantly decreased hypoxanthine, Xanthine, and uric acid in
plasma, suggesting the reduction of related antioxidant activities.
In addition, several studies have provided evidence that blood
levels of uric acid appeared to correlate negatively with the risk for
developing PD (Annanmaki et al., 2007; Ascherio et al., 2009; Ou
et al., 2017). These suggest that metabolites of the purine pathway
play a potential role in elucidating pathogenesis and biomarkers
of PD. Like uric acid, LRRK2 mutation was associated with
impaired serine metabolism, showing decreased serine racemase
expression and increased serine levels (Nickels et al., 2019).
LRRK2 genes also took part in other metabolic responses, such
as Akt signaling, glucose metabolism, or immunity, contributing
to the identification of metabolism in LRRK-PD (Infante et al.,
2015; Wile et al., 2017).

PINK1 and PARK2
In autosomal recessively PD, PINK1, and PARK2 are associated
with the neurodegenerative disorder, which encode the E3
ubiquitin ligase Parkin and the mitochondrial serine/threonine
kinase PINK1 that play important roles in mitochondrial quality
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FIGURE 2 | Genetic metabolomics in PD. The complexity of the pathology of PD stemming from the overlap of multiple gene mutants and complex environmental
factors. Both locally and systemically, these hazards contribute to a series of responses associated with mitochondrial dysfunction, neuroinflammation, and the
failure of clearance mechanisms.

control and turnover (Arkinson and Walden, 2018). Under
normal conditions, PINK1 can phosphorylate and recruit Parkin
proteins from the cytoplasm to depolarized mitochondria, then
meditate the ubiquitination of mitochondrial outer membrane
proteins and activate mitophagy to degrade the ubiquitin
mitochondrial proteins mitofusin 1 and 2 (Pickrell and Youle,
2015; Matheoud et al., 2016; Barodia et al., 2017). Similar to
autosomal dominant genes, PINK1 and PARK2 mutations
induce metabolomic changes in PD patients. Okuzumi et al.
(2019) analyzed serum metabolomics from Parkin patients
and age-matched controls, and revealed higher levels of
oxidized lipids and fatty acid metabolites and lower levels
of antioxidant markers in PARK2 patients, suggesting the
relationship between the serum/plasma metabolomics and gene
dysfunction. Additionally, as a way of ensuring mitochondrial
quality control, the mutation effects the elimination of
dysfunctional mitochondria that was associated with an
increase of mitochondrial stress, manifesting a systemic oxidative

stress markers for the pathomechanisms of Parkin-mutation
patients (Ueno et al., 2020).

GBA
The most common genetic risk factor for PD is the
glucocerebrosidase (GBA) gene, which is located on
chromosome 1q21 and contains 11 exons that encode the
lysosomal enzyme glucocerebrosidase. In normal cells, the
metabolism of glucocerebroside attributes to the efficacy of
the glucocerebrosidase (GCase). Reports indicated that GCase
not only increases the breakdown of glucocerebroside into
glucose and ceramide, but also plays a role in α-Syn degradation
(Sidransky and Lopez, 2012; Migdalska-Richards and Schapira,
2016). By contrast, previous studies have shown that the variants
of p.E365K and p.T408M in the GBA gene are associated with PD
(Liu et al., 2016; Mallett et al., 2016). The GBA mutations disturb
the function of related lysosomal enzymes, which provoke
a-Syn accumulation (Sidransky and Lopez, 2012), disrupt
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autophagy-lysosome and molecular homeostasis (Uemura et al.,
2015), and impair the functional mitochondria by inhibiting
mitophagy (Zampieri et al., 2017). For understanding metabolic
consequences associated with the GBA gene alterations, recent
research has detected the CSF of patients with glucocerebrosidase
dysfunction, and observed impairments in mitochondrial
function and the urea cycle that increased the abundance of
several metabolites, such as 1,5-anhydro-D-glucitol, asparagine,
ornithine, glutamine, and glycine (Greuel et al., 2020).

