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Abstract: Aim: A monoterpene and bioactive component of the plant Rhodiola rosea (R. rosea), rosiridin
has beneficial effects on the human central nervous system and enhances brain function. The
goal of this scientific study was to determine if rosiridin might shield rats from neurocognitive
problems induced by scopolamine. Methods: To track the potential toxicities in rats, the acute
toxicity in rats was clarified. Rosiridin at a dose of 10 mg/kg was tested in rats for 14 days. At the
conclusion of the investigation, behavioral parameters that were used to identify the rats’ cognitive
and motor abilities were evaluated. Several biochemical parameters were estimated using the
prepared homogenate, including acetylcholine esterase (AChE), choline acetyltransferase (ChAT),
radical scavengers produced by the body (Catalase-CAT, superoxide dismutase-SOD, and reduced
glutathione-GSH), indicators of oxidative and nitrative burnout, pro-inflammatory (Interleukins-
IL-1β, IL-6, interferon gamma IFN-γ, and tumor necrosis factor-TNF-α), and cell apoptosis caspases
3 and 9. Results and Conclusion: A significant behavioral parameter restoration was seen in the
rosiridin-treated group, including reduction in latency time during acquisition and retention trial
in the Morris water maze test, and percentage of spontaneous alterations in the y-maze test, when
compared to the disease control group that received scopolamine; rosiridin also altered the oxidative
stress and neuroinflammatory markers, as well as restoring Ach and ChAT activities and normalizing
GSH, SOD, MDA, TNF-α, nitrate, IL-1β, IL-6, IFN-γ, caspases 3 and 9 levels. The results imply that
rosiridin limits the effect of scopolamine on rat cognitive function.

Keywords: acetylcholinesterase; choline acetyltransferase; neuroprotective; rosiridin

1. Introduction

Cognitive abilities are built on the foundations of memory and learning [1]. Neurode-
generative diseases, which are becoming more frequent as individuals become older, are
associated with cognitive impairment [2]. It is now a significant worldwide public health
concern [3]. Memory impairment in Alzheimer’s disease (AD) is marked owing to a surge in
β amyloid, alterations in the cholinergic network, phosphorylated tau protein, and perma-
nent cognitive impairment [2]. The number of citizens dealing with cognitive impairments
has steadily increased with the passage of time, but the condition remains so crippling that
it tends to become a huge social and financial liability on society [4]. The therapies for the
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ailment include the drugs that block or inhibit cholinesterase and N-methyl-D-aspartate
binding site antagonists that are used to reduce or delay AD symptoms [5,6]. However,
there is currently no cure for the condition. As a result, scholars everywhere across the
world are looking for novel ways to address AD in a safe and efficient manner [6]. As
a consequence, there is now extensive medicinal development concerning the memory-
enhancing qualities of herbal remedies [7].

The muscarinic cholinergic receptor antagonist, scopolamine, promotes memory im-
pairment and partially imitates AD and dementia [8]. Allied memory deficit is among
the most often utilized pharmacological models in learning and memory research [9]. It
inhibits the propagation of neural signals by blocking muscarinic acetylcholine receptors,
causing neurocognitive problems [1,9]. Several cognitive animal models have been devel-
oped to examine cognitive characteristic, each having its unique path and physiological
underpinning [10]. Scopolamine inhibits memory and learning in rats by altering cen-
tral cholinergic processes. It operates as a competitive antagonist to block muscarinic
receptors [10,11]. Scopolamine, as an anticholinergic, prevents ACh from attaching to
receptors, resulting in an increase in Ach [12]. As a result, the hippocampal nerves are
damaged, leading to cognitive decline and learning difficulties [13]. This is analogous to
how AD causes the death of cortical cholinergic neurons and reduced central cholinergic
function [13].

