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Abstract

Background: In the evaluation of Stereo-Electroencephalography (SEEG) signals, the physicist’s workflow involves
several operations, including determining the position of individual electrode contacts in terms of both relationship to
grey or white matter and location in specific brain regions. These operations are (i) generally carried out manually by
experts with limited computer support, (ii) hugely time consuming, and (iii) often inaccurate, incomplete, and prone
to errors.

Results: In this paper we present SEEG Assistant, a set of tools integrated in a single 3DSlicer extension, which aims to
assist neurosurgeons in the analysis of post-implant structural data and hence aid the neurophysiologist in the
interpretation of SEEG data. SEEG Assistant consists of (i) a module to localize the electrode contact positions using
imaging data from a thresholded post-implant CT, (ii) a module to determine the most probable cerebral location of
the recorded activity, and (iii) a module to compute the Grey Matter Proximity Index, i.e. the distance of each contact
from the cerebral cortex, in order to discriminate between white and grey matter location of contacts. Finally,
exploiting 3DSlicer capabilities, SEEG Assistant offers a Graphical User Interface that simplifies the interaction between
the user and the tools. SEEG Assistant has been tested on 40 patients segmenting 555 electrodes, and it has been used
to identify the neuroanatomical loci and to compute the distance to the nearest cerebral cortex for 9626 contacts. We
also performed manual segmentation and compared the results between the proposed tool and gold-standard
clinical practice. As a result, the use of SEEG Assistant decreases the post implant processing time by more than 2
orders of magnitude, improves the quality of results and decreases, if not eliminates, errors in post implant processing.

Conclusions: The SEEG Assistant Framework for the first time supports physicists by providing a set of open-source
tools for post-implant processing of SEEG data. Furthermore, SEEG Assistant has been integrated into 3D Slicer, a
software platform for the analysis and visualization of medical images, overcoming limitations of command-line tools.
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Background
Up to 30% of patients with epilepsy are resistant to anti-
epileptic drugs (AEDs) [1]. A subset of these patients
suffers from partial epilepsy. These patients are potential
candidates for the surgical removal of the epileptogenic
zone (EZ), first defined as “the site of the beginning
and primary organization of the epileptic seizures” [2, 3].
In order to characterize the EZ, clinical history and
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examination, medical imaging (e.g. Magnetic Resonance
Imaging [MRI]), scalp EEG, and neuropsychological data
are combined in order to derive a coherent hypothesis [4–
7]. When non-invasive data are not sufficient, intracra-
nial recordings may be used to define the EZ. On aver-
age, 25 to 30% of patients suffering from partial epilepsy
are candidates for intracranial investigations (see. [8]
and reference therein). Stereo-Electroencephalography
(SEEG) is a methodology developed by Talairach and
Bancaud at Hôpital Sainte Anne, Paris [3, 9, 10]. This
methodology aims to record local field potentials through
stereotactically implanted intracerebral electrodes. Dur-
ing the post-implant long-term Video-SEEG monitoring,
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epileptologists analyze the signals recorded from within
the brain and attempt to define the EZ and a possible
surgical resection plan. Therefore, the correct anatomi-
cal localization of all the implanted contacts is mandatory
in order to define where the EEG traces are recorded
from and also to facilitate radio-frequency thermal brain
lesions performed through SEEG electrodes as a treat-
ment option [11]. Electrode contact segmentation is a
time-consuming task, as it often involves the localization
of 100 to 200 contacts per patient. This task is usually
carried out manually, by visual inspection ofMRI or Com-
puted Tomography (CT) scans [12] or using post-implant
2D photographs [13]; it is often incomplete (the majority
of the contacts are not segmented) and can be inaccu-
rate e.g. in cases of non-planar trajectories where artefacts
may merge neighboring contacts into a single group of
indistinguishable voxels. In recent years, several tech-
niques for the localization of intracranial EEG electrodes
have been proposed [14–18]. Most of the approaches aim
to simplify the manual extraction of contact coordinates
for grid/strips or for Deep Brain Stimulation (DBS) elec-
trodes by fusing opportunely thresholded post-implant
datasets with pre-implant MRIs [19, 20]. However, these
approaches are not suitable for fully automatic localiza-
tion of SEEG electrode contacts in complex arrangements
(i.e. multiple electrodes per patients and converging tra-
jectories). Mostly because visual extracting channel posi-
tions with respect to anatomical regions requires the
visual integration of several imaging modalities and the
manual selection the segmented contact positions. This
approach is only suitable for a limited amount of channels
as in the case of DBS electrodes (max two electrodes per
patients with up to four recording/stimulating contacts).
Recently, a novel algorithm has been proposed which
has been specifically designed to segment SEEG contacts
from a thresholded post-implant CT volume [21]. This
algorithm has been implemented in an open-source tool
called DEETO [22]. Despite its robustness, the tool has
several limitations and lacks some advanced features: for
example, it has no graphical interface, the type of multi-
lead electrode (and thus the number of contacts) cannot
be changed, and the parameter settings, which may be
needed for complex cases such as touching electrodes,
are only accessible to computer-expert users by modifying
the code.
Moreover, visual inspection of post-implant data (MRIs,