METABOLOMICS ASSOCIATED WITH
IDIOPATHIC PD PATIENTS

Most patients are diagnosed as sporadic idiopathic PD as
opposed to familial patients, in which environmental hazards
play an important role in the pathogenesis of neurodegeneration
diseases. The pathogenesis of PD involves complex interactions
among multifarious pathomechanisms that include oxidative
stress, mitochondrial alterations, inflammatory response, and
dysbacteriosis. These pathological changes usually accelerate
the truncation (Kahle et al., 2001; Auluck et al., 2002;
Liu et al., 2005) and multimerization of misfolding proteins
through phospholipid binding, membrane compound altering,
and change in the function of molecular chaperones (Tuttle
et al., 2016; Gerez et al., 2019). The identification of aberrant
biochemistry underlying neuronal degeneration could be an
important step toward discovering mechanisms and accurate
markers for the diagnosis and therapy of PD. Based on previous
studies and updated evidence exploring the metabolomics
profiling of biofluids in PD patients, most existing knowledge
shows the alteration of different molecular species that mainly
focus on genes alterations, energy homeostasis, and redox
reaction resulting from mitochondrial dysfunction. Hence, we
summarize the progress on metabolomics in idiopathic PD
cases and focus on the metabolic biomarkers associated with
mitochondrial dysfunction and dysbacteriosis.

MITOCHONDRIAL DYSFUNCTION

As the dynamic powerhouse of a cell, the mitochondrion
plays a major role in metabolic activity and generates over
90% of the ATP in a cell. Mitochondria contain their own
genomes (mtDNA) and encode vital components associated
with mitochondrial function. There is increasing evidence
that the mitochondrial function extends well beyond the
production of energy in carbohydrate, fatty acid, amino acid, and
nucleotide metabolism, it aids in the stabilization of cytosolic
calcium, and relates to metabolic pathways, such as the pyruvate
oxidation, the Krebs cycle, and various immune responses
(Luan et al., 2015; Di Maio et al., 2016). To date, diverse
gene mutations and environmental factors have been identified
as the cause of mitochondrial dysfunction; it likely to be a key
contributor to PD pathogenesis by damaging the transport of
mitochondrial proteins, inhibiting respiratory chain function,
actuating the generation of reactive oxygen species (ROS), and

increasing α-Syn aggregation. As shown in previous studies,
the complex I function of the electron transport chain in
mitochondrion is impaired because of exposure to environmental
toxins such as paraquat, rotenone, and metals (Muthukumaran
et al., 2014; Stauch et al., 2016; Thellung et al., 2019). Patients
with sporadic PD not only present metabolic changes about
abnormal mitochondrial activity in energy homeostasis and
redox reaction (Krige et al., 1992; Haas et al., 1995; Penn
et al., 1995), but have the presence of mitochondrial oxidative
metabolism and insulin resistance (Marcovina et al., 2013;
Gonzalez-Casacuberta et al., 2019; Djordjevic et al., 2020). As
can be seen in Figure 3, these impaired mitochondrial protein
import reduced mitochondrial dynamics, increase ROS, and
create mitophagy abnormalities or bioenergetic defects that
would deteriorate α-Syn protein misfolding and aggregation.

These mitochondrial changes disturb a series of energy
metabolism systems (pentose phosphate pathway, glycolysis,
mitochondrial oxidative phosphorylation, glycolysis,
acylcarnitines, and the tricarboxylic cycle) (Roede et al.,
2013; Trupp et al., 2014; Willkommen et al., 2018), and are also
involved in the upregulation or downregulation of amino acids,
lipids, and antioxidant substances in PD (Bazinet and Laye,
2014; Lei et al., 2014; Tyurina et al., 2015). Like the correlation
between mitochondrial function and gene alterations (Figure 3),
comprehensive metabolic analysis of mitochondrial defects
arising from environmental factors, such as oxidative stress and
energy substance metabolism, might promote the discovery of
some discern biomarkers for PD. For example, Younes-Mhenni
et al. (2007) and Lewitt et al. (2013) found significantly higher
activity of oxidized glutathione, superoxide dismutase (SOD),
and catalase in PD patients compared with healthy people.
Similarly, increasing 8-hydroxy-2-deoxyguanosine (8-OHdG),
an oxidative product of damaged DNA, has also been detected
in the blood and urine of PD patients (Roede et al., 2013). On
the contrary, the high levels of antioxidants could lower the
occurrence and slow the progression of the neurodegenerative
disease (Ascherio et al., 2006). Except for metabolic alteration
related to mitochondrial oxidation, recent research about
metabolomic analysis of cell lysates showed that PD patients
present with an increase of lactic acid and a depletion of pyruvic
acid and aberrant choline metabolism in extracellular fluid
(Amo et al., 2019). Reports have shown that acylcarnitine, as the
essential amino acid for fatty acid transport into mitochondria
for energy metabolism, was definite in upregulative stages and
potentially effected the structure and function of substantia nigra
(Mallah et al., 2019).