In laboratory development, herbal remedies and synthetic molecules with anti-inflammatory
and antioxidant properties, and molecules that alter the cholinergic network have been
found to be neuroprotective [14–16]. The largest family of plant secondary metabolites,
monoterpenes, which are composed of hydrocarbons, are frequently found in essential
oils. The discovery and manufacturing of novel physiologically active chemicals largely
depends on monoterpenes and their derivatives [17]. It has been discovered that monoter-
penes have antidiabetic [18,19], cardioprotective [17,20,21], anti-inflammatory [17,22],
antioxidant [23], antihyperlipidemic [24], anticancer [17,25], antimicrobial [17,26],
antiviral [17,25], immunomodulatory [17,25], and antispasmodic actions [17,25]. Monoter-
penes have lately attracted much attention for their ability to prevent age-related neurode-
generation and modulate neuronal activity [27]. Human and animal dietary supplementa-
tion with monoterpene-rich plant or food extracts has been shown to improve cognitive
function, implying that susceptible neurons are protected, existing neuronal function is
enhanced, and neuronal regeneration is stimulated [28]. Monoterpenes decrease inflam-
matory mediators, boost antioxidant enzymes, reduce oxidative damage, and modify
gene expression levels in neurological disorders [29]. In several models of neurodegener-
ative disorders, several monoterpenes have been shown to exhibit neuroprotective ther-
apeutic potential [29,30]. Rosiridin is a monoterpene and bioactive element of the plant
Rhodiola rosea (R. rosea) with remarkable monoamine inhibitory potential and is beneficial
in the management of depressive episodes and early onset dementia [31–33]. The root of
Rhodiola species (Crassulaceae) is used in traditional remedies in the northeast Asian region
as an antiasthmatic, a bleeding cure, and an antiaging therapy [34,35]. Previous research has
demonstrated that Rhodiola root water extracts have beneficial effects on the human central
nervous system and enhance brain function [36,37]. In addition to being antioxidants, they
are also considered to be good for one’s health [38]. According to previously published
research, monoamine oxidase (MAO) activation has a crucial role in the pathogenesis of AD,
including the creation of amyloid plaques from Aβ production. Rosiridin can be used to
treat early-onset dementia and despair because it inhibits monoamine oxidase A and B [39].
Rosiridin has recently been found to have an anti-Huntington’s effect through oxidative
stress/acetylcholine esterase (AChE), and inhibition and modulation of succinate dehydro-
genase, nitrite, and brain-derived neurotrophic factor levels against 3-nitropropionic acid
in rodents [39]. However, no research has been completed on the impact of rosiridin on
cognitive impairment caused by scopolamine. As a result, the main goal of this study was
to determine if rosiridin may help with scopolamine-induced amnesia.
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2. Scientific Methods
2.1. Chemicals

Scopolamine and rosiridin were used in this study (Sigma-Aldrich, St. Louis, MI,
USA). High-quality reagents and chemicals were used in the experiment.

2.2. Animals

Male adult Wistar rats (n = 6) weighing 200 ± 20 g (aged 8 weeks) were obtained
and maintained under the laboratory settings specified by the CPCSEA recommendations,
which comprise a humidity range of 40–50%, a temperature range of 23 ± 2 ◦C, and a
12–12 light–dark cycle. The rats were housed in polypropylene cages, and they had access
to unlimited amounts of food pellets and water.

2.3. Acute Oral Toxicity

The Organization for Economic Cooperation and Development (OECD) recommen-
dations for acute oral toxicity (LD50) of rosiridin were followed (ANNEX423). For the
acute oral toxicity, rosiridin was orally administered to the rats at the maximum dosage.
However, no abnormalities were discovered. We chose a treatment dosage of 10 mg/kg
based on the results of this trial.

2.4. Experimental Design

To elicit cognitive deficits in animals, 1 mg/kg i.p. scopolamine was injected [40,41].
Rosiridin was administered orally to animal for fourteen days.

