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Abstract: Aroma is an important quality parameter of fresh culinary herbs that may be highly affected
after postharvest treatments. The innovative technology of vapor essential oil (EO) application under
vacuum conditions may recover aroma lost during the postharvest processing of plant products
like aromatic herbs. Hence, this study assessed the aroma recovery effect of vapor EOs applied
during vacuum cooling on curly parsley and dill. The volatile organic compounds (VOCs) profiles of
these aromatic herbs were studied by static headspace solid-phase microextraction (SPME), and the
VOCs sorption kinetics onto the SPME stir-bar coating were modeled by the Baranyi model. At the
pilot plant scale, the total VOCs contents of parsley and dill (whose extractability was increased by
10–20% after a single vacuum process) were enhanced by 4.5- and 2-fold, respectively, when vapor
EOs were applied. In particular, 1,3,8-p-menthatriene and carvone (parsley) increased by 18.7- and
7.3-fold, respectively, while dill ether (the characteristic VOC of dill) augmented by 2.4-fold after
vapor EOs were applied under vacuum conditions. The aroma recovery of culinary herbs was
successfully validated at an industrial level in an installation developed by our group to apply vapor
EOs within a vacuum cooling system, reaching total VOC recoveries of 4.9- and 2.3-fold in parsley
and dill, respectively.

Keywords: vapor EOs; VOCs; SPME; aromatic herbs; parsley; basil; dill; quality; vacuum cooling

1. Introduction

Humanity has used aromatic herbs since ancient times for culinary operations to
enhance food taste, alongside their well-known high contents of health-promoting com-
pounds [1,2]. As the name indicates, the aroma of these herbs is a crucial quality parameter
that plays an important role in the consumer purchase decision. Nevertheless, metabolic
processes during the postharvest life of these plant products lead to product quality
loss [3]. In this sense, postharvest techniques are needed to extend the product shelf life [4].
Conventional sanitizing washing treatments (e.g., NaOCl) must be avoided in aromatic
herbs since these physical operations (washing, rinsing and drying) may highly damage the
plant organ, leading to accelerated senescence. Hence, innovative postharvest techniques
that do not induce damages to sensitive products like aromatic herbs, while still meeting
the consumer interests, are needed: natural food products free from additives obtained
with environmental-friendly processing conditions.
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Essential oils (EOs) are oily liquids extracted from plants that are widely studied for
their high antimicrobial activity. Furthermore, EOs are classified as “Generally Recognized
As Safe” (GRAS) by the American Food and Drug Administration (FDA) and allowed as
flavorings within the European Union [5,6]. In particular, carvacrol is the major component
of oregano EOs with wide spectra against both gram-negative (e.g., enterobacteria) and
gram-positive bacteria, and other microbial groups like molds [7,8]. EOs are also consid-
ered as strong antioxidants and are likewise able to inhibit the activity of enzymes that
degrade product quality, like polyphenol oxidase, and of enzymes involved in the ethylene
biosynthesis pathway [9,10]. Thereby, in previous scientific studies from group, we studied
that active packaging with EOs can extend the product shelf life by reducing product
weight loss, softening, color loss, etc. in several products like culinary herbs, tomatoes,
lettuce, peppers, mandarins and grapes [11–13].

The use of the “surface decontamination of solid food with vapor EOs under vacuum
conditions” (SDuVC) technology developed by our group is an innovative approach to
apply EOs in the vapor phase to food products [14]. It is based on the principle that EO
vaporization is more effective to treat food products at the vacuum levels of the vacuum
cooling systems (about 5–6 hPa) than at atmospheric pressure (about 1000 hPa) [1]. Thus,
the treatment agent (EOs) reaches the product surface more homogeneously in its vapor
phase, highly increasing the treatment’s effectiveness. The adaption of this technology to
the vacuum cooling technique (commonly used to precool produce, mainly leafy vegetables)
is an innovative concept in the postharvest field combining the application of EOs in the
vapor phase within vacuum cooling installations [1]. Nevertheless, vacuum conditions
might lead to the loss of aroma quality of aromatic herbs, as it has been studied in liquid
food products (fruit juices and milk) and bread [15–17]. However, to the best of our
knowledge, the aroma profile response of produce under vacuum conditions to vapor EOs
has not been deeply studied.

