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Abstract

Background: Recent statistical methods for next generation sequencing (NGS) data have been successfully applied
to identifying rare genetic variants associated with certain diseases. However, most commonly used methods (e.g.,
burden tests and variance-component tests) rely on large sample sizes. Notwithstanding, due to its-still high cost,
NGS data is generally restricted to small sample sizes, that cannot be analyzed by most existing methods.

Methods: In this work, we propose a new exact association test for sequencing data that does not require a large
sample approximation, which is applicable to both common and rare variants. Our method, based on the
Generalized Cochran-Mantel-Haenszel (GCMH) statistic, was applied to NGS datasets from intraductal papillary
mucinous neoplasm (IPMN) patients. IPMN is a unique pancreatic cancer subtype that can turn into an
invasive and hard-to-treat metastatic disease.

Results: Application of our method to IPMN data successfully identified susceptible genes associated with
progression of IPMN to pancreatic cancer.

Conclusions: Our method is expected to identify disease-associated genetic variants more successfully, and
corresponding signal pathways, improving our understanding of specific disease’s etiology and prognosis.
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Background
Many genetic studies, such as genome-wide association
studies (GWAS), have successfully identified genetic var-
iants associated with complex human traits and diseases
[1]. However, GWAS focus mainly on common variants
with minor allele frequencies (MAF) greater than 0.05.
Thus, loci with MAF < 0.05 are omitted, even though
such “rare variants” may substantially contribute to
disease heritability [2, 3]. The recent application of next
generation sequencing (NGS) technology has put large-
scale investigation of rare variants within reach [4].
Thus, from large sample sizes, researchers can uncover
novel rare genetic variants (i.e., those having MAFs
between 0.01 and 0.05) that have important associations
with complex diseases [3].

To date, various statistical methods and strategies
have been developed to test disease associations of
rare genetic variants. Burden tests, which were earlier
tests for rare variants, aggregate information from all
rare variants, in a specific genomic region, into a sin-
gle summary variable [5, 6]. Different types of burden
tests have been proposed, using various genetic scores
assigned to the rare variants. For example, the cohort
allelic sum test (CAST) collapses genotypes across all
variants, such that an individual is coded as 1, if a rare
allele is present at any of the variant sites; otherwise, it is
coded as 0 [6]. However, this approach may not fully re-
flect the effect emerging from the complex ensemble of
multiple rare variants, because it only uses the informa-
tion from the presence of rare variants within a specific
genomic region.
The combined multivariate and collapsing (CMC)

method divides rare variants into multiple classes,
based on their MAFs, by collapsing each group, using
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CAST, and then applying multivariate tests such as
Hotelling’s T-test [5]. However, these burden tests are
powerful only if most rare variants are causal, and
have effects in the same direction (i.e., increase or de-
crease the phenotype). In other words, the existence
of variants whose effects are in different directions
can reduce power substantially. To overcome this
limitation, several variance-component (VC) tests,
based on regression models, have been proposed. The
Sequence Kernel Association Test (SKAT), a widely
used score-based VC test, has been shown to success-
fully detect multiple directional contributions from
different classes of single nucleotide polymorphisms
(SNPs) [7].
Both burden and VC tests for rare variants are based

on asymptotic tests, assuming that the sample size is
large enough. Due to the still-high cost of NGS, how-
ever, sequencing data is often available only from small
sample sizes. These existing methods are not appropriate
to handle NGS data from small sample sizes. Instead,
the SKAT method needs to be modified by renormaliz-
ing moments of test statistics [8].
In this study, we propose a new approach that does