A combination of 24 animals were allocated to each of 4 categories and given the
following condition: Group 1 (saline control) and Group 2 (scopolamine control) were
orally given 0.5% sodium carboxy methyl cellulose vehicle 3 mL; Group 3 were given
rosiridin 10 mg/kg (rosiridin oral treatment); and Group 4 were given rosiridin 10 mg/kg
per se, respectively (rosiridin per se). Day 10–14 (5 days) of the 14-day treatment plan,
1 h after the abovementioned oral treatments, Group 1 was given i.p. standard saline
solution 3 mL/kg/day and scopolamine 1 mg/kg (i.p.) was administered to Group 2 and 4.
Behavioral assessments for rats were completed 2 h after scopolamine therapy during the
medication regime. Animals were slaughtered and brains were retrieved for biomarkers on
day 15 following behavioral investigations (Figure 1).
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2.5. Behavioral Parameters to Screen for Memory Impairments
2.5.1. MWM (Morris Water Maze) Examination

The MWM examination was measured using the method proposed by Aksoz et al., 2019 [42].
The MWM round tank was split into four exactly equivalent quadrants or zones. For the
initial four days, an escape platform was kept 1 cm beneath the liquid of any one of the
quadrants. Small white materials were strewn across the surface of the liquid. One of
the animals was placed in one of randomly sampled spots in the tank on each day of the
learning exercise (three tests per event). The animal was placed in the tank to begin the ex-
periment. Whenever the animal discovered and stepped onto the platform, the experiment
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was called off, and the average escape latency was calculated. The highest exposure time
was 60 s. If the animal did not reach onto the platform within 60 s, it was initially pushed
upon this platform and 60 s escape latency was noted. The animal was retained on the
stand for 20 s between sessions. The animals were delicately wiped and put in respective
home cages just after test was conducted at all three beginning points. The rat’s memory
of the position of the concealed platform for 60 s was assessed during 5th day of ”probe
trial”. During this phase, the platform was removed from the tank. Thus, the latency time
to find the proper quadrant where the platform was previously and the time spent in this
compartment were recorded.

2.5.2. Y-Maze Test

The Y-maze test was carried out according to the instructions in Djeuzong et al., 2019 [40].
The Y-maze test, which recorded random rearrangements, was used to examine the animals’
working memory. A wooden maze with three independent arms (40 cm long, 35 cm tall,
and 12 cm wide) was used, each staggered by a 120◦ inclination. To distinguish them, the
walls of each arm were adorned with various designs and named X, Y, and Z. Rats were
individually placed at the end of a maze’s branch for free exploration. The sum of visits at
each arm was counted throughout the course of 5 min. To mitigate smells, the device was
cleaned with 10% ethanol after every exercise. Three sequential entries in three separate
arms, such as XYZ, ZXY, or YZX, were defined as a random alternation.

2.6. Parameters of Biochemistry
2.6.1. Excising a Brain Tissue

Animals were sacrificed following ketamine (80 mg/kg) and xyline (16 mg/kg) anaes-
thesia, and the entire brain was taken and preserved at a temperature of below −50 ◦C [42].

2.6.2. Creating a Homogenate from Brain Cells

The animals’ brains were thoroughly rinsed with ice-cold physiological saline. Phos-
phate buffer of neutral pH was used to consolidate cerebral samples. The samples were
centrifuged, and the supernatant was employed for biochemical testing.

2.7. Neurochemical Quantification
2.7.1. Cholinesterase (AChE) and Transferase (ChAT) Functioning

To assess AChE activity expressed as µM/mg protein, a technique identical to that
published by Ellman et al., (1961) was used [43,44]. ChAT levels in brain tissue were tested
using commercial kits.

2.7.2. Biological Scavengers

Ellman measured reduced glutathione (GSH) using a method that had previously
been described [45]. The Misra and Frodvich approach were used to assay the superoxide
dismutase (SOD) [46–48]. The Catalase activity was measured according to the technique
reported by Afzal et al., 2021 [15,46].