The aroma profile of aromatic herbs, mainly due to biogenic volatile organic com-
pounds (VOCs), has been widely studied using conventional sample preparation methods
for the evaluation of plant emissions, which involve destructive and time-consuming
approaches, such as solvent extraction and/or distillation, and are prone to artefacts for-
mation [18]. Some of these artefacts include chemical changes of monoterpenes under
conditions of steam distillation and losses of the most volatile compounds during the step
of solvent removal of conventional solvent extractions [19]. The static headspace solid-
phase microextraction (hereinafter SPME) is a technique that was introduced and later
developed by Pawliszyn and co-workers [20,21]. The SPME technique is a fast, solvent-
free, automatable and inexpensive method to analyze the aroma profile of food products
without changes in their natural flavor pattern, giving a more realistic aroma profile similar
to that perceived by the consumer. This technique concentrates the aroma volatiles onto a
fiber coated with a thin film of sorbent/adsorbent, which is exposed to the headspace of
the plant sample until it reaches equilibrium related to: (i) the plant/headspace equilib-
rium and (ii) the headspace/fiber accumulation equilibrium [18]. Although reaching the
equilibrium is of the high importance for the SPME technique, such a sorption process has
not been conveniently modeled for culinary herbs’ VOCs. Finally, volatiles from the SPME
fiber are desorbed, usually by heat, into the same gas chromatograph where quantification
is done.

This study aimed to evaluate the effect of the vapor EO treatment (carvacrol:spearmint
EO mix) on the volatile profile of aromatic herbs (curly parsley and dill) to evaluate a
possible recovery of the typical aroma profile of aromatic herbs after vacuum cooling.

2. Materials and Methods
2.1. Materials

Curly parsley (Petroselinum crispum ssp. crispum L.) and dill (Anethum graveolens L.)
were obtained from the company Agroherni SCL (Las Palas, Región de Murcia, Spain) in
May 2019. These aromatic herbs were selected on the basis of their economic importance as
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culinary herbs and their high postharvest metabolic rates (high respiration rate and ethylene
production) [3]. These herbs were grown in the Southeast of Spain under greenhouse
conditions according to integrated pest management cultural practices. The edible part
(stem and leaves) of curly parsley at the mature stage (leaf stems with at least three
segments) was hand-harvested, cutting no more than one-third of the growing plant.
The edible part (stem and leaves) of dill was also hand-harvested as soon as the plant had
four to five leaves. In any case, the plants were always harvested before the plant blooming.
Harvested plant material was packaged with crushed ice (except for basil to avoid chilling
injury to this very chill-sensitive herb) and then transported ≈30 km to the pilot plant of the
Food Safety and Refrigeration Engineering Group (Universidad Politécnica de Cartagena,
Spain). The aromatic herbs were stored at 8 ◦C and 90–95% relative humidity (RH) until
the next day when they were used. Carvacrol and spearmint EOs (composition detailed in
Table 1) were obtained from Lluch Essence SL (Barcelona, Spain).

Table 1. Spearmint essential oil composition.

Compound %

Carvone 81.4
Limonene 4.78

cis-dihydrocarvone 2.30
trans-dihydrocarvyl acetate 1.93

Menthone 0.99
cis-carvyl acetate 0.34

β-bourbonene 0.12
Octanol-3 0.11

Sabinene hydrate 0.02
cis-jasmone 0.01
Viridiflorol 0.01

SPME stir bars (10 mm long) covered with a 0.5 mm film of polydimethylsiloxane
(‘Twisters®/Stir Bar Sorptive Extraction; Gerstel, Mülheim an der Ruhr, Germany) were
used for SPME determination of VOCs. Before use, SPME stir bars were reconditioned by
heating them in the hot injection port of a gas chromatograph–mass spectrometer (GC–MS)
at 300 ◦C for 45 min to remove contaminants.

2.2. Volatiles Analysis by Headspace Solid-Phase Microextraction (SPME)

The sampling system consisted of herbs (30 g) placed inside a 3 L airtight glass jar
(type Mason jars) with hinged lid and airtight rubber seal (Figure 1). Then, a conditioned
SPME stir bar was suspended from the inner side of the lid using a stainless-steel paperclip
(see detail from Figure 1), and the lid was immediately closed to start VOCs sorption at
room temperature until equilibrium (sorption equilibrium between the analyte and the
SPME stir-bar coating) was reached (see Section 2.3). The sorption time was assayed up
to 3 h. Finally, the SPME stir bars were removed, gently rinsed with distilled water and
carefully dried with laboratory filter paper before the GC–MS analysis.