not rely on the asymptotic distribution for the NGS data
with small samples. We call this new method the Exact
Association Test (EXAT). EXAT is conceptually based
upon the Fisher’s exact test, which is commonly used for
testing for independence, using 2 × 2 contingency tables,
with small samples. A key underlying assumption of
Fisher’s exact test is that the four marginal sums are
fixed. Under this assumption, the first cell frequency
follows a hypergeometric distribution, under the null
hypothesis of independence. To that end, the Cochran-
Mantel-Haenszel (CMH) statistic was developed to
extend Fisher’s exact test beyond stratified 2 × 2 contin-
gency tables, for testing the conditional independence
between two categorical variables, that are in turn,
conditioned by a third categorical variable [9, 10].
The generalized Cochran-Mantel-Haenszel (GCMH)
statistic is an extension of CMH for stratified J × K
contingency tables [9].
For a specific gene, NGS data can be represented by a

sequence of contingency tables. The strata variable
corresponds to the subject, the row variable does to the
single nucleotide variant (SNV), and the column depicts
the genotypes which represent the number of minor al-
leles (0, 1, or 2). For example, suppose that a gene con-
tains t SNVs. Then, the NGS data from n individuals can
be summarized into n × t × 3 contingency table, upon
which the GCMH statistic can be applied. Note that this
GCMH statistic is used for testing independence be-
tween SNVs and the number of minor alleles. That is, it
tests whether t SNVs have similar distributions, in terms
of MAFs. However, this GCMH does not provide any

information about the gene’s association with disease
status, e.g., case and control. Thus, we propose deriving
the GCMH statistic separately from the case and control
groups, and using the difference or ratio as a test statis-
tic. If these two GCMH statistics differ greatly between
case and control groups, then the gene should be
strongly associated with disease status.
In the Methods section, we provide a detailed descrip-

tion of the EXAT statistic, and summarize how to
compute p-values for significance testing. We then apply
our EXAT to the analysis of targeted sequencing data
from intraductal papillary mucinous neoplasms (IPMNs,
a type of pancreatic ductal tumor)(PMID: 27865286).
IPMN is a unique pancreatic neoplasm that can become
an invasive, metastatic, and hard-to-treat pancreatic can-
cer [11]. Through this application, we demonstrate that
our proposed EXAT method can successfully identify
susceptible genes associated with the progression of
IPMN to pancreatic cancer.

Methods
Materials
All human subject studies were approved by the Institu-
tional Review Board of Seoul National University Hos-
pital. Surgical paraffin-embedded IPMN samples, from
44 subjects, were obtained from Seoul National Univer-
sity Hospital. These subjects consisted of 21 cases of
high grade (just before developing pancreatic cancer)
and 23 controls of low grade (benign tumor). From both
tumor groups, DNA was extracted and subjected to tar-
geted sequencing, using the Illumina NextSeq500
platform.
The demographic and clinical characteristics of the 44

subjects are shown in Table 1. Categorical variables were
compared using the χ2 test or Fisher’s exact test between
case and control groups. Continuous variables were
compared using Student’s t test or Wilcoxon’s rank sum
test. Except Mural Nodule and Invasiveness, there were
no significant differences between case and control
groups. Mural Nodule is known as a potential predictor
of malignant neoplasm [12], and Invasiveness presents
an invasive status.
From each patient, we obtained targeted sequencing

data for 411 genes, known to be related to cancer in
general, but not necessarily pancreatic cancer. The total
number of SNVs was 8325, and the number of SNVs in
a gene ranged from 1 to 188, with a median of 15.

Methods
Data structure
First, we constructed a stratified categorical data as fol-
lows. For a given gene with t SNVs, we defined a t × 3
contingency table for each subject, where the rows and
columns represent the SNVs for a specific gene, and the

Lee et al. BMC Medical Genomics 2018, 11(Suppl 2):30 Page 22 of 116



number of minor alleles, respectively. More precisely,
for subject i, and a specific gene with t SNVs, the corre-
sponding t × 3 contingency table was constructed, as
shown in Table 2. Note that the cell count, nijk,has a
value of 1, if the subject i has a minor allele count k, at
SNV j, for i = 1, ⋯, n, j = 1, ⋯, t, k = 0, 1, 2.
For example, consider the gene ATF1, which contains

seven SNVs in our IPMN dataset. Figure 1a shows the
number of minor alleles for three subjects, A, B, and C.
From these data, three 7 × 3 contingency tables could be
constructed, as shown in Fig. 1b.