Notably, some alterations of oxidative stress metabolites
might be used to evaluate different subtypes and stages
of the disease. Based on CSF and blood samples from
patients with PD, Karsten et al. observed specific increases
of mannose and fructose, as well as increased threonic acid
and reduced dehydroascorbic acid in early-stage PD patients
(Trezzi et al., 2017). These changes in oxidation products could
reflect the activation of antioxidative stress responses as a
resistance mechanism against neuronal injury, in contrast to
which, the failure in antioxidant reserve could aggregate the
neurodegeneration (Dunn et al., 2014). Significant increases
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FIGURE 3 | Mitochondrial metabolomics in PD patients. (A) Under normal status: 1. mitochondrial complex IV subunit 4 isoform (COX4I2) and proliferator-activated
receptor gamma coactivator 1-α (PGC1α) facilitate mitochondrial biogenesis. Additionally, PINK1 and Parkin alleviates PARIS toxicity by phosphorylation and
ubiquitination, respectively. 2. PINK1 acts on dynamin-related protein 1 (DRP1) to regulate mitochondrial fission and PKA (PINK1 inhibits protein kinase) inhibits the
progress. As such, LRRK2 is also involved in mitochondrial dynamic by MFNs and OPA1 (two mitochondrial fusion proteins) as well as DRP1 (a mitochondrial fission
protein). 3. PINK1, Parkin, and LRRK2 mediate mitochondrial transport. 4. PINK1/Parkin clears damaged mitochondria by mitophagy (B). Under gene mutant: 1.
mitochondrial biogenesis is inhibited by upregulating PGC1α, which is vulnerable to ROS. 2. The imbalance of mitochondrial dynamics. 3. The mutation of PINK1,
Parkin, or LRRK2 halt mitochondrial transportation via Miro, Milton, and motor protein Kinesin-1. In addition, altering LRRK2 expression can stabilize filamentous
actin (F-actin) and promote tau neurotoxicity. 4. Hazards causes PINK1 to accumulate when Parkin is impaired, followed by failure in the mitophagy and production
of ROS. 5. Deposition of GCB and misfolding a-Syn disrupt mitochondrial respiration, leading to the production of ROS and dysfunction of lysosomes.
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TABLE 1 | Summary of gut microbiota and their changes in the fecal samples of PD.

Phylum Family Genus Metabolite Alteration References

Firmicutes Down/Up GBD 2015 Neurological Disorders Collaborator
Group, 2017; Xu et al., 2019

Clostridiaceae Clostridium – Up Santos Garcia et al., 2019

Eubacteriaceae Acetobacterium – Up GBD 2015 Neurological Disorders Collaborator
Group, 2017

Veillonellaceae Veillonella – Up Xu et al., 2019

Lachnospiraceae Anaerostipes – Up GBD 2016 Parkinson’s Disease Collaborators,
2018

Dorea – Down

Blautia – Down Spillantini et al., 1997; Xu et al., 2019

Roseburia – Down Spillantini et al., 1997; Xu et al., 2019

Coprococcus – Down

Fusicatenibacter – Down Spillantini et al., 1997

Faecalibacterium – Down Spillantini and Goedert, 2018

Lachnospira Nicotinic acid
Pantothenic acid

Down/Up Spillantini et al., 1997; Kim and Alcalay, 2017; Xu
et al., 2019

Pseudobutyrivibrio – Down Spillantini et al., 1997

Lactobacillaceae Lactobacter – Up Kim and Alcalay, 2017; Puspita et al., 2017

Streptococcaceae Streptococcus Cadaverine Down/Up Santos Garcia et al., 2019

Ruminococcaceae Anaerotruncus – Up GBD 2015 Neurological Disorders Collaborator
Group, 2017

Bacteroidetes Down/Up Kim and Alcalay, 2017; Santos Garcia et al., 2019

Bacteroidaceae Bacteroides – Down/Up Rocha et al., 2018; Santos Garcia et al., 2019

Odoribacteriaceae Odoribacter – Down Spillantini et al., 1997; De Virgilio et al., 2016