The analysis of VOCs adsorbed onto the stir-bar coating was done in a GC–MS
HP-6890N coupled to a 5975 mass spectrometer (Agilent Technologies, Palo Alto, USA)
combined with a TDU and cooling injector system (CIS4) (Gerstel, Mülheim an der Ruhr,
Germany), as previously described [22]. Briefly, heat desorption was done from 40 to
250 ◦C at 100 ◦C min−1 with a 5 min hold time on splitless mode. A cool trap at −100 ◦C
was used to capture the desorbed compounds. VOCs separation was done using an
HP5MS-UI column (Agilent Technologies, Palo Alto, CA, USA) with helium as the gas
carrier in constant pressure mode, and a split ratio of 1:50. The initial temperature was
50 ◦C, increasing until 70 ◦C at a ratio of 5 ◦C min−1, and then held for 1 min. In the
next step, the temperature was increased until 240 ◦C at 10 ◦C min−1, and then held for
15 min. The mass spectrometer operated at 70 eV ionization voltage. The source and
quadrupole temperatures were 230 and 150 ◦C, respectively. The mass range was 30.0 to
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450.0 uma at 4 scan s−1. The MSD transfer line was maintained at 280 ◦C. The ChemStation
software (version E.02.02 SP1, Agilent Technologies, Palo Alto, CA, USA) was used to
acquire chromatograms and peak areas. VOCs were qualitatively identified by comparison
with the mass spectral database Willey10th-NIST11b (Agilent Technologies, Wilmington,
CA, USA), considering match qualities above 90%. The aroma profile of herbs was also
presented as relative (%) abundance. Quantification of the differences among the studied
treatments was done using the obtained VOCs peak areas [18,23].
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Figure 1. Sampling system for volatile organic compounds (VOCs) of fresh aromatic herbs with static
headspace solid-phase microextraction (SPME).

2.3. Model of SPME Sorption of Volatiles from Aromatic Herbs

Basil (Ocimum basilicum L.) was used as a model aromatic herb to study the SPME
sorption of VOCs since this herb has a complex VOCs profile. Basil was grown under the
same conditions by the company detailed in Section 2.1.

The VOCs sorption was modeled using the Baranyi model [24]. Although this model
was initially suggested to describe the growth of microbial populations, nowadays it is
commonly used in a large variety of fields to model growth curves with sigmoidal shapes.
We used the algebraic solution calculated by Buzrul and Öksüz [25], shown in Equation
(1), where C is the VOC peak area, t is the sorption time (min), log refers to the decimal
logarithm and ln to the natural logarithm.

logC = logCmax + log
(

1 + exp(ln(10) · µ · (t − λ))− exp(−ln(10) · µ · λ)

exp(ln(10) · µ · (t − λ))− exp(−ln(10) · µ · λ) + 10logCmax−logC0

)
(1)

This model has four parameters that describe the shape of the sigmoidal growth curve.
C0 stands for the initial peak area and Cmax for the maximum peak area observed during
the stationary phase. The duration of the lag phase is described by the parameter λ (min),
whereas the slope of the curve during the exponential adsorption phase is given by the
specific adsorption rate, µ (1/min).

The values of the parameters from Equation (1) were estimated independently for
each compound using the “biogrowth” package [26] for R version 3.6.3 [27]. We used
the function “fit_isothermal_growth”, which fits this adsorption model using non-linear
regression. The goodness of the fit was evaluated by a visual inspection of the residuals
and quantified using the root-mean-squared error (RMSE). The R code used for the model
fitting is available upon request from the corresponding authors of the manuscript.
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2.4. Effect of Vapor EOs Applied under Vacuum on Volatiles of Aromatic Herbs at Pilot Plant Scale

The evaluation of aroma recovery of aromatic herbs with vapor EOs at the pilot plant
scale was done using our developed EO vacuum-vaporization pilot plant as previously
described [1], and shown in Figure 2. Briefly, the installation was composed of three
different interconnected units: a vacuum camera (internal volume of 22.7 L) coupled to a
vapor generator and controlled by a control panel. Aromatic herbs were placed over a tray
inside the vacuum camera. EO vaporization occurred at 50 ◦C and it was automatically
applied under a 6–8 hPa vacuum. The application of EO vapors was performed in this
pilot plant device for 8 min in intermittent vaporization periods of 40 s followed by 20 s
of non-vaporization. An EO mix of carvacrol:spearmint EOs (80:20 v/v) at 1.2 mg L−1

(mg of EOs per liter of the vacuum camera) was used on the basis of our preliminary
experiments related to its high antimicrobial effect and quality preservation of the treated
herbs [1]. Furthermore, vacuum treatment without EO application (single vacuum) was
done to study the effect of the vacuum process itself. Plant materials without any treatment
(vacuum or EO) were used as control (CTRL). After the treatments, the VOCs analyses by
SPME were immediately done as described in Section 2.2.
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Figure 2. EO vaporization device at the pilot plant scale based on the “surface decontamination of
solid food with vapor EOs under vacuum conditions” (SDuVC) technology. The numbers refer to: (1)
vacuum camera, (2) isolated tube, (3) vacuum pump, (4) vacuum control system, (5) control panel
and (6) evaporator unit. (Reprinted from “Fresh culinary herbs decontamination with essential oil
vapors applied under vacuum conditions”, 156, 110942, López-Gómez et al., Copyright (2019), with
permission from Elsevier.).

