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There is still a lack of fast and accurate classification tools to identify the

taxonomies of noisy long reads, which is a bottleneck to the use of the promising

long-read metagenomic sequencing technologies. Herein, we propose de Bruijn

graph-based Sparse Approximate Match Block Analyzer (deSAMBA), a tailored

long-read classification approach that uses a novel pseudo alignment algorithm

based on sparse approximate match block (SAMB). Benchmarks on real sequencing

datasets demonstrate that deSAMBA enables to achieve high yields and fast speed

simultaneously, which outperforms state-of-the-art tools and has many potentials to

cutting-edge metagenomics studies.
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INTRODUCTION

Metagenomic sequencing is ubiquitously applied to comprehensively study environmental samples
(Methé et al., 2012; Gilbert et al., 2014; Cheng et al., 2020). It enables to reveal the compositions of
microbial communities in various environments and study the functions of microbial communities
and their interactions to environments. Furthermore, many new species can be discovered
without cultivation in laboratories. With the rapid development of high-throughput sequencing
technologies, metagenomic sequencing is promising for the analysis of microbiome. Especially
due to its ability of real-time and portable sequencing of the samples (Quick et al., 2016), long-
read sequencing technologies have enormous potential to metagenomic studies. However, with the
characteristics of long-read sequencing data, analytical challenges still remain.

In metagenomic studies, a fundamental task is to recognize the composition of the microbial
community of the sequenced sample. With the ever-increasing number of sequenced genomes,
it is feasible to accomplish this task by using the libraries of assembled genomes [e.g., RefSeq
(Pruitt et al., 2014)] as reference to implement the taxonomy classification of sequencing reads.
A common approach is to align the reads against the reference (Altschul et al., 1990; Huson et al.,
2007; Cheng, 2019); however, this is not viable to handle a large amount of metagenomic reads
(hundreds of gigabases) due to a low processing speed.Moreover, there are several specific technical
issues in the classification of metagenomic long reads, which makes it an even more difficult
computational task. Firstly, most of the long reads produced by mainstream platforms (such as
ONT and PacBio platforms) are error-prone, which requires read classifiers to be noise-robust.
Secondly, the reference is usually incomplete, i.e., many reads could be from unknown genomes,
which requires read classifiers to handle the divergences between the sequenced genomes and their
related genomes in the reference well. Thirdly, there are many common sequences among closely
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related genomes (e.g., various strains of bacteria species), which
require read classifiers to handle the ubiquitous repeats in
the reference well. Most state-of-the-art tools, such as Kraken
(Wood and Salzberg, 2014; Wood et al., 2019), Centrifuge
(Kim et al., 2016), Kaiju (Menzel et al., 2016), MetaOthello
(Liu et al., 2018), are designed for short reads. Generally, they
use pseudo alignments, i.e., the exact or approximate matches
from reads to reference as signals to achieve fast speed without
loss of accuracy on short reads. However, most of them rely
on the assumptions on the long exact matches and/or low
divergences between reads and reference, which might fail at
the issues mentioned above. Long-read aligners (Li, 2018) can
be used as alternatives; however, they are still time-consuming,
which could not be well-suited for large-scale datasets and/or
real-time tasks.

Herein, we present de Bruijn graph-based Sparse
Approximate Match Block Analyzer (deSAMBA), a novel
approximate match-based pseudo alignment approach for the
classification of long reads. deSAMBA is motivated by the fact
(Chaisson and Tesler, 2012) that sequencing errors are unevenly
distributed along the reads. Many long-read aligners (Chaisson
and Tesler, 2012; Li, 2013, 2018; Sedlazeck et al., 2018; Hu et al.,
2019, 2020, 2021; Govindaraj et al., 2020; Hasan et al., 2020a,b)
also take advantage of this model to find short exact matches
(i.e., “seeds”); however, deSAMBA looks for longer approximate
match blocks between reads and reference. Previous studies
(Liu et al., 2017) indicate that such blocks can be specifically
mapped to reference under the circumstance of sequencing
noise, so it is possible for them to become noise-robust features
for read classification.

RESULTS

Overview of de Bruijn Graph-Based Sparse
Approximate Match Block Analyzer
Approach
deSAMBA is composed of some tailored designs and
implementations to achieve high yields and fast speed
simultaneously. Basically, it uses Unitig–Burrows–Wheeler
transform (BWT) data structure (Guan et al., 2018) to index
the de Bruijn graph of reference sequences and finds highly
similar approximate match blocks through the index. These
blocks are called sparse approximate match blocks (SAMBs), as
they are usually sparsely placed along reads. Mainly, deSAMBA
recognizes the taxonomy of a give read in the following four
major steps.