CTs or both) and acquired electrophysiological signals is
routinely carried out to discriminate between contacts
recording from grey or white matter, and to define the
most probable neuronal source of the recorded activity.
In clinical and research settings, SEEG time-series

are usually analysed using a bipolar (BP) referencing
scheme, where each contact is referenced to its neigh-
bour. Such approach might significantly distort the signal

when bipolar contacts depict activity from neighbouring
but functionally distinct areas, e.g. anterior and posterior
banks of the central sulcus [23].
Recently it has been suggested that it may be more

beneficial to use the nearby white matter contacts as
‘silent’ references to electrodes in grey matter [23]. This
approach has been proven to alleviate the signal phase and
amplitude distortion problems inherent in bipolar record-
ings and has allowed the characterization of phase and
amplitude correlations [23] and long-range temporal cor-
relations in the human brain with spatial and temporal
patterns similar to those previously reported in Magneto-
ElectroEncephalograhy (M/EEG) [24]. Taking advantage
of a sub-millimetre resolution of lead localization pro-
cess, in [23] authors formulated the Grey-Matter Prox-
imity Index (GMPI) which represents the distance of a
given contact from the white/grey boundary and there-
fore discriminates between contacts recording from white
or grey matter (see GMPI estimator). The automatic com-
putation of the GMPI requires ad-hoc scripts/tools that
either are not freely available or need significant manual
intervention in order to be included in standard clinical
workflows.
On the other hand, post-implant images are usually

fused with pre-implant MRI in order to visually estimate
the position of each contact relative to the cerebral cor-
tex and to derive its most probable neuronal source. All
these operations require the integration of many different
computer assisted tools (e.g., coregistration and visualiza-
tion tools such as FSL/FLIRT [25]), and require significant
knowledge and effort from the clinicians involved. To the
best of our knowledge, such an integrated framework for
post-implant processing does not exist. In this paper we
present SEEG Assistant, a collection of tools that aim to
assist neurosurgeons with the SEEG workflow, focusing
on the post-implant phase.

Implementation
In this work we designed and implemented three mod-
ules, a graphical user interface (GUI) for each module,
and integrated them in a 3DSlicer extension. Each module
solves a specific task (Fig. 1). The first module, Con-
tact Position Estimator (CPE), estimates the coordinates
of the electrode contacts relative to the patient’s geomet-
rical space by automatically detecting contact positions
from a thresholded post-implant CT volume. The sec-
ond module, the Brain Zone Detector (BZD), localizes
the neuronal source of the recorded activity by automat-
ically determining each contact position within a vol-
umetric brain atlas, e.g. Destrieux [26]. The third one,
the Grey Matter Proximity Index Estimator (GMPIE),
enables automatic classification of white and grey mat-
ter contacts by automatically computing their GMPI
indices.



Narizzano et al. BMC Bioinformatics  (2017) 18:124 Page 3 of 13

Fig. 1 SEEG Assistant Framework is composed of three interconnected elements. The figure illustrates the threemodules constituting the backbone
of SEEGA module (light green box), their relations (dark green arrow), and I/O. Contact Position Estimator (CPE) extracts the contact positions from
post-implant CT data provided the entry/target points for each implanted electrode (Fiducial File) and several parameters. These latter consist in the
implanted electrode model (i.e., number contacts and inter-contact distance) and two boolean parameters. CPE outputs a fiducial file (Recon File)
containing all segemented channel positions in the reference image (i.e., CT scanner space) along with contact label. In the test settings, electrodes
are marked with a single capital letter (e.g., A or B) and channels are identified with increasing numbers (e.g., A1). The next twomodules namely Grey
Matter Proximity Index Estimator (GMPIE) and Brain Zone Detector (BZD) can be used without a specific order since they do not depends on each
other. The former uses the segmented channel positions and pial/white matter Surfaces (e.g. Freesurfer) and computes for each contact the distance
from white/grey boundary normalized to the cortical thickness. The latter uses contact positions and a volumetric probabilitic parcellation (e.g.
Destrieux) and estimates the probability (i.e., proximity) of given source/anatomical area to be the generator of the recorded electrophysiological
activity. All these information are added to the Recon File that can be saved for later usage or inspected from 3DSlicer interface

SEEG Assistant is developed as an extension for 3D
Slicer [27], a free and open-source software at the cut-
ting edge of medical image analysis. It is mainly imple-
mented in python (v.2.7) using VTK (v5.6) [28, 29] and
QT libraries [30]. We decided to develop our tools as an
extension of an existing software to exploit the vast col-
lection of pre-processing tools available within 3D Slicer.
This approach leads two benefits. First it does not link
the users to a pre-defined methodology but grants some
degree of freedom. Secondly, by addressing such spe-
cific tasks, it allows a more easy integration in existing
manual/automated analysis pipeline in established clinical
settings.