2.5. Validation at Industrial Scale of Aroma Recovery with Vapor EO Treatment of Aromatic Herbs

The experimental validation of the vapor EO mix (carvacrol:spearmint EOs, 80:20 v/v)
treatment under vacuum conditions was done at the industrial scale using a vacuum
cooling system (73 m3, Figure 3) adapted by our group for the SDuVC technology, similar
to that previously described [1]. Previously, aromatic herbs were distributed in boxes
(60 × 40 × 22 cm size, expanded polystyrene), which were then disposed of inside this
installation. EO vaporization occurred at 50 ◦C. Then, EOs were automatically applied
under a 6–8 hPa vacuum at the end of the vacuum cooling process. The EO vapor treatment
time was 8 min. Plant material without vacuum and EO treatment was used as a control
(CTRL). Finally, VOCs analyses by SPME were immediately done, as described in Section 2.2.
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Figure 3. Industrial vacuum cooling system coupled to an essential oil (EO) vaporization installation, based on the SDuVC
technology. In the schema of the bottom left-corner: (1) is the EOs evaporator heated by (2) a jacket; (3) is the vacuum
camera where EO vapors are applied (at the end of the vacuum cooling process) on (4) the fresh produce packaged in open
cases; (5), (6) and (7) are connection tubes and (8) is a vacuum pump; (9), (10), (11), (12) and (13) are valves; and liquid EOs
are dosed with (14) a dosing pump, taking the EOs from (15) a jerrycan.

2.6. Statistical Analyses

Statistical analysis was performed using SPSS software (v.19 IBM, New York, NY,
USA). Pairwise comparison was done using an independent samples t-test. Multiple
groups were compared using analysis of variance (ANOVA), followed by Tukey’s Honest
Significant Difference post hoc test. In every case, statistical significance was assessed
at p = 0.05.

3. Results and Discussion
3.1. SPME Sorption of Volatiles from Aromatic Herbs: Basil as a Model Herb

Following the SPME principle (sorption equilibrium between the analyte and the
SPME stir-bar coating), this technique requires careful optimization to obtain high sensitiv-
ity and a good repeatability of determination [19]. Thus, extraction time (when equilibrium
is reached) influences the VOCs sorption onto the SPME stir-bar coating, which is highly
correlated with the extraction temperature. Extraction times are reduced when the SPME
extraction temperature is increased [23], with optimum SPME extraction temperatures
ranging from 40 to 60 ◦C for basil and other aromatic herbs [23,28,29]. Nevertheless,
high extraction temperatures may involve losses of the most volatile compounds and
the risk of chemical changes of some analytes (e.g., monoterpenes) [19]. In accordance,
Klimánková et al. [19] recommended an SPME extraction temperature lower than the one
determined as the optimum temperature (40 ◦C), after studying five different basil culti-
vars, to avoid possible losses of most volatile compounds and volatile chemical changes.
Furthermore, the study of most volatile compounds was considered crucial in this exper-
iment since such VOCs highly influence the consumer purchase decision related to the
perceived aroma of aromatic herbs. Hence, we chose an SPME extraction temperature of
22 ◦C (room temperature) in our study.

As observed in Figure 4 and Table 2, the Baranyi model was able to describe the
temporal variation of the data, with the RMSE (ln peak area) within 0.02–0.04. As expected,
VOCs sorption did not show a lag phase (Figure 4), and consequently, we fixed parame-
ter λ = 0 min (i.e., no lag phase) before fitting the model with the remaining parameters.
Finally, after the stationary phase, the VOCs showed a decay phase (after 2–3 h of sorp-



Foods 2021, 10, 498 7 of 17

tion), which was omitted for model fitting since such decay type is not described by the
Baranyi model.
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Table 2. Headspace solid-phase microextraction sorption model parameters.

Specific Sorption Rate
(min−1)

Cmax
1

(ln Peak Area)
RMSE 2

(ln Peak Area)

Monoterpene hydrocarbons

α-pinene 0.0063 ± 0.0020 2.76 ± 0.045 0.070
Sabinene 0.0042 ± 0.0009 3.17 ± 0.037 0.047
β-pinene 0.0052 ± 0.0020 2.91 ± 0.029 0.025

β-myrcene 0.0223 ± 0.0032 3.31 ± 0.009 0.036
3-carene 0.0229 ± 0.0056 3.09 ± 0.014 0.038

α-terpinene 0.0420 ± 0.0067 3.09 ± 0.006 0.025
Limonene 0.0174 ± 0.0041 3.10 ± 0.008 0.025

trans-ocimene 0.0168 ± 0.0026 3.49 ± 0.010 0.033
γ-terpinene 0.0115 ± 0.0016 3.17 ± 0.009 0.027

Oxygenated monoterpenes

1,8-cineole 0.0296 ± 0.0027 3.74 ± 0.005 0.016
4-thujanol 0.0156 ± 0.0017 3.11 ± 0.008 0.023