(1) deSAMBA partitions the read into a series of segments. For
each of the segments, it finds the local region having highest
number of consecutive k-mer matches as a seed block.

(2) For each of the seeding blocks, deSAMBA retrieves a set
of maximal exact matches (MEMs) to the unitigs of the
reference and extends the MEMs to generate SAMBs by
local alignment.

(3) deSAMBA greedily merges the SAMBs and extends the
merged SAMBs by sparse dynamic programming (SDP)-
based pseudo alignment against local reference sequences.

(4) deSAMBA scores the extended SAMBs and identifies the
taxonomy of the read by the highest scored SAMB.
Moreover, it also supports to output the SAMBs as pseudo
alignment results.

A schematics illustration is in Figure 1.

Benchmark on Pseudo Metagenomic
Datasets
We benchmarked deSAMBA with a series of pseudo
metagenomic datasets and a real mock metagenome dataset.
At first, we employed 145 real datasets from single genomes
as pseudo metagenomic datasets (86 ONT datasets and 59
PacBio datasets; Supplementary Table 1) and implemented
deSAMBA, Centrifuge, Kaiju, and Minimap2 on them. Here,
16,284 complete genomes (8,621 bacterial, 251 archaea, and
7,412 viral genomes, totaling ∼35 Gbp) downloaded from
NCBI RefSeq were used as reference. There are 49 ONT and
22 PacBio datasets (called “WR datasets”) whose ground truth
genomes are in the reference, and for each of the remaining
datasets (called “NR datasets”), there is at least one genome
in the reference having common ancestry at species or genus
level to its ground truth genome. The sensitivity, accuracy,
F1 score, and speed of read classification were assessed.
Refer to Supplementary Notes for more details about the
implementation of the benchmark.

Primarily, four issues are observed from the results (Figure 2,
Supplementary Figure 1):

(1) deSAMBA has good classification yields. deSAMBA had
slightly higher F1 score than that of Minimap2 and
outperformed Centrifuge and Kaiju on both of sensitivity
and accuracy (Figure 2A, Supplementary Figures 1A,B).
Furthermore, we assessed the classifications on the WR
datasets (Figure 2B, Supplementary Figures 1C,D), and
similar trends were observed. These results indicate that
Centrifuge and Kaiju are easier to be affected by sequencing
errors, even if the reads are from known genomes. This
is mainly because such short read toward approaches rely
on the assumptions of long exact matches and/or few
divergences between reads and reference, which does not
stand for long reads. However, as approximate matches,
SAMBs are much more noise-robust, which helps find the
signatures to implement a precise classification.

(2) deSAMBA has good ability to classify the reads from
unknown genomes. We assessed the classifications on the
NR datasets (Figure 2C, Supplementary Figures 1E,F) and
observed that deSAMBA also had the highest F1 score. We
investigated the intermediate results and found that this is
because the generated SAMBs usually had relatively large
lengths and low edit distances, so that most of them were
specifically mapped to the reference genomes closely related
to the ground truth genomes of NR datasets. Moreover,
all the approaches have reduced sensitivities and accuracies
on NR datasets mainly due to the divergences between
the ground truth genomes and their related genomes in
the reference.
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FIGURE 1 | A schematics illustration of de Bruijn graph-based Sparse Approximate Match Block Analyzer (deSAMBA) approach. (A) The generation of seed block. A

read is partitioned into fixed length segments. For a segment, all its l-mers (marked by blue round dots) are matched to reference through a bloom filter-based index,

and the local region having the largest number of consecutive l-mer matches (marked by a blue dashed rectangle) is determined as a “seed block.” (B) The generation

(Continued)
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FIGURE 1 | of initial sparse approximate match blocks (SAMBs). The seed blocks are matched to the unitigs of the RdBG through the Unitig–Burrows–Wheeler

transform (BWT) index. Each of the matches is extended to a U-MEM. If a U-MEM is distanced from the two ends of the matched unitig by at least 12 bp (like the