2.7.3. Sensors of Oxidative and Nitrative Stress

The Wills technique was used to calculate malondialdehyde (MDA) in brain ho-
mogenate. The MDA concentration was expressed as nM/mg protein [47]. The calorimetric
approach was used to determine nitrite, a measure of nitrite generation [48]. A sodium
nitrite calibration graph was used to determine the nitrite content, and the results were
expressed in nanograms per milligram of protein [45,49].

2.7.4. Cytokines That Promote and Inhibit Inflammation

An immunoassay kit was used to measure the proinflammatory cytokines tumor
necrosis factor (TNF-α), interleukins(IL-6), IL-1β, and interferon gamma (IFN-γ) expression.
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Calibration curves were used to calculate indicator concentrations, which were then stated
in pg/mL protein.

2.7.5. Programmed Cell Death Indicators

The caspases 3 and 9 were substantiated using an ELISA kit. The levels of these suicide
biomarkers were assessed in nanograms per milliliter.

2.8. Statistical Analytics

Graph Pad Prism was used to examine the data. The information is presented in the
form of median standard deviation of the mean (S.E.M.). Morris water maze assessment
were performed using two-way analysis of variance (ANOVA) followed by the Bonferroni
post analytic test, and other assessment was done by one-way ANOVA by Tukey’s analytic
test. The relevance threshold was established at p < 0.05.

3. Results
3.1. MWM Acquisition Process

Animal cognition was hindered by scopolamine ingestion, as seen by situation es-
calating to disengage from floating and approach the static platform in MWM. Figure 1
depicts the effect of the rosiridin during the acquisition process. Scopolamine substantially
(p < 0.001) provoked cognitive deficits in the untreated comparison animals on the fourth
day of the acquisition process when compared with saline control. The rosiridin 10 mg/kg,
on the other hand, demonstrated the greatest (p < 0.001) reduction in lag to approach the
static platform (Figure 2).
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3.2. MWM Retention Phase

Figure 3 depicts the effect of rosiridin during the retention period. During the reten-
tion session, scopolamine treatment raised the latency to reach the platform substantially
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(p < 0.001) when correlated to the usual comparison; rosiridin significantly (p < 0.001)
reduced the lag for approaching the station. In addition, correlated with saline control
animals, the use of scopolamine as a negative control had a major impact (p < 0.001). Dur-
ing this phase, the time spent in the target quadrant was reduced (Figure 4). Rosiridin
demonstrated the greatest (p < 0.001) increase in available time in the desired section.
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3.3. The Y-Maze Examination of Spatial Working Memory

Figure 5 represents the outcomes of the spatial working memory. Here, between
negative controls and the classic control category, there was a substantial (p < 0.01) decrease
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in the number of random rearrangements. The rosiridin exhibited an insignificant (p > 0.05)
rise in this metric.
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3.4. Cholinesterase (AChE) and Transferase (ChAT) Functioning

In correlation with the normal control, the scopolamine control had greater AChE
(p < 0.05) and lower ChAT levels. When scopolamine-treated rats were given rosiridin, the
levels of AChE (p < 0.001) and ChAT (p < 0.001) were considerably lower in correlation
with control animals (Figure 6A,B).

3.5. Biological Scavengers

The levels of antioxidant defense (SOD, GSH, and CAT) were disrupted by scopo-
lamine ingestion. Scopolamine control found significant reduction in biological scav-
engers such as SOD, GSH, and catalase than normal control rats (p < 0.05). Treatment
of scopolamine-injected rats with rosiridin (10 mg/kg) restored GSH (p < 0.001), SOD
(p < 0.001), and catalase (p < 0.001) levels to normal. Figure 6C–E illustrates the antioxida-
tive defense level.

3.6. Stress-Level Assessment

In the brains of treatment animals, scopolamine elicited stress indicators MDA and
nitrite. In scopolamine-treated rat, increased MDA and nitrite levels (p < 0.05) were
detected. When contrasted with the scopolamine control group, rosiridin therapy reduced
the elevated levels of MDA (p < 0.01) and nitrite (p < 0.001). Figure 6F,G shows the results
of MDA and nitrite levels.