α-terpinolene 0.0134 ± 0.0016 3.24 ± 0.010 0.031
Linalool 0.0079 ± 0.0011 3.79 ± 0.010 0.025

Camphor 0.0103 ± 0.0024 3.23 ± 0.012 0.034
Borneol 0.0119 ± 0.0018 2.77 ± 0.009 0.021

4-terpineol 0.0085 ± 0.0009 3.34 ± 0.011 0.027
α-terpineol 0.0098 ± 0.0016 3.11 ± 0.012 0.033

Bornyl acetate 0.0137 ± 0.0026 3.1 ± 0.0076 0.020

Sesquiterpene hydrocarbons

Bicycloelemene 0.0130 ± 0.0019 3.05 ± 0.016 0.044
α-copaene 0.0120 ± 0.0018 3.16 ± 0.011 0.033

α-cubebene 0.0115 ± 0.0013 3.01 ± 0.009 0.030
β-elemene 0.0138 ± 0.0016 3.43 ± 0.010 0.035

β-caryophyllene 0.0132 ± 0.0015 3.24 ± 0.010 0.031
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Table 2. Cont.

Specific Sorption Rate
(min−1)

Cmax
1

(ln Peak Area)
RMSE 2

(ln Peak Area)

β-cubebene 0.0145 ± 0.0018 3.01 ± 0.009 0.031
α-guaiene 0.0123 ± 0.0017 3.25 ± 0.009 0.032

β-bergamotene 0.0186 ± 0.0020 3.01 ± 0.007 0.028
β-farnesene 0.0179 ± 0.0019 3.59 ± 0.008 0.030

epi-bicyclo sesquiphellandrene 0.0152 ± 0.0023 3.12 ± 0.013 0.064
γ-muurolene 0.0156 ± 0.0019 2.93 ± 0.008 0.030

Germacrene D 0.0192 ± 0.0026 3.58 ± 0.010 0.039
α-bulnesene 0.0133 ± 0.0017 3.45 ± 0.013 0.038

δ-guaiene 0.0151 ± 0.0017 3.39 ± 0.001 0.034
γ-cadinene 0.0144 ± 0.0016 3.43 ± 0.001 0.035

Sesquisabinene 0.0181 ± 0.0020 3.15 ± 0.001 0.036

Oxygenated sesquiterpenes

T-cadinol 0.0187 ± 0.0021 3.09 ± 0.013 0.042

Aromatic compounds
Cis methyl cinnamate 0.0095 ± 0.0012 3.36 ± 0.008 0.021

Eugenol 0.0260 ± 0.0052 3.48 ± 0.010 0.037
trans methyl cinnamate 0.0191 ± 0.0035 3.78 ± 0.006 0.023

Methyleugenol 0.0206 ± 0.0022 3.52 ± 0.007 0.026
1 Cmax, maximum peak area (equilibrium); 2 RMSE, root-mean-squared error.

Among the VOCs, α-terpinene showed the highest affinity for the used SPME stir-bar
coating with a sorption rate of 0.042 min−1, followed by 1,8-cineole with 0.0296 min−1

(Table 2). Eugenol, β-myrcene and 3-carene presented intermediate affinity values with
sorption rates of 0.0260, 0.0223 and 0.0229 min−1, respectively. In general, the oxygenated
monoterpenes group (except for 1,8-cineole) had the lowest sorption rates of <0.015 min−1,
followed by the sesquiterpene hydrocarbons group with sorption rates of 0.012–0.18 min−1.
Among the SPME coatings, polydimethylsiloxane (which operates in sorption mode) has
been successfully used with higher responses in fresh aromatic herbs than other coatings
like polyacrylate or mixed phases (which operate both in sorption and adsorption mode),
like polydimethylsiloxane/divinyl-benzene, carbowax/divinylbenzene and polydimethyl-
siloxane/carboxen [30].

Among basil VOCs groups, sesquiterpene hydrocarbons represented the major group
with 40.5% of the total VOCs content, while oxygenated monoterpenes and aromatic
compounds reached 28.9% and 23.6%, respectively (Figure 5). In particular, α-bergamotene,
trans-methyl cinnamate, linalool and 1,8-cineole were the major identified VOCs with
15.8%, 15.1%, 14.2% and 10.5%, respectively. Most of basil’s VOCs contribute to its aroma
background, which is characterized by fragrant, sweet and fresh nuances [31]. In particular,
bergamotene is characterized by a fragrant, sweet and fresh aroma. Linalool also adds a
woody character to basil [31]. Interestingly, 1,8-cineole is one of the basil VOCs with a more
complex and nuanced aroma profile, with fragrant, sweet, cooling, fresh, slightly green
and minty nuances [31]. Trans-methyl cinnamate is also a complex aroma, with notes that
are sweet, balsamic and reminiscent of cinnamon [32]. Finally, the intermediate contents
(≈2–5%) of β-elemene and trans-8-farnesene add the green nuances, while a slightly sour
character is added by germacrene D (5.6%) [31].
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Figure 5. Volatile organic compounds (VOCs) profile of basil expressed as relative percentages. Bars represent relative
VOCs contents (%). Values in parentheses represent VOCs retention times.