U-MEM in blue color), deSAMBA extends it to an approximate match by aligning the corresponding read part against the unitig. Further, the generated approximate

match is mapped to the various copies of the unitig to be initial SAMBs (the blue unitig has 3 copies in this case). Moreover, if a U-MEM is within 12 bp of either end of

the unitig (like the U-MEM in yellow color), deSAMBA maps the U-MEM to the various copies of the unitig at first (the yellow unitig has three copies in this case), and

the mapped matches are as R-MEMs. For each of the R-MEMs, deSAMBA separately aligns the corresponding read part against the local reference sequence to

generate a distinct initial SAMB. (C) The generation of extended SAMB. deSAMBA merges nearby initial SAMBs to generate a SAMB chain. In the figure, three initial

SAMBs are chained, and the read part of the corresponding SAMB chain is extracted. Meanwhile, a local reference sequence is also extracted by extending the

upstream and downstream boundaries of the SAMB chain on reference (1,000 bp are extended for both upstream and downstream). A hash table is then built for

read to find all the short matches between the local reference and the read part. Further, a sparse dynamic programming (SDP)-based pseudo alignment is

implemented between the local reference and the read part to generate an extended SAMB.

FIGURE 2 | The results of various approaches on the 145 pseudo-metagenomic datasets. (A–C) The average sensitivity, accuracy, and F1 score on all the 145

pseudo-metagenomic datasets (A), the 71 WR datasets (B), and the 74 NR datasets (C). The sensitivity, accuracy, and F1 score are defined as S = NTP/NT ,

A = NTP/NC, and F1 = 2SA/
(

S+ A
)

, respectively, where NT , NC, and NTP are, respectively, the total numbers of all the reads, the reads being classified, and the

reads being correctly classified. (D) The speed of the approaches, which was assessed by Kbp processed per second with eight CPU threads.

(3) deSAMBA enables to identify the reads from various strains,
which is an on-demand function. To assess this ability, we
did an assessment with six ONT datasets having strain-level
labels (lines 13, 14, 19, 24, 31, 48 of Supplementary Table 1)
that a read was considered as correctly classified only if it was
assigned to its ground truth strain. deSAMBA outperformed
Minimaps2 slightly and Centrifuge and Kaiju significantly
(Supplementary Figure 2).

(4) deSAMBA has fast speed. deSAMBA is about 4
and 2 times faster than Minimap2 and Kaiju,
respectively, and slower than Centrifuge (Figure 2D,
Supplementary Figures 1G,H). Moreover, deSAMBA also
had a nearly linear speedup with increasing number of CPU
threads (Supplementary Figure 3). Besides, the memory
footprint of deSAMBA is 69 GB. Comparing to that of

Centrifuge (9 GB), Kaiju (31 GB), and Minimap2 (76 GB),
this is acceptable, especially for modern servers.

Overall, deSAMBA achieved a better balance between yields and
speed than state-of-the-art pseudo alignment-based approaches,
and its fast speed more suited to large-scale datasets and
real-time tasks than long-read aligners. It is also observed
that deSAMBA had <80% sensitivities on seven WR datasets
(Supplementary Figure 4), indicating that they were still not
handled well. We further aligned those reads directly to their
reference by BLASTN (Boratyn et al., 2013). The results
(Supplementary Figure 5) indicated that, on average, BLASTN
failed to align nearly 30% of the reads, similar to the classification
results of deSAMBA. So, we realized that these datasets could
have relatively poor sequencing quality, which affect the yields
of deSAMBA.
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Benchmark on Real Mock Community
Dataset
Further, we benchmarked deSAMBA, Minimap2, Centrifuge,
Kaiju, and MetaMaps (Dilthey et al., 2019) with a real ONT
dataset (SRA accession number: ERR3200811, 367173 reads and
2.36G bases in total) from a mock community [GIS20 (Bertrand
et al., 2019)] that consists of 20 species with abundances range
from 0.1 to 30% (Supplementary Table 2). We also composed
a set of ground truth taxonomies (GTTs) for the assessment
(Supplementary Table 2). That is, if a GIS20 species has its own

genome in the reference library, the taxonomy ID of the genome
was used as the GTT of the species; otherwise, if there are
genomes in the reference library that have a common ancestry
at species or genus level to the GIS20 species, the taxonomy ID of
the lowest common ancestry was used as the GTT. It is also worth
noting that two GIS20 species did not have GTTs, since there was
no genome in the reference that has a common ancestry to them
at the genus or lower level.