Generalized CMH statistic
Next, we recall the generalized CMH statistic to test
the existence of partial association within the strata
of the contingency table [10]. Here, we present it in a
simpler form, specialized into types of contingency ta-
bles, as described in the previous subsection.
Let ni = (ni10, ni11,⋯, nit2)

′ denote the (3t) × 1 vector
of observed frequencies, let nij. = (ni1., ni2.,⋯, nit.)

′ de-
note the vector of the row marginal total number,
and let ni.k = (ni. 0, ni. 1, ni. 2)

′ denote the vector of
the column marginal totals, and let ni. . denote the
overall marginal total. Then, let H0 be the null hy-
pothesis of no partial association, i.e., SNVs being in-
dependent of the number of minor alleles for a
specific targeted gene. Note that all row marginal to-
tals {nij.} are 1, and ni. . has the value t (i.e., the

number of SNVs for each subject i). Hence, under
H0, ni (Table 2) follows the product’s multiple hyper-
geometric distribution, when the marginal totals are
fixed, as in Fisher’s exact test.

ℙ nijH0ð Þ ¼ ni∙0!ni�1!ni�2!

t!
Yt
s¼1

nis0!nis1!nis2!

:

For the ith contingency table, define a t × 1 matrix
Pi ∗ ·
′ = (1,⋯, 1)/t and a 3 × 1 matrix Pi · ∗

′ = (ni · 0, ni · 1, ni ·
2)/t. Denote ⊗ to be the Kronecker product defined
for matrices, i.e., A⊗ B = {aijB} for A = {aij}, and B of
any dimension [13]. Then it is easy to check the fol-
lowing formulae for the mean and covariance of ni,
under H0:

mi≔E nijH0ð Þ ¼ t Pi���Pi��½ �

and

Var nijH0ð Þ ¼ t2

t−1
DPi��−Pi��P0

i��
� �� DPi��−Pi��P0

i��
� �

;

where for any vector v = (v1,⋯, vk), Dv denotes the diag-
onal matrix with vi on its ith diagonal entry.
Since the degrees of freedom in our contingency

table are 2(t − 1), we may eliminate the last column
and row of each contingency table. For this purpose,
let A = (It − 1,Ot − 1)⊗ (I2,O2) be the matrix which
eliminates the last row and column from each contin-
gency table, where Ir and Or denote the r × r identity
matrix and the r × 1 matrix of 0’s, respectively. Let Gi

= A(ni −mi)). Denote ~Pi�� and ~Pi�� as the column vec-
tors obtained by omitting the last entries of Pi ∗ ·,and
Pi · ∗, respectively. Then, it is easy to verify that:

Table 2 Stratum representing subject i, for a specific gene, with
t SNVs

SNV Number of minor alleles Total

0 1 2

1 ni10 ni11 ni12 1

⋮ ⋮ ⋮ ⋮ 1

t nit0 nit1 nit2 1

Total ni. 0 ni. 1 ni. 2 t

Table 1 Demographic and clinical characteristics of study patients at baseline

Total
(n = 44)

Case
(n = 21)

Control
(n = 23)

P − value

Continuous variables Mean (SD)

Age 64.57 (8.3) 64 (9.4) 65.09 (7.2) 0.668

CEA 2.46 (2.6) 2.90 (3.4) 2.04 (1.4) 0.293

CA19–9 60.61 (280.9) 2.89 (400.2) 2.04 (11.0) 0.061

Categorical variables Frequency

Sex (M:F) 28:16 15:6 13:10 0.476

Invasiveness ratio (Invasive: Noninvasive) 10:34 9:12 1:22 0.003

Mural Nodule (Yes: No) 19:24 13:8 6:16 0.032

Recurrence (Yes: No) 34:9 4:17 0:22 0.044

Survival (Yes: No) 34:9 17:4 17:5 1
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Var GijH0ð Þ ¼ t2

t−1
DPi��−~Pi��~Pi��

0h i
� DPi��−Pi��P0

i��
� �

:

Now, the GCMH statistic for ni

GCMH ¼ G Var GjH0ð Þð Þ−1G0;

where G = ∑Gi. It is well known that wth a large
limit for t, the GCMH is asymptotically distributed as
the chi-squared distribution, with degrees of freedom
being 2(t − 1).