Rikenellaceae – Down

Prevotellaceae Prevotella – Down/Up Bose and Beal, 2016; Rocha et al., 2018

Porphyromonas – Up Spillantini et al., 1997

Proteobacteria Up De Virgilio et al., 2016; Santos Garcia et al., 2019

Alcaligenaceae – Down

Comamonadaceae – Down

Desulfovibrionaceae Desulfovibrio – Up

Desulfohalobiaceae Desulfonauticus – Up

Enterobacteriaceae Down/Up De Virgilio et al., 2016; Rocha et al., 2018

Enterobacter – Up

Escherichia – Up

Serratia Nicotinic acid Up

Oscillospira – Down/Up Spillantini et al., 1997; Santos Garcia et al., 2019

Corynebacterium – Up Spillantini et al., 1997

Sutterellaceae Sutterella – Down

Comamonadaceae Comamonas – Up

Actinobacteria Up Hou et al., 2019

Bifidobacteriaceae Bifidobacterium Pantothenic acid
Pyroglutamic acid

Up GBD 2015 Neurological Disorders Collaborator
Group, 2017; Kim and Alcalay, 2017

Coriobacteriaceae Slackia – Up

Microbacteriaceae – Up GBD 2015 Neurological Disorders Collaborator
Group, 2017

Brevibacteriaceae Brevibacterium – Down Spillantini and Goedert, 2018

Verrucomicrobia Up De Virgilio et al., 2016; Santos Garcia et al., 2019;
Xu et al., 2019

Verrucomicrobiaceae Akkermansia – Up Kim and Alcalay, 2017; Santos Garcia et al., 2019

Prosthecobacter – Up

Cyanobacteria Down Hou et al., 2019

Aphanizomenonaceae Dolichospermum – Down

Frontiers in Neuroscience | www.frontiersin.org 8 February 2021 | Volume 15 | Article 614251

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-614251 January 28, 2021 Time: 17:57 # 9

Zhang et al. Metabolomics in Parkinson’s Disease

TABLE 2 | Summary of microbiota cluster and their features in gut.

Cluster Features Alteration References

Opportunistic pathogens Porphyromonas Prevotella
Corynebacterium

NLRP3 inflammasome LPS Up Spillantini et al., 1997

SCFA-producing bacteria Blautia, Roseburia, Coprococcus Dorea
Lachnospira Faecalibacterium
Oscillospira Corynebacterium

SCFAs-producing
Butyrate-producing Vagal
activation

Down Spillantini and Goedert,
2018; Xu et al., 2019

Probiotic bacteria Lactobacillus Bifidobacteriaceae Cellulose metabolism Up Kim and Alcalay, 2017

Cohesive bacteria Clostridium Oscillospira Akkermansia
Ruminococcaceae

– Up Spillantini and Goedert,
2018

were seen in pyroglutamate and 2-oxoisocaproate and decreases
in 3-hydroxyisovalerate, tryptophan, and creatinine, which
supported an increase of marks in oxidative responses in
preclinical PD (Liu and Wang, 2014). Additionally, some
metabolites have also been identified as indicators of the
severity of Parkinson’s disease, including uric acid and taurine
(Engelborghs et al., 2003).

GASTROINTESTINAL DYSFUNCTION
AND DYSBACTERIOSIS

As we all know, gastrointestinal microbes and host usually remain
in a mutualistic relationship, in which the microbes keep its
diversification and function via the gut to absorb nutrition. In
turn, the parasitic microbiota parasitize in the digestive tract
and produce a series of biochemical compounds to contribute
physical and bioactive barriers or trigger protective immune
responses to withstand the effect of exogenous factors (Reza et al.,
2019; Parker et al., 2020). Accumulating evidence suggests that
many diseases have specific microbiome profiles and potentially
communicate mechanisms between the gastrointestinal and the
nervous systems, so alterations in gut microbiota have been
linked to neurodegeneration, including AD, PD, and Multiple
Sclerosis (Sasmita, 2019).

Over the last two decades, neurologists have begun to explore
in detail the relationship between the gastrointestinal tract,
gut microbiota, and the central nerve systems (CNS). In the
last several years, the gut and related microbiome have gained
increasing attention because of its close relationship with the
etiology of PD. Clinical evidence revealed that neuropathological
changes in PD are accompanied by varying symptoms of
gastrointestinal dysfunction (indigestion, constipation, bloating,
and dysbacteriosis) before the onset of motor symptoms.
Experimental evidence showed that bacterial abnormalities and
intestinal pathology may play a role in PD symptoms (Fasano
et al., 2013; Tan et al., 2015; Van Laar et al., 2019; Mertsalmi
et al., 2020). In recent reports, the gut and relevant metabolic
products have been given increasing attention because of their
importance in the disease pathogenesis (Sampson et al., 2016;
Kim et al., 2019), showing that PD patients usually show
significant changes in microbiotal abundance and diversity,
as well as distinctive profiles of microbiota composition and
intestinal metabolites (Keshavarzian et al., 2015; Vascellari et al.,
2020; Wallen et al., 2020; Table 1). Although these microbiota