The basil genus (Ocimum) has a long list of subspecies and varieties due to its
abundant cross-pollination, which makes the taxonomy of the group difficult, and it
is classified into three large groups: European type, Exotic or Reunion type and African
type [33]. Basil plants possessing a single biosynthetic pathway were classified early by
Lawrencet [34] into five chemotypes (depending on the major component: methyl chav-
icol, methyl eugenol, trans-methyl cinnamate, eugenol or linalool) in a study with oils
of more than 200 individual basil plants grown in Eastern North Carolina. Nevertheless,
two distinctly different biosynthetic pathways can exist in basil plants, unlike many other
Lamiaceae, depending upon the genome growth. In another study, the EOs of 12 different
basil varieties grown in Colombia exhibited methyl cinnamate, which belongs to the shiki-
mate pathway (which produces aromatic compounds and their derivatives), as one of the
most abundant components, in agreement with our study. The considerable amounts of
1,8-cineol and linalool in our study, both from the mevalonic acid pathway (which produces
only monoterpenes), indicate the dual biosynthetic pathway of this basil variety. Similarly,
Viña and Murillo [33] reported the basil subtype methyl cinnamate > linalool > 1,8-cineole.

3.2. Volatiles Profiles of Aromatic Herbs

A comparison of the VOCs profiles of aromatic herbs with previous literature should
be done with special attention since, depending on the SPME sorption parameters (mainly
temperature and time) and type of SPME coating (since volatile compounds may have
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different SPME-affinities depending on the SPME coating), different profiles may be ob-
tained. In addition, higher differences may be found between the SPME technique (more
volatile compounds) compared with conventional extraction techniques of EOs like steam
distillation; a more complete volatile profile is obtained, although most volatile compounds
are lost.

3.2.1. Curly Parsley

The VOCs profile of curly parsley by SPME is presented in Figure 6. Monoterpene
hydrocarbons were the major group, with β-phellandrene as the major component with
33.0% from the total volatiles, followed by 1,3,8-p-menthatriene and β-myrcene with
15.1% and 11.4%, respectively. The oxygenated monoterpenes α-terpinolene and car-
vone accounted for 4.9% and 11.2%, respectively, while myristicin and methyl benzoate
showed levels of 8.1% and 6.7%, respectively. Our results agree with previous data that
identified β-phellandrene, 1,3,8-p-menthatriene, myristicin and myrcene as the major com-
ponents of the EOs from the aerial parts of more than 100 accessions of parsley [35,36].
Although there is a high variability of volatiles depending on the parsley accession cho-
sen, β-phellandrene, 1,3,8-p-menthatriene, α-dimethylstyrene and terpinolene, as well as
myristicin and myrcene, are considered to be responsible for the characteristic aroma of
parsley [35,37–39].
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Figure 6. Volatile organic compounds (VOCs) profile of curly parsley expressed as relative per-
centages. Bars represent relative VOCs contents (%). Values in parentheses represent VOCs reten-
tion times.

Parsley comprises volatiles derived from mevalonic acid and aromatic polypropanoids
biosynthetic pathways [40]. In accordance with our VOCs profile, a similar chemotype was
previously reported in Saudi Arabia’s parsley by SPME with β-phellandrene as the major
volatile (32%) [40]. Nevertheless, myristicin was found as the major volatile (≈30%) in
the EO of curly parsley obtained by hydrodistillation [38]. Furthermore, high quantitative
variations were obtained when comparing hydrodistillation with SPME in parsley, which
is likely because of the key differences in these extraction techniques [40]. In particular,
hydrodistillation may induce possible transformations of aroma-active compounds because
of heat, steam and pH, leading to losses, the degradation of some volatile compounds due
to long extraction times and the degradation of unsaturated or ester compounds through
thermal or hydrolytic effects (compiled by Farouk et al. [40]). Then, SPME was proposed
for studying the volatile chemical constituents of aromatic plants like parsley without EO
extraction [40], giving more realistic data of parsley sensory aroma to differentiate among
different samples.