Exact association test (EXAT)
In this section, we propose a new statistic, which we
call EXAT (Exact Association Test), to test the differ-
ence of partial association in two strata of contin-
gency tables, corresponding to two groups, say, the
case and control. The test statistic is simply the loga-
rithmic ratio of the GCMH statistics computed for
the two groups. Namely, denote the GCMH statistic
of the case and control groups by CMHcase,.and
CMHcontrol, respectively. Our proposed test statistic,
T, is then defined by:

T ¼ log CMHcase−logCMHcontrol

¼ log
CMHcase

CMHcontrol

� �
:

Our motivation was as follows. In genetic associ-
ation studies, we need to identify the genes associated
with a certain phenotype of interest, such as disease
status. Our assumption is that for the ‘causal’ genes,
the case and control groups should show distinctive

patterns of partial association. To measure this quali-
tative difference, we hypothesize that the intensity of
partial association is proportional to the GCMH stat-
istic. Hence, the more our test statistic T deviates
from 0, the larger the partial associations between
case and control groups.
This test statistic needs to be computed for each

gene X. We then obtain p-values by a permutation
procedure. Genes that have p-values smaller than the
pre-specified significance level can be identified to as-
sociate with a disease status, e.g., in our current
study, the progression of IPMN to pancreatic cancer.

Obtain p-values of EXAT using normal approximation
As the permutation test is computationally expensive,
we considered an empirical but computationally effi-
cient way to obtain p-values. We observed that our
permuted test statistics were usually symmetric, with
respect to 0, and followed a bell-shaped (i.e., normal)
distribution. Moreover, it seemed that the distribution
of T was closely approximated by a normal distribu-
tion, as determined by its first two moments. Figure 2
(left) shows a typical histogram of a randomly se-
lected gene, generated by 10,000 permutations, having
a normal distribution obtained by the first two mo-
ments in the histogram. Figure 2 (right) shows the
kernel-smoothed plot of test statistics, which precisely
agrees with a normal distribution. Based on this em-
pirical evidence, we assert that T (the EXAT statistic)
approximately follows a normal distribution.
Based upon this observation, we decided to use the

permutation method only to estimate the first two

Fig. 1 Transformation of a subset of data (a), into contingency tables (b), for three subjects, A, B, and C
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moments of T, and then use the resulting normal dis-
tribution, as an approximate distribution of T. Since
we only need to estimate the first two moments of T
for a normal approximation, we need many fewer per-
mutations for normal approximation, but can also ob-
tain similar results as the usual permutation method
yields. Namely, as shown Fig. 3 and Table 3, we com-
pared the p-values obtained from the distribution of
T, as estimated by 10,000 permutations, with p-values

obtained by normal approximation of the various
number of permutations, ranging from 10 to 10,000.
The resulting p-values of T, using the normal ap-
proximation, gave consistent results, with the usual
permutation method. Furthermore, 20 permutations
were sufficient enough (R2 > 0.8) to obtain similar p-
values, from 10,000 permutations. Table 3 also shows the
p-values from Kolmogorov-Smirnov test for comparing
distributions, mean square errors, as well as two

Fig. 3 Pairwise p-value plots from permutations vs normal approximations, depending on the number of permutations

Fig. 2 Histogram and kernel smoothed plot of test statistics
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correlation coefficients [14]. All these results support the
validity of normal approximation. Hence, we conclude
that our hypothesized computational procedure of using a
normal approximation not only gave consistent results,
with the permutation test, but also was significantly re-
duced in computational burden.