The sensitivities and false discovery rates (FDRs) of the
approaches were assessed. The results (Figures 3A,B) indicate

FIGURE 3 | The results of various approaches on GIS20 mock metagenome dataset. (A–C) The sensitivity, false discovery rate (“FDR”), false discovery rate at species

or higher level (“FDR-species”) of various approaches on GIS20 mock metagenome dataset. Herein, the sensitivity is defined as NG/NT , and the FDR is defined as

NF/NC, where NT is the total number of bases in the dataset, NG is the number of bases being classified to ground truth taxonomies (GTTs), NC is the number of

bases being classified, and NF is the number of bases being classified to non-GTT taxonomies. It is worth noting that species-level taxonomy IDs were used as GTTs

instead of strain-level ones when calculating FDR-species. (D) Log-transformed Pearson’s correlation (“LTP”) between the proportions of bases classified to GTTs and

the corresponding expected abundances. It is worth noting that the proportions of 18 GTTs were used to calculate the correlations, since two of the GIS20 species

did not have their GTTs in the reference. (E) The speed of the approaches, which was assessed by Kbp processed per second with eight CPU threads.
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that deSAMBA had the highest sensitivity and lowest FDR,
indicating that overall, it had the best yields on the GIS20
dataset. It is worth noting that the FDRs of all the approaches
are quite high (>10%). This is mainly because 14 of the GIS20
species had strain-level GTTs, i.e., there were not only their
own genomes but also other strains of the same species in
the reference. Under such circumstance, the classification is
considered as correct only if the bases are classified to the
correct strains. However, there are ubiquitous long common
sequences among the various strains of the species, so that it
was extremely difficult to recognize the strain-level taxonomy
entities of the reads. We further used the corresponding species-
level taxonomy IDs as GTTs for the 14 GIS20 species and
reevaluated the classification results and observed much lower
FDRs (Figure 3C).

We further assessed the proportions of bases being classified to
various GTTs. Log-transformed Pearson’s correlations between
the proportions of classified bases to GTTs and the corresponding
expected abundances were calculated. The results (Figure 3D)
suggested that deSAMBA achieved the highest correlations,
indicating that its classifications mostly coincide with the
ground truths of the dataset. Moreover, no large divergence was
observed between the proportions of classified bases and their
corresponding GTTs, which suggests that deSAMBA has the
ability to handle various species well. The correlation of Kaiju was
quite low mainly because it has poor ability to produce correct
strain-level classifications.

The speed of the approaches was also assessed (Figure 3E),
and Centrifuge was still the fastest (5,870 Kbp/s). deSAMBA
(2,860 Kbp/s) was the best runner-up and the fastest long read-
toward approach, i.e., about 3.5 and 18.5 times faster than that of
Minimap2 (803 Kbp/s) and MetaMaps (155 Kbp/s).

DISCUSSION

Due to the combination of the high sequencing errors, the large
sequence divergences between sequenced unknown genomes and
reference genomes and the large size of reference sequences, it is
still a non-trivial task to implement fast and accurate long-read
classification. With the rapid growth of long-read sequencing
metagenomics data, it has become a pressing need to develop
more advanced computational approaches to break through this
bottleneck with the use of metagenomic long reads. Herein,
we present deSAMBA to show how to use SAMBs as a kind
of useful signal to implement fast and accurate metagenomic
read classification. Mainly, deSAMBA has three advantages to
long-read classification as follows:

Firstly, as approximate matches, SAMBs enable to better
handle the sequencing noise and the divergences between
reference and related genomes, and this feature helps to achieve
higher sensitivity than that of short read toward algorithms that
usually use exact matches or only allow low divergences between
reads and reference.

Secondly, as longer matches, SAMBs are feasible to handle the
ubiquitous repeats in reference, and this feature helps improve
the specificity of the matches and effectively narrow down the

searching space during read classification, which paves the way
to implement accurate classification. Moreover, the narrowed
searching space also helps accelerate read classification speed.

Thirdly, deSAMBA has several tailored implementations,
especially on the Unitig–BWT index and pseudo alignment
method. They help to achieve high performance with moderate
cost of computational resources that is affordable to modern
servers and high-performance clusters (HPCs). This is well-
suited to large-scale datasets and real-time tasks.

The benchmark on a series of real sequencing datasets
suggests that deSAMBA improves the yields of long-read
classification substantially, comparing to state-of-the-art pseudo
alignment-based read classification tools. Meanwhile, deSAMBA
can produce equally good classifications to state-of-the-art long
aligners, while it is times faster. Considering its yields and
performance, deSAMBA achieves a good balance, and it is a
promising productivity tool in metagenomic data analysis. We
believe that deSAMBA has enormous potential to cutting-edge
metagenomic studies.