3.7. Neuromodulatory Cytokines

When scopolamine control was correlated with saline control, proinflammatory cy-
tokines TNF-α, IL-1 β, IL-6, and IFN-γ were considerably raised (p < 0.01). When scopo-
lamine control was given rosiridin (10 mg/kg), the levels of IL-1 (p < 0.01), IL-6 (p < 0.01),
IFN (p < 0.01), and TNF-α (p < 0.01) were reduced. Figure 7A–D shows the findings of
TNF-α, IL-1 β, IL-6, and IFN tests.
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ANOVA followed by Tukey’s test.

3.8. Programmed Cell Death Indicators

Figure 7E,F illustrates the influence of rosiridin on several apoptotic markers. When
normal control correlated, the concentration of caspase 3 in the neuronal sample was
considerably (p < 0.001) higher in the untreated. Furthermore, the concentration of caspase 9
was considerably restore (p < 0.001) in scopolamine control was given rosiridin (10 mg/kg).
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4. Discussion

Based on the investigation, rosiridin, a monoterpene, appears to have the ability
to prevent dementia associated with AD. In this observational study of rosiridin, the
behavioral and biochemical function of scopalamine-induced memory impairment in rats
was investigated systematically; our approach leads to several key observations.

The MWM is widely used to test animals for this specific memory impairment [40,42,50].
An effective and sensitive test for assessing hippocampal–spatial learning and reference
memory is the MWM. It is also used to identify medications with antiamnesic characteristics,
or medicines that stop, reverse, or lessen memory loss after a brain injury. The delay to
locate the platform during the acquisition phase was reduced in the current investigation by
the injection of scopolamine for 15 days (day 1 to day 4). Scopolamine, however, increased
significantly on the fourth day of this phase compared to the usual group, suggesting that
rats’ ability to learn may have been impaired. Scopolamine treatment increased the latency
to find the platform and decreased the duration spent in the target quadrant on the fifth day
of the experiment, twenty-four hours after the acquisition phase, indicating an impairment
of the reference memory. The fact that scopolamine administration prolonged the escape
latency suggests that the animals’ spatial memory and learning abilities were impaired.
Rosiridin treatment of scopolamine administrated animals enhanced escape latency in the
MWM test.

One of the earliest signs of AD is working memory problems, which can make AD
patients forget the question they were just asked [51]. Cognitive recall was greatly decreased
in scopolamine-treated rats. Another tool used to investigate memory rotation in animals
is Y-maze [40,52]. The Y-maze paradigm, which is based on rats’ propensity to explore
unfamiliar locations, is typically chosen to evaluate working memory deficits in rodents [53].
Therefore, typical animals choose to investigate a different arm of the maze than the one
they previously visited. The proportion of spontaneous alternations in maze arm entrance
dropped in rats given scopolamine and vehicle for 15 days, suggesting that the animal had
forgotten the arm it recently visited. These findings showed that there may be a working
memory deficit.

Memory retention was significantly diminished in scopolamine-treated rats. In com-
parison to scopolamine-untreated rats, rosiridin treatment improved memory retention
in scopolamine-treated rats. The outcomes of the MWM and Y-maze tests indicate that
rosiridin protects against allied cognitive decline. Using behavioral tests such as MWM
and Y-maze, we first confirmed that rosiridin protects rats from scopolamine-induced
spatial learning and memory deficits. These observations coincide with the findings of
Djeuzong et al., 2021 [40].

Moreover, we reveal that rosiridin has protective capacity in the brain by considerably
neutralizing the effects of scopolamine on MDA, GSH, Catalase, and SOD levels. Finally,
we show for the first time that rosiridin lowered programmed cell death indicators caspases
3 and 9 levels that had been enhanced by scopolamine. Programmed cell death indicators
caspases 3 and 9 are widely known for their role in pathophysiology of AD.