Results
Type I error simulations
We next performed a simulation study to validate our
proposed method, EXAT. For this purpose, we gener-
ated simulated data, as in [7, 8], representing the
sequence data of European population, from 4000
chromosomes, over 1 Mb regions, on the basis of a
coalescent model that mimics the LD pattern local by
using COSI [15]. We randomly selected 5-kb regions
for testing for associations, under all simulation
settings.
We generated datasets under the assumed null dis-

tribution, to evaluate the type I error control of
EXAT. Dichotomous phenotypes, with 50% cases and
50% controls, were generated from a random sam-
pling, under the null hypothesis.
We then applied EXAT to each randomly selected

5-kb regions. Then, we compared this result with the
four of the most commonly used methods which are
small-sample-adjusted SKAT (“SKAT”), small-sample-
adjusted unified SKAT (“SKAT-O”), SKAT for the
Combined Effect of Rare and Common Variants
(“RC-SKAT”), and Burden test. We used the value of
α =0.05, 0.01, and 0.001 under the five different total
sample size settings (n = 50, 100, 200, and 500), with
4000 simulated datasets for each sample size. As
shown in Table 4, EXAT had similar Type I error es-
timates regardless of sample size.

Real data application
We then applied the proposed EXAT to 395 cancer-
associated genes. If any gene had only 1 SNV, we
could not construct a contingency table for EXAT. In
this case, we simply examined the significance of the
association between disease status and the number of
minor alleles, using Fisher’s exact test.

Through 10,000 permutations, our EXAT method
identified 31 significant genes, at a significance level
of 0.05 (Table 5), for four well-known oncogenes re-
lated to pancreatic cancer. Additionally, these four
genes were each targeted at the beginning of the
experiment. P-values from SKAT, SKAT-O, and RC-
SKAT were obtained under adjustment for small
samples. It is well known that mutations in KRAS are
almost omnipresent in pancreatic cancer development
and progression [16], and only our EXAT method
could find KRAS as a significant gene.
However, since the number of genes was large,

compared to the small sample size, any significant
gene was not detectable, through multiple comparison
methods.
Table 6 shows 19 other genes known to be associ-

ated with pancreatic cancer [16–34]. For example, it
has been reported that inhibition of PPP2R1A radio-
sensitizes pancreatic cancer via activation of
CDC25C/CDK1, thus, PPP2R1A is a target gene for
local therapy of pancreatic cancer [17]. The gene
named AURKB is known to suppress proliferation of

Table 3 Measures from permutations, and normal
approximation, depending on permutation times

Permutation times 20 30 50 100 1000 10,000

R2 82.0 85.4 85.1 89.0 85.2 84.9

Kolmogorov-Smirnov p-value 0.047 0.047 0.031 0.082 0.139 0.164

Mean square error 0.035 0.031 0.028 0.023 0.031 0.031

Pearson correlation 0.926 0.933 0.940 0.953 0.934 0.933

Spearman correlation 0.894 0.893 0.893 0.886 0.841 0.836

Table 4 Simulation studies of Type I Error estimates for the six
different methods