METHODS

The Indexing of Reference Sequences
deSAMBA organizes the reference sequences in a de Bruijn
graph-based approach, which is initially proposed in deBGA
(Liu et al., 2016). To reduce memory use, we used Unitig–BWT
data structure (Guan et al., 2018) to index the unitig of the de
Bruijn graph of the given reference sequences. More precisely,
deSAMBA constructs the de Bruijn graph of reference sequences
at first and extracts the unitigs. The BWT is then constructed
for the concatenated unitigs as the Unitig–BWT of the reference
sequences. This indexing approach has good balance between
retrieval speed and RAM space cost. It is also worth noting that
instead of assigning a unique taxonomy ID like the previous study
(Guan et al., 2018), deSAMBA maintains a position list for each
of the unitigs. For a certain unitig, each item of the position list
records a genomic position in reference, which represents the
location of a specific copy of the unitig.

In addition to the Unitig–BWT index, deSAMBA also builds
a bloom filter-based index, which is used as an auxiliary index to
the generation of SAMBs. The bloom filter-based index enables
to give a quick answer whether a k-mer in a given read appears
in the reference, and it helps to fast find the candidate positions
that are likely to be within the read blocks highly similar to local
reference sequences.

With the Unitig–BWT index and the auxiliary bloom filter-
based index, deSAMBA classifies a given read in the following
four steps.

The Generation of Seed Blocks
deSAMBA initially partitions a given read into 100-bp-long
segments. For each of the segments, deSAMBA extracts all its
l-mers and separately tests each of the l-mer with the bloom
filter-based index. The l-mers that passed the bloom filter are
recorded, and deSAMBA finds the local region in the segment
having themost consecutive passed l-mers, i.e., the longest passed
l-mer chain, as a “seed block.” It is also worth noting that the l
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parameter is automatically configured in advance according to
the size of the reference, and it is set as 15–19 bp in most of
the cases.

This idea derives from the characteristics of bloom filter. With
a bloom filter-based index, there could be a proportion of false
positives, i.e., a passed k-mer could be a false-positive “hit” to
reference. However, the false-positive rate is relatively low, so
that a seed block is more likely to be a true positive >l bp
long exact match to the reference than false positives. Therefore,
deSAMBA assumes that the seed blocks are long exact matches
and uses them as candidates to generate SAMBs. Moreover, it
is not problematic if a seed block is a false-positive match, since
deSAMBAwould retrieve the corresponding sequence of the seed
block through the Unitig–BWT index and filter it out if no such
sequence can be found.

The Generation of Initial Sparse
Approximate Match Blocks
For each of the seed blocks, deSAMBA extracts all the suffixes of
the seed block and efficiently retrieves the maximal exact matches
between the suffixes and the unitigs of the reference through
the Unitig–BWT index. All the retrieved matches are called U-
MEMs, and deSAMBA separately checks each of them. If a U-
MEM is fully covered by another one, deSAMBA would filter it
out. After the filtration, the longest eight remaining U-MEMs are
used to generate initial SAMBs.

For each of the U-MEMs, deSAMBA checks if the match is
distanced from both of the two ends of the located unitig by
at least 12 bp. If so, deSAMBA uses Landau–Vishkin algorithm
to compose an alignment between the read part and unitig to
extend the U-MEM to a longer approximate match block. The
extension is limited to the flanking 12 bp of the located unitig
of the R-MEM, and it is expected that the alignment has a low
edit distance, and a quality score is assigned to the generated
approximate match block. The quality score is calculated based
on all the matched and mismatched bases in the alignment with
the following equations:

S =
∑

matched
bases

Smatch × Nmatch +
∑

mismatched
bases

Smis × Nmis

+ SRef _Complex_Penalty (1)

Smatch = −10× lg

(

0.25

1− E

)

(2)

Smis = −10× lg

(

0.75

E

)

(3)

SRef _Complex_Penalty = −10× lg
(

Lreference
)

(4)

Herein, Smatch and Smis are the scores ofmatched andmismatched
bases, SRef _Complex_Penalty is a reference size-based penalty that
is related to the total length of the reference Lreference, Nmatch

and Nmis are, respectively, the numbers of matched bases and
mismatched bases in the alignment, and E is a parameter
representing the expected sequencing error rate (default value:
0.15). After the extension, deSAMBA maps the alignment block

to all the copies of the unitig to produce a series of “generated
approximate match blocks.”