Contact position estimator
The Contact Position Estimator segments the contact
positions of each SEEG electrode in each subject’s geo-
metrical space, requiring two inputs (Fig. 1). The first

input is a pre-processed post-implant CT volume where
multilead electrodes are imaged. The preliminary pro-
cessing of this dataset includes two steps and should be
performed outside the proposed tool. The former aims
to remove the skull, as its voxel intensities lie in the
same range as contacts, by subtracting a co-registered
(affine registration, mutual information, performed using
FSL/FLIRT [25]) pre-implant CT. The latter uses a man-
ually selected threshold of voxel intensities to enhance
boundaries between contacts and the background. All
voxels above the selected threshold retain their original
intensities while the remaining ones are fixed to zero. The
second input is the Markups Fiducial (MF) List, a file that
contains the planned entry and target points, defined as
the most proximal and most distal points, with respect
to the cortical surface, of each electrode, respectively.
The file contains several lines, and each line may contain
two different types of information: (1) comments (lines
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starting with #), and (2) a labeled point in the 3D space
with the following format:

l, x, y, z (1)

where l represents the unique electrode name and (x, y, z)
the coordinates in millimeters of either the target or entry
point referenced to the patient’s geometrical space. This
file can be provided using coregistered pre-implant surgi-
cal coordinates or constructed directly using 3DSlicer tool
(i.e., Markup module). CPE reads this information from
3DSlicer memory and assumes that both the CT scan and
the MF file refer to the same geometrical space. From the
MF list, the module constructs a set of electrodes coupling
their entry and target points using electrode label (e.g. A):

Li =< Ei,Ti > (2)

where Ei is the entry point and Ti is the target point of
the electrode labeled Li. Supported naming strategies are
(1) the same capital letter or (2) capital letter and capital
letter followed by a number (e.g. A1) for entry and tar-
get points, respectively. Afterwards, themodule creates an
interactive table where the user can choose, for each elec-
trode, the manufacturer model used in the implant. The
default configuration assumes that the patients have been
implanted with semi-rigid SEEG electrodes manufactured
by DIXI Medical (Microdeep Intracerebral Electrodes -
D08�, Depth Electrodes Range 2069�). Many models
of electrodes exist, with varying lengths and numbers of
contacts. However, we provide a configuration file where
different electrode settings can be added without the need
to change the code. For each electrode the User Interface
(UI) also displays two check boxes: Tip and Cortex. These
are the geometrical points used to estimate the final axis.
The Tip is the most distal point on the tip of the electrode,
while the Cortex is the point closest to the cortical sur-
face. Tip and Cortex are usually computed starting from
the Target and Entry point of the MF file, respectively.
Thus, when Cortex (Tip) box is checked, the CPE does
not estimate its relative point but assumes the line con-
necting the unchecked (that is, estimated) and checked
(that is, taken as is) as the electrode axis. If a user checks
one (or both) of these boxes, he should also be sure that
the Targets/Entries of the MF list are as accurate as pos-
sible with respect to the Tip/Cortex positions. 3DSlicer
visualizes points contained in MF list as spheres in the
3D visualization. Thus, from the interface it is possible to
manually adjust every point contained in the list or even
add or remove any of them.
Finally, once all settings have been fine tuned, the

user actively triggers the computation by pressing the
Start Segmentation button and, for each selected elec-
trode from the MF list, the module executes an external
(to 3DSlicer) tool called deetoS [31]. This tool has been
implemented in C++ exploiting advanced features of the

ITK libraries [32, 33] which, at the time of writing the
code, were not fully ported in python nor included in stan-
dard 3DSlicer installation package. For this reason, deetoS
has been called as external tool within the UI. deetoS is
an open-source software that has been constructed as a
branch of the tool DEETO [22] to ease the integration with
3DSlicer. More precisely, we simplified the command line,
by allowing the segmentation of one electrode at a time
(DEETO reads the MF and processes the entire implant at
in one step), but also including the option to set the type
of electrode used for the segmentation. In this section we
will give a general overview of the algorithm; for further
detail please refer to [21].
DeetoS takes three parameters as input: (i) the CT vol-