Memory deficits and behavioral abnormalities caused by scopolamine are indicated
by spatial learning and memory. Scopalamine causes significant deterioration in cognitive
function, which has been linked to increased AChE, oxidative stress, neuroinflammatory
markers, IL-1β, TNF-α, IL-6, and IFN, in the brain. Treatment with rosiridin, on the other
hand, restored the scopolamine-induced behavioral and metabolic changes. Rosiridin
inhibited scopolamine impact on spatial cognitive performance and alterations in AChE. In
the rat brain, rosiridin also restored endogenous antioxidant status, reducing neuroinflam-
matory indicators.

Learning and memory processes are connected to the central cholinergic system
and to Ach, which is broadly distributed throughout the nervous system and a major
neurotransmitter that influences intellectual performance and learning processes. ACh
is digested in the synaptic space by AChE, which converts it to acetic acid and choline.
Excessive AChE activity, on the other hand, can result in ACh deficiency and cognitive
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dysfunction. Simultaneously, ChAT can aid in acetylcholine biosynthesis [11]. As a result,
cholinergic indicators such as AChE and ChAT expression are commonly used in the
assessment of memory deficits [50]. In the brains of allied rats, rosiridin therapy drastically
lowered AChE activity while increasing ChAT expression. According to the outcomes of
the MWM and EPM examinations, rosiridin may maintain neurons via altering the integrity
of cholinergic neuronal networks.

Oxidative and nitrative stresses are important factors in the aetiology and progression
of neurodegenerative diseases [54–56]. When quantities of peroxides and reactive oxygen
species (ROS) surpass natural antioxidant defenses, oxidative stress occurs [57]. Scopo-
lamine, a physiological modulator of neurotransmitter acetylcholine, impairs learning and
memory in laboratory rats [58]. Furthermore, because the brain has limited antioxidant
defense systems, it is extremely vulnerable to oxidative damage [59–61]. In this study,
rosiridin therapy decreased MDA and nitrate levels in the brain while increasing intrinsic
defenders, including GSH, SOD, and catalase activity.

The cellular redox response system protects cells from oxidative stress by boosting the
expression of neuroprotective enzymes that detoxify and mitigate the risk of cell damage
caused by oxidative stress [62,63].

As a result, the transcription of proinflammatory cytokines is reduced [64,65]. The
current study’s conclusions are strongly supported by the data. In scopolamine-treated
rats, rosiridin reduced the levels of cytokines IL-1β, IL-6, and TNF-α.

In line with the findings of Demirci et al., scopolamine raised the levels of caspases 3
and 9, two important regulators of apoptosis, in brain tissue of the negative controls [66].
Scopolamine increases the synthesis of beta4-amyloidprotein (BAP) in the brain [67]. Via cas-
pases 3 and 9, BAP causes neuronal cell death and pertains to AD genetic susceptibility [68].
Furthermore, this drug inhibits cell proliferation via boosting the synthesis of the apoptosis-
inducing protein Bax, which triggers cell death by increasing the release of caspase activator
in neuronal tissues. [69,70]. Scopolamine raised the levels of caspases 3 and 9 in the brain
tissues in this investigation, corroborating the previous findings. The levels of caspase
regulatory proteins determined by immunoassay in brain tissue were much lower after
treatment with rosiridin, indicating a change in apoptotic processes. These findings also
suggest that rosiridin has antiapoptotic action, which may contribute to its neuroprotective
properties [49,71].

5. Conclusions

The current work shows that rosiridin, a monoterpene, reduces scopolamine-induced
behavioral and biochemical aberrations in rats by reducing inflammatory response and
caspases levels. Rosiridin antioxidant and anti-inflammatory properties might indicate a
possible positive impact. However, further study is needed to determine if rosiridin can
help those with neurodegenerative diseases.
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