If the distance between the U-MEM is within 12 bp of either
end of its located unitig, deSAMBA produces approximate match
blocks in a different way. That is, deSAMBA maps the U-
MEM to all the copies of its matched unitig at first, i.e., the U-
MEMs are converted to one or more MEMs to local reference
sequences (each of them is called an “R-MEM”). And then,
deSAMBA separately extends the R-MEMs by Landau–Vishkin
algorithm and scores the generated approximate match blocks in
a similar approach.

After scoring, the generated approximate match blocks having
>30 quality scores remained as “initial SAMBs,” and other ones
are discarded. Moreover, each of the SAMBs can be written as a
4-tuple: SAMBi =

(

rSi , r
E
i ,R

S
i ,R

E
i

)

, where rSi and rEi are the start

and end positions on the read, and RSi and REi are the start and
end positions on the reference, respectively.

The Generation of Extended Sparse
Approximate Match Blocks
deSAMBA greedily merges initial SAMBs from upstream to
downstream. Two SAMBs are combined if their distance is <300
bp on the reference, and the difference between their distances
on the read and on the reference is <30 bp. After this processing,
the initial SAMBs are combined as a series of SAMB chains. Each
SAMB chain can be written as a series of SAMBs:

SCi =
{

SAMBij, j = 1 . . . |SCi|
}

(5)

where |SCi| is the number of SAMBs of SCi. Moreover, it
can be derived that the read part and the local reference

sequence covered by a SAMB chain SCi are
[

rSi1, r
E
i|SCi|

]

and
[

RSi1,R
E
i|SCi|

]

, respectively.

deSAMBA further extends the SAMB chains by a SDP-based
pseudo alignment approach. For a SAMB chain, SCi, this is done
in the following four sub-steps.

(1) deSAMBA extracts all the 9-mers within
[

RSi1 − LR,REi|SCi|
+ LR

]

and indexes them with a hash-

table-based data structure. The parameter LR (default value:
1,000) defines an extended local region in reference.

(2) deSAMBA retrieves all the 9-bpmatches between
[

rSi1, r
E
i|SCi|

]

and
[

RSi1 − LR,REi|SCi|
+ LR

]

through the 9-mer hash table

and combines all the consecutive 9-mer matches into one or
more longer exact matches.

(3) The remainingmatches are chained in an SDP approach with
the following function:

f
(

Matp

)

= max

{

max
p>q≥1

{

f
(

Matp
)

+ L
(

Matp
)

− θ
(

p, q
)}

, L
(

Matp
)

}

(6)
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θ
(

p, q
)

=















0.1×
((

MatRp −MatRq

)

−

(

Matrp −Matrq

)) if MatRp −MatRq < 600

∞ otherwise

(7)

where Matp and Matq are the p-th and q-th matches (sorted
by reference position) and they are not overlapped,MatRp and

MatRq are their positions on the reference, Matrp and Matrq
are their positions on the read, respectively; f

(

Matp
)

is the
scoring function for the Matp, L

(

Matp
)

is the length of Matp,
and θ

(

p, q
)

is a penalty for the two linked matches, Matp
and Matq.

(4) After the SDP, the optimal chain of matches is obtained
through backtracking, and it recorded as the “extended
SAMB” generated based on SCi.

The Classification of the Reads
deSAMBA collects all the generated extended SAMBs and sorts
them by their scores calculated in the SDP process. deSAMBA
then determines the primary classification of the reads by the
taxonomy entity of the reference genome corresponding to
the extended SAMB with highest score. The taxonomy entities
of other extended SAMBs are as secondary classifications.
Moreover, the SAMBs are also output as the partial pseudo
alignments of the read.

Implementation of Benchmark
All the benchmarks were carried out on a server with four
Intel E7-4820 CPUs (32 cores) and 1 TB RAM running Ubuntu
Linux OS. All the benchmarked classification tools were run in
eight CPU threads. Some detailed information about employed
reference sequences, the real sequencing datasets, and the
command lines used for read classification is as follows.

We downloaded all reference sequences from NCBI RefSeq
database. A genome sequence from RefSeq database was
employed only if it is marked as “complete genome.” There
are totally 8,621 bacterial, 251 archaea, and 7,412 viral genomes

being used. The RefSeq ID and Taxonomy ID are described in
“reference describe.txt.” For kaiju, the reference index was built
using NCBI protein database due to its specifically designed
read classification approach. We downloaded the 145 real
sequencing pseudo-metagenomic datasets from NCBI Sequence
Read Archive (SRA). The datasets are from various bacterial,
viral, or archaeal genomes. It is also worth noting that for all
the datasets, only the reads longer than 1,000 bp were used for
the benchmark.
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