ume, (ii) the coordinates of two points, (iii) the parameters
describing the electrode type (i.e., inter-contact distance
and number of contacts). It then outputs a set of coordi-
nates representing the centre of each segmented contact
and saves them as markup entries along with a label
formed by a unique capital letter for each electrode fol-
lowed by an integer. The segmented points are then
ordered alphabetically in the list, from the deepest (e.g.,
A1) to the most external point (e.g., A18) with respect
to the cortical surface. The algorithm executes two main
steps: electrode axis estimation and electrode contact seg-
mentation. The electrode axis estimation relies on the
knowledge of two initial points, namely the entry point
and the target point, defining the planned electrode axis.
The electrode axis estimation computes the final electrode
axis, i.e. a line joining the cortex and tip points. The cor-
tex point estimation is usually executed by computing the
centre of mass of a region around the entry point. In a
real implant, the electrode entries are far from each other,
while the tips can be very close: for this reason the algo-
rithm used to compute the cortex cannot be used to esti-
mate the tip. Indeed, the tip is usually estimated starting
from the cortical entry point of the electrode and progres-
sively computing the centre of mass of the points lying on
the axis defined by the entry and target points. Once cor-
tex and tip points have been estimated, deetoS proceeds
with the electrode contact segmentation step. It iteratively
locates each contact within a geometrical-constrained
search space on the estimated axis. The search-space is
defined by two strong constraints: the former represents
the fixed inter-contact distance (i.e. the distance between
two subsequent contacts), while the latter states that
the axis deviation should be less than 10 degrees, since
those deviations can only occur within electrode cables
connecting two adjacent contacts. The contact centroids
are then approximated with the centre of mass of the
radiological artefacts that satisfies all the strong con-
straints (Fig. 2c). Occasionally, in some rare and complex
cases with default configuration - i.e. standard electrode
model and planned entry/target points, the CPE module
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Fig. 2 Interfaces and workflow of SEEGA. This figure shows the interfaces designed to interact with the underlying algorithms and provides an
example of the workflow. All drop-down listboxes are populated with data included in the 3DSlicer scene. a Initial configuration panel of CPE where a
fiducial file needs to be selected. b Shows the path of the deetoS binary file provided within SEEGA installation. Once a fiducial file (seeg) has been
selected a table is populated with recognized electrodes with valid entry/target pairs. The drop-down list next to the electrode label is used to select
its specific model which univocally defines number of contacts and inter-contact distances. An example of what is shown in the 3D View panel
wihtin 3DSlicer is provided as inset with post-implant thresholded-CT meshes (ct-post - red) and fiducial file shown as markups (black dots) with
letters representing each electrode. c Shows the BZD interface where both BZD takes a volumetric parcellation (aparc+aseg - purple star) and the
recontructed data (recon). Examples of such inputs are shown below the interface. d Shows GMPIE interface where the five inputs are defined as left
(red) right (green) pial (star) and white (pentagon) surfaces together with segmented channel positions (recon)
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fails to correctly segment some electrodes. Simple visual
inspection of the 3D scene allows identification of these
cases (Fig. 3). These errors only arise during axis estima-
tion, and this is most frequently due to proximity with
other electrodes. Neighbouring electrodes can influence
the centre of mass computation applied in the estimation
of the real axis, since the algorithm relaxes the geometrical
constraints to find a suitable solution. On the other hand,
once the axis has been estimated, the search for the con-
tact positions restores these constraints and the solution
cannot diverge as the algorithm proceeds along the esti-
mated line. Thus, when the estimated axis diverges from
the real one, it is possible to set it manually by checking
the tip and cortex boxes in the electrode configuration
table. If a check box is active, deetoS does not compute the
corresponding point, and thus the entry and target points
represent the electrode axis.

Brain zone locator
The Brain Zone Locator module locates each contact with
respect to the brain region it occupies. The module uses a
pre-computed volumetric representation of a probabilis-
tic atlas, such as the Destrieux [26] or Desikan-Killiany
atlases [34] included in Freesurfer. It takes two inputs: (1)
a volumetric parcellation co-registered with subject geo-
metrical space, where each voxel has been tagged (auto-
matically or manually) with a numeric tag representing
the most probable region within which it is located, and
(2) a set of points representing lead positions. For each
contact, it constructs a spherical Region Of Interest (ROI)
with 7 mm diameter centered in its centroid and extracts
the fraction of voxels representing a given area contained
within the ROI. We chose 7 mm as diameter because con-
tact centroids are 3.5 mm apart. Thus, 3.5 mm on both
sides of the volume ensure a partial overlap between adja-
cent contacts. Of note, different electrode settings might
require different side lengths. Thus the parameter can be
manually changed by the user through the interface. These
values, together with the region name, are presented with
the MF description and saved along with lead positions.
The module assumes that the volume and lead positions
lie in the same geometrical space.