EXAT SKAT SKAT.O RC-SKAT Burden

n = 50

α = 0.05 0.050 0.065 0.096 0.047 0.055

α = 0.01 0.011 0.018 0.020 0.008 0.005

α = 0.001 0.002 0.003 0.001 0.001 0.001

n = 100

α = 0.05 0.044 0.062 0.073 0.050 0.055

α = 0.01 0.006 0.010 0.013 0.013 0.006

α = 0.001 0.000 0.001 0.003 0.001 0

n = 200

α = 0.05 0.050 0.051 0.058 0.050 0.044

α = 0.01 0.011 0.010 0.011 0.012 0.009

α = 0.001 0.001 0.001 0.001 0.002 0.000

n = 500

α = 0.05 0.045 0.049 0.047 0.040 0.046

α = 0.01 0.011 0.012 0.009 0.008 0.006

α = 0.001 0.002 0.001 0.000 0.001 0.001

Table 5 P-values from EXAT and competing methods, for the
four targeted genes

Gene name EXAT SKAT SKAT-O RC-SKAT Burden

KRAS 0.025 0.720 0.325 0.094 0.191

TP53 0.199 0.174 0.229 0.666 0.402

GNAS 0.597 0.426 0.597 0.405 0.988

CDH1 0.963 0.699 0.769 0.772 0.406
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pancreatic cancer [18], and KMT2D is also known to
be associated with pancreatic cancer [19, 20]. MAPK1
is constitutively activated by frequent mutation and
plays key roles in pancreatic carcinogenesis and pro-
gression [21]. Also, it has been reported that FLT-1 is
variably expressed in pancreatic cancer, and correlates
significantly with disease stage [22]. It is also known
that activation of the PI3K pathway mediates resist-
ance to MEK inhibitors in KRAS-mutant cancers [23].
Figure 4 shows the detection rate for each method.

Here, the detection rate is calculated as the ratio of
the number of the genes reported to be associated
with pancreatic cancer and the number of genes
whose p-values are smaller than 0.05 [16–34]. EXAT
has a better detection rate than other methods.
Figure 5 shows a Venn diagram of the number of sig-

nificant genes at a significance level of 0.05. Although all
methods except RC-SKAT found DDB2 as significant,
the association of IPMN with these has not yet been ex-
perimentally verified.
A QQ plot of our EXAT method is shown in Fig. 6a,

showing an inflation pattern. Since our NGS data was
targeted, it contained many known or suspected on-
cogenes. In order to investigate whether the inflation
was caused by association or false positives, we per-
muted the disease status (case and control) from our
data, and then generated QQ plots. All QQ plots

showed a similar pattern without any inflation. Fig-
ure 6b shows one representative QQ plot. Since there
was no inflation after permutation, the inflation pat-
tern in Fig. 6a was indeed due to genes causal to
cancer.
Pairwise scatter plots of EXAT with SKAT, SKAT-O,

Burden, and SKAT-RC, shown in Fig. 7, did not reveal
any clear patterns.

Discussion
As shown in Fig. 7, EXAT p-values differed from
those of other methods, mainly because EXAT and
other methods use different types of test statistics for
detecting significant genes from NGS data. Our pro-
posed EXAT uses the GCMH statistic for an array of
contingency tables generated by the number of minor
alleles and SNVs. Under the assumption of random-
ness within each group, EXAT is derived under a
hypergeometric distributional assumption, conditioned
by marginal totals. Thus, the ratio of two GCMHs,
from case and control groups, is then used to com-
pare the extent of partial association between case
and control groups, and the p-values are obtained by
permutation tests. On the other hand, burden tests
aggregate information from all rare variants in a spe-
cific genomic region into a single summary variable,
and obtain p-values through the chi-square distribu-
tion or Hoteling’s t-test. SKAT is based on a regres-
sion model, using a variance-component test to
evaluate the significance of specific genes, using score
test statistics, which follow the asymptotic chi-square
distribution, under the null hypothesis.

Fig. 4 Detection Rate of EXAT and the competed methods

Table 6 P-values from EXAT, as compared to other methods,
for identifying the significance of 19 pancreatic cancer-
associated oncogenes