Foods 2021, 10, 498 11 of 17

3.2.2. Dill

As observed in Figure 7, dill ether was the major volatile (41.2%) in dill followed by
α-phellandrene (34.9%). Minor (2–9%) identified volatiles were β-phellandrene, o-cymene,
methyl benzoate, carvone, α-terpinolene and γ-terpinene. Dill ether was previously as-
sessed as the character impact compound of dill herb flavor [41,42], which is described
as herbal, dill and spicy [43]. Meanwhile, α-phellandrene adds citrus, herbal, terpene,
green, woody and peppery nuances [43]. Dill ether and α-phellandrene were also the major
volatiles identified in dill by SPME [44]. Those authors also reported that dill stems had a
higher dill ether content, but lower α-phellandrene content, than dill leaves.
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Figure 7. Volatile organic compounds (VOCs) profile of dill expressed as relative percentages.
Bars represent relative VOCs contents (%). Values in parentheses represent VOCs retention times.

Dill ether and α-phellandrene, together with myristicin and methyl 2-methylbutanoate,
were established as the compounds that form the important aroma nuance of fresh dill by
GC–olfactometry and odor activity value (ratio of concentration to odor threshold) [42].
This also agreed with the ranking of the important odorants in dill published previously
by Huopalahti [41]. Although limonene came next to myristicin in Huopalahti’s ranking,
where it is reported as a minor (3–9%) VOC in dill [42–45], it has been considered of minor
importance for the overall flavor of dill [42]. The absence of these minor VOCs in our study
may be mainly attributed to differences with the literature related to the dill accessions and
analytical procedures used (hydrodistillation, SPME, etc.).

3.3. Enhancement of VOCs Biosynthesis after Vapor Essential Oils Applied under Vacuum
Conditions at Pilot Plant Scale

The effects of the vapor EOs application under vacuum conditions were studied in
parsley and dill because of the high commercial importance of these two culinary herbs
(Figure 8A,B).

The single vacuum process (without EOs) induced different effects on the individual
VOCs of the studied herbs. Thus, β-myrcene decreased in parsley by 58% after vacuum
treatment (Figure 8A). The same trend was observed in dill for α-phellandrene, although
such a reducing trend was not significant (Figure 8B). Meanwhile, dill ether showed the
opposite behavior with 53% higher content than the CTRL samples. The rest of the VOCs
showed a similar increasing trend after vacuum, although it was not significant. Similarly,
an increasing trend was observed for the total VOCs content of samples after vacuum
compared to the CTRL samples. This VOCs increment trend could be expected because of
cell disruption under vacuum conditions. Then, these burst VOCs release after vacuum
treatment will result in their subsequent storage in a product with a lower aroma. The loss
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of volatile compounds under vacuum treatments has already been observed in liquid
products (fruit juices and milk) and bread [15–17]. Hence, the VOCs of plant cells might
be easily entrained by the evaporated vapor, causing a higher availability of aroma that
would lead to an easy aroma loss in the subsequent product storage.
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Figure 8. Volatile organic compounds profile of (A) curly parsley and (B) dill, untreated (CTRL) and treated with vacuum
cooling, with and without application of vapor essential oils (EOs), at pilot plant scale (mean ± SD). * Significant differences
(p < 0.05) in treated samples (either vacuum or vacuum and EOs) compared to CTRL are designated with asterisks.

Treatment of curly parsley with vapor EOs under vacuum conditions led to approx-
imately 4.5-fold higher contents of total VOCs in comparison with the CTRL samples
(Figure 8A). In particular, β-phellandrene content, the major parsley VOC, incremented
by 2.4-fold. We observed major increments for 1,3,8-p-menthatriene and carvone with
18.7- and 7.3-fold higher contents, respectively, while methyl benzoate increased by 1.6-fold.

A similar VOCs recovery behavior with EO treatment was observed in dill with a
2-fold higher total VOCs content (Figure 8B). In particular, carvone showed the highest
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increase of 4.6-fold after vapor EOs compared to the CTRL, while dill ether, β-phellandrene
and α-phellandrene augmented by 2.4-, 2.1- and 1.4-fold, respectively.

VOCs are spontaneously released by healthy plants, but the released VOC amounts
may be enhanced, and even biosynthesis of de-novo VOCs may occur when plants are
exposed to stresses (biotic or abiotic) [18,46]. We have observed in our previous studies
that EO vapor treatments trigger physiological responses in fruit and vegetables, leading
to lower product weight loss, firmness retention and reduction of browning and yellowing,
among others [1,13,47]. Indeed, enhancement of antioxidant enzyme systems (superoxide
dismutase, catalase, ascorbate peroxidase, etc.) has been observed in several plant prod-
ucts after EO treatments (EO vapor, edible coatings with EOs, etc.) [48,49], which may
lead to the consideration of EO treatments by plant cells as abiotic stresses. In addition,
we recently found that EOs released from active packaging triggered antioxidant responses
in plant cells, with enhanced total phenolic contents and total antioxidant capacity in
flat peaches, as well as a reduction of quality-degrading enzymes like polygalacturonase
and pectinmethylesterase [10]. Loreto et al. [50] previously reported that monoterpenes
content of evergreen oak was increased as a protective mechanism against oxidative stress
produced by ozone gas. Furthermore, they demonstrated a common origin and a common
functional role of monoterpenes to the well-known antioxidant response of plants to the
volatile isoprene. Thus, it was demonstrated that isoprene produced by leaves protected
the photosynthetic apparatus against ozone gas stress quenching formed H2O2 and re-
duced lipid peroxidation of cellular membranes [51]. Lately, Vickers et al. proposed the
“single biochemical mechanism for multiple physiological stressors” model, which showed
that volatile isoprenoids may exert protective effects through antioxidant activity [52].
The mechanism by which volatile isoprenoids moderate oxidative loads is still a matter
of debate, but the current evidence points to two main avenues: either direct reactions
between volatile isoprenoids and oxidizing species and/or mediation of the signaling
responses [46,52].