GMPI estimator
To enable automatic classification between white and grey
matter contacts, we included the Grey Matter Proximity
Index Estimation for each segmented contact. The mod-
ule takes as input a set of labelled points and the meshes
describing the pial and white surfaces for both hemi-
spheres. Theoretically, one investigator can use any tool
that provides a brain segmentation and which outputs 3D
meshes for grey and white matter boundaries. In this work
we estimated cortical pial and white surfaces by means
of Freesurfer tools [35] using standard 3D T1 FFE MRIs

data and default settings (i.e. recon-all). For detail about
the usage of Freesurfer tools, advanced parameter set-
tings, and complete description of outputs please refer to
the relevant documentation [35]. It should be noted that
Freesurfer surfaces are natively represented in a centered
geometric space. Thus, a simple translation is required
to align the center of scanner space, where contacts are
represented, to surface space.
The GMPI is defined as the distance between the con-

tact position and the nearest vertex of the white-grey
surface, scaled by the cortical thickness at that point.
Thickness is here estimated as the distance between
the nearest pial and white-matter-grey-matter interface
(WMGMI) vertices along the normal axis to the cortex.
This measure has been proven to be reliable with respect
to real cortical thickness assessed on post-surgical histo-
logical investigation of resected tissue [36, 37]. GMPI can
be mathematically formalised as follows:

GMPI = (C − W ) · (P − W )

|P − W | (3)

where P(x, y, z),W (x, y, z) and C(x, y, z) are the pial vertex,
WMGMI vertex and contact coordinates, respectively.
GMPI is an unbounded measure that can be used to auto-
matically classify grey and white matter contact. GMPI
values between zero and one indicate that the contact
midpoint is located within grey matter, whereas nega-
tive values indicate that the contact midpoint is in white
matter. However, electrical fields generated in grey mat-
ter spread also to nearby white matter. Moreover, the
electrode contact physically spans a 2 mm long volume
with a radius of 0.4 mm around the midpoint. Thus, in
[23] authors suggest to use −0.3 as the GMPI thresh-
old for grey/white matter determination. They have also
demonstrated that with this threshold none of the white
matter contacts are misclassified as grey matter contacts.
It should be noted that, using this formulation GMPI val-
ues relative to subcortical leads are invalid. This is due to
the normalization factor (that is the cortical thickness).
Using two sides of a given subcortical structure (e.g. lateral
and ventral portion of hippocampus) is strongly depen-
dent on the insertion direction of the lead. Two electrodes
coming from different but converging directions to the
same structures (e.g. hippocampus) might yield different
GMPI values because of the different cutting planes. We
thus decided to include the labelling of contacts in volu-
metric parcellation, rather than simply using surface based
atlases, to automatically classify pure white matter con-
tacts that may be used as silent references for subcortical
structures. These are defined as the contacts that are sur-
rounded by only white matter fibers in the ROI used in the
Brain Zone Detector.



Narizzano et al. BMC Bioinformatics  (2017) 18:124 Page 7 of 13

Fig. 3 CPE out performs manual segmentation in complex and critical cases. a As an example of SEEG complexity, we show MRI and thresholded
post-implant CT scans for one subject from our cohort. Contacts are shown as groups of white voxels. This case illustrates the complexity of SEEG
implants with electrode shafts following non-planar directions (e.g. X), shafts targeting almost the same geometrical point (e.g. R and R’). b CPE
segments all contacts (green spheres) belonging to each electrode from post-implant CT scans, represented here as red 3Dmeshes obtained
tesselleting the thresholded data to ease visualization. c Show the right pial surface with 3D post-implant thresholded-CT meshes and the cut plane
used in panel d where the example of X and X’ electrodes are shown. Those examples represent the case of non-planar insertion trajectories which
yielded an artefactually fused electrode. CPE integrating the knowledge of the electrode model can segment the contact positions more accurately
than visual inspection
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User interface design
Each module contained in SEEGA has its own UI that
allows user interaction with the implemented algorithms
and the definition of parameters (if any). Since all modules
have been implemented as 3DSlicer extensions, the GUI
for each module (Fig. 2) is based on the Qt library. The
CPE Interface is divided in two parts (Fig. 2a). The former,
CPE-Configuration, allows the definition of the deetoS
path, while the latter, CPE-Segmentation, consists of two
drop-down lists for the selection of the appropriate inputs.
Once the fiducial has been chosen, a table is produced
(Fig. 2b), where the user can select, for each electrode,
the Type/Model and fix the Cortex/Tip points. The last
drop-down list allows the user to choose from the CT
volumes loaded in Slicer. Both the Brain Zone Detection
(Fig. 2c) and the GMPI Computation Interfaces (Fig. 2d)
provide several drop-down lists, depending on the num-
ber of mandatory inputs, and the button that triggers the
algorithm execution.