composition alterations are heterogeneous, both microbiota
disorders and intestinal damage could act as triggering events
that lead to dopaminergic loss and pathological a-Syn (Matheoud
et al., 2019). Further, numerous experimental and clinical reports
indicated that the a-Syn could gather and spread from the
gastrointestine to the deep brain (Braak et al., 2003; Kim et al.,
2019; Van Den Berge et al., 2019). Notably, the alteration in
microbiota abundance was noted in different subtypes and
stages of the disease. A study has demonstrated that the
abundancy of some microbial compositions, such as Lactococcus,
Faecalibacterium, and Leptotrichia, was increased in early-stages
of PD, while Comamonas was common in patients with late-
onset symptoms. The abundance of Bacteroidetes and Firmicutes
were significantly increased in patients with motor-symptoms
(Keshavarzian et al., 2015; Lin et al., 2018). Likewise, decreased
Prevotellaceae abundance and increased Enterobacteriaceae may
have a positive association with intestinal dysfunction in PD
patients. Keeping this point in mind, we know that the
dysbacteriosis and microbiota metabolomics have potential
relevance to the existence of gastrointestinal a-Syn and pathology.
The understanding of microbiota metabolomics is essential for
exploring the pathogenesis of PD and seeking specific biomarkers
that support a more accurate assessment, earlier diagnosis, and
better monitoring of the disease progression.

To our knowledge, gut microbiota contributes to host
metabolism in the regulation of organic energy metabolism
(e.g., lipids, amino acids, and vitamins), as well as to the
differentiation and function of immune cells (Cani, 2018). The
specific microbial metabolites are disordered when gut microbes
are out of balance in abundance and diversity (Table 2).
Based on previous studies, the PD-related dysbacteriosis could
induce changes in carbohydrate fermentation, protein, and
lipid metabolism which could generate SCFA, p-cresol and
phenylacetylglutamine, protocatechuic acid, secondary bile acids,
and other metabolites (Wahlstrom et al., 2016; Murota et al.,
2018; Cirstea et al., 2020). Specifically, the concentration
of short chain fatty acids (SCFA) have largely implicated
a significant correlation between gut microbiota and PD,
and has been implicated as a driver of the onset and
progression of PD (Qiao et al., 2020). The SCFA is a metabolic
product that possesses anti-inflammatory and anti-microbial
function qualities and protects from intestinal permeability,
oxidative stress, and immune injury (Donohoe et al., 2011;
Sanchez-Guajardo et al., 2015). Further, the SCFA contain
a functional composition—Butyrate—that not only supplies

Frontiers in Neuroscience | www.frontiersin.org 9 February 2021 | Volume 15 | Article 614251

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-614251 January 28, 2021 Time: 17:57 # 10

Zhang et al. Metabolomics in Parkinson’s Disease

the main source of energy for the gut epithelium, but also
strengthens the gastrointestinal barrier function (Volf et al.,
2016; Agusti et al., 2018). Therefore, the lower abundance
of the microbes that produce SCFA could have negative
effects for the intestinal barrier and immune function to
induce gastrointestinal symptoms of PD, including constipation,
intestinal inflammation, and intestinal barrier leakiness (Segain
et al., 2000). From what has been discussed above, the metabolic
changes of SCFA caused by gut microbial dysbiosis may be a
biomarker for better evaluation of PD conditions.

FUTURE PERSPECTIVES

Collectively, these findings may mark a new step on the path
toward the metabolomics of PD. Paralleling with the availability
of test samples and advances in identification technology,
metabolomics has been considerably applied as a tool in PD
research (Koeth et al., 2013; Pannkuk et al., 2015). However,
due to the heterogeneity of humans in regards to genetic
expression, dietary habit, environmental exposure, and physical

behaviors, only a few specific biomarkers can currently be
recommended in clinical practice. Hence, further works on the
correlation between metabolomics and the neurodegenerative
disease would be valuable. It is of great clinical significance
to discover specific biological markers of PD, so as to early
screen high-risk populations and facilitate timely diagnosis and
reasonable therapeutics.
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