Gene name EXAT SKAT SKAT-O RC-SKAT Burden

PPP2R1A 0.046 0.012 0.012 0.001 0.047

AURKB 0.002 0.059 0.001 0.019 0.029

CYP2C19 0.006 0.099 0.027 0.016 0.032

KMT2D 0.002 0.082 0.013 0.227 0.027

KRAS 0.025 0.720 0.325 0.094 0.191

PIK3C2B 0.029 0.377 0.025 0.452 0.036

CDH5 0.016 0.056 0.006 0.351 0.012

MAPK1 0.036 0.018 0.018 0.018 0.110

FLT1 0.001 0.148 0.120 0.105 0.108

PIK3CB 0.036 0.183 0.274 0.183 0.395

NBN 0.037 0.218 0.330 0.130 0.671

MSH6 0.015 0.161 0.214 0.119 0.872

LCK 0.042 0.250 0.082 0.250 0.099

ARID2 0.015 0.189 0.277 0.155 0.404

ADAMTS20 0.026 0.511 0.289 0.658 0.176

LPP 0.013 0.359 0.277 0.011 0.196

KDM6A 0.016 0.332 0.016 0.481 0.024

GUCY1A2 0.012 0.398 0.023 0.408 0.031

THBS1 0.049 0.108 0.165 0.077 0.377
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In genetic association studies, individual covariate
effects are often need to be adjusted for, although
they are not of interest. Note that EXAT can handle
any individual covariates of interest. Since EXAT was
derived from the GCMH statistics from the subject
specific contingency table given in Table 2, each con-
tingency table is compared to its own hypergeometric
means to obtain the GCMH statistics. As a result,

each individual covariate effects are automatically ad-
justed for. When the interest lies in comparing a
group effects such as gender, the stratified analysis
can be applied.
Although EXAT uses a permutation procedure, it

does not require a heavy computation time. In our
IPMN data from SNUH consisting of 44 subjects with
8325 variants from 411 genes, it took 1.14 s to

Fig. 6 QQ plot of EXAT method. a A QQ plot from original data, and (b) A QQ plot from the data permuted disease status

Fig. 5 The Venn-diagram of the number of significant genes
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analyze the effect of single gene with 20 variants,
which is the average gene size in IPMN data, using a
standard desktop with a single processor Intel Core
2.5GHz CPU and 8GB RAM. For the entire analysis
of total 411 genes, EXAT required 3 h for 1000 per-
mutations. Alternatively, when we performed the
EXAT test using normal approximation from 50 per-
mutations, it took only 21 min, which demonstrates
that the computational time could be substantially
reduced when applying normal approximation.
Despite the superior performance of EXAT in dis-

tinguishing groups of different distributions, it does
have the following limitations that warrant further
improvement: (1) EXAT provides hypothesis testing
results only; (2) EXAT may be insensitive when asso-
ciations vary in direction (i.e., increase or decrease
phenotypes) across all subjects within a group.
Lastly, in future studies, we will first compare the per-

formance of EXAT with other existing tests for analyzing
NGS data from small samples, using power simulation
studies. Second, we can incorporate other types of
GCMH statistics, such as mean score or correlation

CMH, into our framework. The resulting test statistics
may reflect further biological information, improving
EXAT in terms of power. Lastly, we will also apply our
method to the study of other NGS data in future
research.

Conclusions
In this study, we proposed an association test, Exact
Association Test (EXAT), for identifying rare variants,
and assessed its performance against other methods of
analyzing small sample-size datasets associated with the
intraductal papillary mucinous neoplasm (IPMN) sub-
type of pancreatic cancer. Thus, EXAT is an exact
association test that does not require a large sample ap-
proximation. Our method is conceptually based upon
Fisher’s exact test, and performs statistical analyses using
the Generalized Cochran-Mantel-Haenszel (GCMH).
Since EXAT is valid for all sample sizes, it can be more

accurate than SKAT in small sample studies, because
SKAT relies on asymptotic tests, while EXAT does not.
Indeed, as indicated in Fig. 7, among the five methods,
only EXAT successfully identified KRAS, a well-known

Fig. 7 Comparison of pairwise scatter p-value plots of EXAT and other analysis methods. a EXAT vs SKAT, (b) EXAT vs SKAT-O, (c) EXAT vs
Burden, and (d) EXAT vs RC-SKAT
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oncogene almost always mutated in pancreatic cancer
[15]. This successful identification demonstrates that our
newly proposed method can effectively identify cancer-
susceptibility genes associated with the progression of
IPMN to pancreatic cancer. We believe that our EXAT
analyses will reveal rare but significant disease-
associated oncogenes, and their constituent pathways,
and thus increase our understanding of the etiology of
cancer and other maladies.
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