Modules validation
In order to test the overall quality of SEEG Assistant,
we used the three modules to process 40 SEEG implants
comprising 555 electrodes and 9626 contacts. We also
performed manual segmentation, as routinely performed
in the clinical setting in a subset of 8 patients (98 elec-
trode and 1302 contacts). These implants were performed
at “Claudio Munari” Centre for Epilepsy Surgery. The
methodology routinely adopted to implant SEEG elec-
trodes and to post-process neuroimaging datasets has
been described previously [8, 38]. We initially ran the
CPE module using the surgically planned entry and tar-
get points and default electrode models (i.e. 18 contacts
1.5 mm inter-contact distance). We confirmed correct
alignment of contact centroids with respect to the post-
implant imaging dataset (Fig. 3). To do this, we visualized
the estimated contact centroids as spheres (i.e. markups)
of 2 mm diameter in the 3D view along with 3D meshes
representing radiological artefact surrounding each con-
tact (see Fig. 3b and d). If all markups were contained
within the corresponding artefacts we defined those con-
tacts as being correctly segmented. On the other hand,
we defined a contact as being incorrectly segmented if
the corresponding centroid was estimated outside of the
reconstructed radiological artefact or was not lying on the
same axis as its neighbours.
To quantitatively evaluate the CPE accuracy, a gold stan-

dard for contact positioning must be defined, and the dis-
tance between real and estimated coordinates computed.
However, in the clinical setting the position is visually
assessed on post-implant imaging. This cumbersome task
might lead to errors, in particular when electrodes are
implanted along the cranio-caudal axis. Furthermore, the
resolution of our CT scanner is lower along the z axis, thus

the radiological artefacts for each contact may become
merged together (e.g. Fig. 3c and d, electrodes X and X’).
Thus, computing euclidean distance between estimated
and visually assessed channel positions may be inaccu-
rate. For these reasons, we assessed CPE accuracy with
twometrics based on the known physical properties of the
implanted electrodes. We computed the distance of each
contact from its estimated axis (Da

ax,Dm
ax) and the mean

inter-contact distances for each electrode (Da
ic,Dm

ic ) using
automatic (Da) and manual (Dm) methods. These two
measures give a quantitative overview of the concordance
between the reconstructed and the real electrode geome-
tries. The former should be close to 0 mm since contacts
should all lie on the same axis. In this case, we estimated
the electrode axis by means of a linear interpolation of the
contact positions, since the real axis is neither known nor
exactly computable from just post-implant non-invasive
imaging data. The second measure should be 3.5 mm for
most commonly used electrode models.

Results
In this work we present SEEG Assistant, a 3DSlicer exten-
sion designed to assist neurosurgeons in post-implant
image processing of SEEG implants. The proposed exten-
sion is composed of three modules that aim to (i) local-
ize the position, (ii) estimate the most probable cortical
sources of the recorded signals, and (iii) extract GMPI
and volumetric labelling to enable later classification of
white-grey matter contacts.

Visual validation
We assessed contact position accuracy by visual inves-
tigation of segmented marker points overlayed on CT
post-implant datasets (see Modules validation). The CPE
module produced correct segmentation in 87.57% (i.e.
8429 out of 9626 contacts considered) of the cases with
default settings only, i.e. using pre-implant information
and no-corrections or fixed parameters. In the remain-
ing (1197), more complex cases, the CPE results required
some manual corrections. For example, in cases where
electrodes were in close proximity (e.g. Fig. 3b), the seg-
mentation process required manual verification of the
correct target point position (i.e. the tip of the electrode)
and fixing the tip point by checking the corresponding
box. Using this approach among the remaining leads,
78.27% (i.e. 937 out of 1197) of the cases were correctly
localized by checking cortex/tip or both, while in 17.39%
(i.e. 203 out of 1197) of cases the target point or the entry
point were missing from the MF file.

Quantitative analysis
In the absence of a ground truth to test performance
against, we tested whether automatically defined con-
tact positions reconstruct real electrode geometry more
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accurately than manually segmented ones. We assessed
this by defining two measures namely the distance from
each contact to its electrode axis and the inter-contact
distance (see Modules validation). We report that 95% of
the automatically segmented contacts were less than 0.2
mm from their axes (Fig. 4a). Conversely, manual seg-
mentation yielded higher variability and several outliers
≥ 0.85 mm (Fig. 4a). Moreover, we tested whether the
difference between automatic and manual distances were
significantly (p < 0.05) smaller than zero (P = Pr(Da

ax <

Dm
ax)) by means of a one tailed paired wilcoxon test. We

report that the difference between automatic and manual
distances from axes is statistically significant.
The majority of the contacts in the automatic estima-

tion are 3.5 mm ± 0.3 mm apart from each other. The
variability in the manual segmentation case is greater
(3.4mm± 0.6mm), and has several outliers with an inter-
contact distance of more than 6 mm (Fig. 4b). The higher
variability of the manual data could be easily explained
by imprecision in discriminating channels in transverse
electrodes. In fact, in these cases, radiological artefacts
fuse neighbouring contacts as mentioned earlier. Also in
this case, we assessed statistical significance using a paired
wilcoxon test. We subtracted the expected mean value of