Overall, this study shows how EO vapor treatment under vacuum conditions leads to
the recovery aroma profile of aromatic herbs by an antioxidant plant cell response, similar
to previous studies with other gas abiotic stresses.

3.4. Validation (Industrial Scale) of Aroma Recovery by Vapor Essential Oils Applied under
Vacuum Conditions

The observed aroma recovery with vapor EOs under vacuum conditions at the pilot
plant scale was validated at the industrial scale with the vacuum cooling system adapted
for the SDuVC technology designed by our group.

The parsley aroma related to the total VOCs content was recovered by 4.9-fold after
the vacuum and EO treatment (Figure 9A). Regarding individual VOCs, α-terpinolene,
β-phellandrene, 1,3,8-p-menthatriene, carvone, β-myrcene and α-dimethylstyrene were
incremented by 8.8-, 8.1-, 7.4-, 6.2-, 3.3- and 3.6-fold, respectively, after the vacuum and EO
treatment, which were slightly higher than the increments observed at the pilot plant scale.

The dill aroma also was recovered by 2.3-fold (total VOCs) after the vacuum and EO
treatment (Figure 9B). Dill ether, o-cymene and carvone were increased by 3.4-, 3.0- and
2.1-fold, respectively, while β-phellandrene was augmented by 1.6-fold after the vacuum
and EO treatment.
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Figure 9. Volatile organic compounds profile of (A) curly parsley and (B) dill, untreated (CTRL) or after vacuum cooling
and vapor essential oils (EOs) treatment, at the industrial scale (validation) (mean ± SD). * Significant differences among
the EOs and CTRL samples are denoted by an asterisk at p < 0.05 according to an independent samples t-test.

As observed, the aroma recovery at the pilot plant scale was also obtained at the
industrial scale with the vacuum cooling system adapted for the SDuVC technology.
Furthermore, such aroma recovery was higher at the industrial scale, which may be
explained by the longer treatment time of the industrial vacuum cooling process (15 min is
the total time of vacuum cooling process and EO vapor treatment). The relative content
(%) of the individual VOCs to the total VOCs profile (100%) also varied after the vacuum
cooling process and EO vapor treatment. Nevertheless, the major VOCs characteristic of
curly parsley and dill were always enhanced. Samples treated with the vacuum and EO
vapor treatment were more aromatic, as scored in the informal panel tests conducted after
this treatment in the industrial installations. Nevertheless, future studies with trained
sensory panel tests must be conducted to correlate such observed higher VOCs contents
with sensory scores.

The aroma recovery of plant products, and aromatic herbs in particular, by apply-
ing vaporized EOs under vacuum conditions is hereby proposed to compensate for the
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reduction of VOCs levels after postharvest treatments such as vacuum cooling. Hence,
product aromatic quality is better maintained, leading to longer product shelf life and
lower food waste. This aspect is of high interest since a shrink rate in celery of 8.5% was
estimated in a study of US supermarkets in 2011–2012 [53]. Nevertheless, such waste ratios
may dramatically increase in other culinary herbs with higher postharvest respiration and
ethylene production rates (e.g., dill, parsley, etc.), or in those that are very sensitive to
chilling injury, like basil [3].

4. Conclusions

The aroma of culinary herbs is defined by their volatile organic compounds profile,
which must be preserved during their postharvest life using different postharvest tech-
nologies. This study shows how the application of the innovative technology of essential
oils vaporized during the vacuum cooling process of culinary herbs enhances their aroma
profile to compensate for subsequent aroma losses that may occur during the herbs’ shelf
life. In particular, the aroma quality of curly parsley and dill was recovered at both the pilot
plant scale and the industrial level (validation). Furthermore, solid-phase microextraction
(SPME) sorption of the volatile organic compounds was modeled to better characterize the
sorption equilibrium between the analyte and the SPME stir-bar coating. Hence, this tech-
nology is proposed to be combined with vacuum cooling devices installed in culinary herbs
processing plants.
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