3.5 mm (i.e. physical mean distance among neighbour-
ing channels) from both populations (D̂a

ic = Da
ic − 3.5)

and (D̂m
ic = Dm

ic − 3.5). We applied the same statisti-
cal approach as above, testing whether automatic method
yields inter-contact distance closer to the expected value
P = Pr(|D̂a

ic| < |D̂m
ic |). Also in this case, the inter-

contact distances are significantly smaller (p < 0.05,
paired wilcoxon test) from those obtained manually.
Finally, the mean time necessary to complete an implant

segmentation was 75 ± 25 min and 15 ± 5 s for manual
and automatic segmentation, respectively. It is important
to note that we did not record the time spent prepar-
ing the scenes (i.e. choosing and loading data) or pre-
processing data (e.g. Freesufer pipeline) for each patient,
since it is equivalent for both methodologies. Thus, the
reported average times are relative only to the average
time required to run SEEGA tools on a standard Linux
workstation with i7-core and 8 GB RAM.

Automatically localized implants accurately reflect their
position relative to most probable pathological areas
Moreover, the Brain Zone Locator was tested with
two different Atlases, namely Desikan-Killiany [34] and
Destrieux [26]. These atlases have different spatial

a b

Fig. 4 CPE module provides more accurate results compared to manual segmentation. a Contact distances from axis are on average similar
between manual (blue) and automatic (red) segmentation. In general automatic segmentation performs better in keeping all contacts aligned to
their axis. Probability distribution shows that the paired differences of automatical and manual defined contact to their axis is signficantly (p < 0.05,
paired wilcoxon test) smaller than zero. As expected, manual segmentation yields higher variability and a larger fraction of outliers. b Inter-Contact
distributions show gaussian-like distributions. Probability distribution of paired difference of automatic and manually defined contacts shows that
our method significantly (p < 0.05) out performs compared to the manual case in representing real inter-contact distance. Finally, automatic
segmentation shows a smaller variability compared to manual segmentation
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resolution making a direct comparison impractical. We
computed the parcellation coverage as the number of
recording contacts from each parcel. We represented
these values on top of inflated surfaces and as histograms
(Fig. 5). Using both atlases, it can be seen that the most
frequently sampled regions are located in frontal and tem-
poral regions which are known to be the major sites for
focal epileptogenic zones [39] while posterior parts of the
brain represent more rare cases [40].

SEEG implants yield higher spatial sampling of grey
compared to white matter
SEEG Assistant also estimates GMPI and volumetric
labelling that can be used to determine which contacts are
located in Grey/White matter and their associated brain

regions. Generally, trajectory planning aims to position as
many contact as possible in close proximity to pathologi-
cal cortical and subcortical regions limiting the amount of
contact recording from white matter (Fig. 6a and b). We
computed the distribution of GMPI values for all the cor-
tical channels – i.e. excluding those targeting subcortical
regions (Fig. 6c). We report that the vast majority of corti-
cal channels have GMPI greater than−0.3 which indicates
that many channels are actually recording within (0 < x <

1) or in close proximity to (−0.3 < x <= 0) the corti-
cal ribbon. Moreover, given the limitation of using GMPI
only for cortical channels, in the current cohort the index
is still valid in 97% of the cases. This index along with vol-
umetric labeled contacts, are key features used in solving
the issue of finding silent references for each cortical and

a

b

Fig. 5 BZD estimates most probable electrical sources using volumetric atlases. a Number of contacts recording from each parcel is shown on top of
the inflated surfaces of the cerebral cortex. Color code is shown in the color bar and represents the less (white) tomost (red) sampled regions. Two
atlases have been used to test the algorithm: Desikan-killeany (parc68 - left column) and Destrieux (parc2009 - right column). Both atlases yields a
similar spatial distribution. The existing differences can be due to the different parcel resolutions. b Number of contacts from each parcel for both
parc68 and parc2009 are shown as color bar histograms divided between cerebral lobes. Here similar patterns can be seen across atlases
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a c

b

Fig. 6 GMPI reflects channel position relative to cerebral cortex. a An
MRI inset is shown with atlas (i.e., Destrieux) and three meshes are
shown representing Hippocampus (green) Amygdala (yellow) and pial
(red) surfaces. Segmented contact positions are represented as pink
spheres centered in the estimated position. b This panel shows a
zoom-in on the segmented contact plane where it can be seen the
contact positions, the intersection between plane and subcortical
structures (i.e., Hip and Amy). Cortical sheet has been marked with
brown color. The axis below shows that GMPI decreases while the shaft
penetrates white matter fibers with increasing distance from cortical
sheet. c Probability (top) and cumulative (bottom) distributions of
GMPI values across all cortical contacts

subcortical channel. Of note, at the moment SEEG Assis-
tant does not classify grey/white channels but instead
estimates the parameters used to solve the classification
problem.

Discussion
We introduce a set of tools to aid the post-surgery assess-
ment of SEEG implants. The provided tools are built as
an extension called SEEGA and are integrated in 3D Slicer
exploiting its advanced medical imaging processing capa-
bilities. Our set of tools enrich the collection of extensions
of 3D Slicer making it a perfect tool for surgical plan-
ning and post-surgery assessment. We preferred creating
an extension to an existing software rather than a new
stand-alone all-in-one tool, to allow users to define their
preferred set of pre-processing steps. This ensures later
extensibility and, we hope, a wider adoption of our soft-
ware across centres rather than limiting the usability to
the test centres.
The set of algorithms have been tested both qualitatively

as well as quantitatively using a cohort of 40 and a subset
of 8 SEEG implants, respectively. We show that the CPE
module correctly reconstructs contact positions in native
scanner space of each patient in the vast majority of the

cases without any supervision. Our localization tool accu-
rately segments contact positions with an error less than
0.5mm [21] which is directly comparable to the image res-
olution of the testing CBCT scanner and in line with that
reported elsewhere [19]. Of note, Hebb and colleagues
reported a smaller localization error but used a standard
CT scanner with higher resolution while we used a CBCT
intra operative mobile scanner which has been proven to
provide equivalent final accuracy [14].
We also demonstrate that automatically reconstructed

contact positions accurately reflect real electrode geom-
etry such as inter-contact distances and distance from
estimated electrode axis. Moreover, these results are sig-
nificantlymore accurate than thosemanually defined even
in complex cases.
This work adds significantly to the literature. Other

works exist to automatically or semi-automatically assess
post-implant localization in intra-cerebral electrode
implants. The vast majority attempt to solve a similar
problem assessing the localization of grids/strips elec-
trodes [17, 18]. Only a few studies deal with Depth Elec-
trodes and most are used in Deep Brain Stimulation [19].
In DBS, surgeons implants at most two electrodes target-
ing Subthalamic Nuclei (STN) in the therapy of Parkin-
son’s disease. Published method exploits the simplicity
of intracerebral implantation to build a fully automated
localization algorithm. This approach is not suitable for
our cases due to the many (up to 20) multilead electrodes
implanted during SEEG investigations.
Another work from Princich and colleagues [41]

advances a methodological procedure to support post-
implant leads labelling in SEEG. Their approach aims to
ease and standardize the visual localization and identifi-
cation of neighbouring anatomical brain structures. We
advance their approach by enabling automatic localiza-
tion and anatomical labelling using the same open-source
set of toolboxes, namely Freesurfer and 3D Slicer. Indeed,
we present a tool to automatically label each channel in
respect to the most probable neuronal source using prob-
abilistic atlases. Using such tool we show that the most
frequently sampled brain areas are located in frontal and
temporal regions which are known to be the major sites
for focal epileptogenic foci [39], while posterior parts of
the brain represent more rare cases [40].

Conclusions
In this work we present SEEG Assistant, a piece of soft-
ware specifically designed to support neurosurgeons in
post-seeg implant processing. We exploit an open-source
paradigm, easily accessible and integrated interface con-
nected to 3DSlicer. Our tool significantly eases the SEEG
post-implant analysis by drastically reducing the time
required for segmentation and localization. Our analyses
show that automatic segmentation is significantly more
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accurate than manually extracted coordinates. Further-
more, SEEG Assistant provides epileptologists with seg-
mentation methods and brain region labeling, all included
in an easily extensible and user-friendly interface. This
tool may aid the clinical implementation of SEEG data,
by facilitating the interpretation of recorded brain activ-
ity. Given the growing interest in SEEG methodology,
in both the clinical environment and the neuroscience
research community, we believe that this tool provides
an interactive user interface able to sensibly reduce time
in accurately assessing post-implant SEEG contact posi-
tioning relatively to neighbouring anatomical structures.
Finally, this tool can be used on a large cohort of histor-
ical data to extract the most frequent trajectories. These
in turn can be used for initialising the search space in an
automatic planning software.
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