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Single-cell RNA-seq of primary 
bone marrow neutrophils from 
female and male adult mice
Minhoo Kim1, Ryan J. Lu   1,2 & Bérénice A. Benayoun   1,3,4,5,6 ✉

Widespread sex-dimorphism is observed in the mammalian immune system. Consistently, studies have 
reported sex differences in the transcriptome of immune cells at the bulk level, including neutrophils. 
Neutrophils are the most abundant cell type in human blood, and they are key components of the 
innate immune system as they form a first line of defense against pathogens. Neutrophils are produced 
in the bone marrow, and differentiation and maturation produce distinct neutrophil subpopulations. 
Thus, single-cell resolution studies are crucial to decipher the biological significance of neutrophil 
heterogeneity. However, since neutrophils are very RNA-poor, single-cell profiling of these cells has 
been technically challenging. Here, we generated a single-cell RNA-seq dataset of primary neutrophils 
from adult female and male mouse bone marrow. After stringent quality control, we found that 
previously characterized neutrophil subpopulations can be detected in both sexes. Additionally, we 
confirmed that canonical sex-linked markers are differentially expressed between female and male cells 
across neutrophil subpopulations. This dataset provides a groundwork for comparative studies on the 
lifelong transcriptional sexual dimorphism of neutrophils.

Background & Summary
The mammalian immune system displays widespread sex dimorphism1–3. In general, males are more susceptible 
to and have worse outcomes for severe infections, whereas females are more prone to autoimmune diseases3–6. 
Consistently, transcriptome profiling studies have reported strong sex differences in the gene expression patterns 
of immune cells throughout life, including neutrophils7,8. Neutrophils are key elements of the innate immune 
system that constitute the first line of defense in response to inflammatory stimuli9. Neutrophils protect the 
host by phagocytosis, production of antimicrobial granules, and release of neutrophil extracellular traps10–12. 
Consequently, neutrophil dysfunction has been linked to the pathogenesis of various diseases, including ather-
osclerosis, macular degeneration, and cancer13–15. Recently, our group performed a multi-omic study, including 
bulk RNA-seq analysis, of murine bone marrow neutrophils with respect to sex and age, and we observed sig-
nificant sex differences in the neutrophil transcriptome and functional landscape throughout life8. Additionally, 
bulk RNA-seq analysis of murine spleen neutrophils by the ImmGen Consortium revealed transcriptional dif-
ferences between female and male animals, and such sex differences were enhanced upon interferon stimula-
tion7. Together, these findings suggest that neutrophils harbor sex dimorphic gene regulation.

Neutrophils are constantly produced in the bone marrow, and they migrate to the infected site through 
the circulatory system16,17. Differentiation and maturation of neutrophils have been shown to produce distinct 
neutrophil subpopulations16,18,19. Consequently, single-cell resolution approaches are essential to explore neutro-
phil heterogeneity and understand neutrophil biology. However, due to the low RNA and high RNAse content 
of neutrophils, special precautions need to be taken to capture and robustly profile neutrophils in single-cell 
RNA-seq protocols20,21. A recent landmark study by Xie et al. performed single-cell transcriptome profiling of 
neutrophils purified by flow cytometry from the bone marrow, peripheral blood and spleen of female mice22. The 
study identified eight distinct neutrophil subpopulations (G0-G4 and G5a-c) at different stages of maturation 
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in homeostatic state and proportions of each neutrophil subpopulation were different among bone marrow, 
peripheral blood and spleen22. In the bone marrow, relatively immature neutrophil subpopulations (G0-G4) 
were detected as more abundant, whereas more mature neutrophils (G5a-c) were found at higher frequency in 
the peripheral blood and spleen22. Additionally, Xie et al. leveraged the single-cell RNA-seq dataset to capture 
dynamic transitions between neutrophil subpopulations upon bacterial infection22. To gain insights on the regu-
latory networks and potential contribution of distinct neutrophil subpopulations to the observed sex differences 
in the neutrophil transcriptional landscape, single-cell resolution approaches are necessary. However, single-cell 
resolution datasets of neutrophil transcriptional landscapes that include both sexes are still lacking.

Here, we generated a single-cell RNA-seq dataset of primary neutrophils from 3-month-old female and male 
adult mouse bone marrow with biological replicates (n = 2 per sex) (Fig. 1a and Table 1). All the samples in our 
dataset were handled and processed together to eliminate potential batch effects, including the use of cell hash-
ing23. Single-cell multiplexing provides multiple benefits, including, but not limited to, mitigating batch effects 
and reducing costs23. Through technical validation, as described below, we demonstrate technical quality of our 
dataset. After quality control, we annotated the neutrophil subpopulations by utilizing the annotation scheme 

Fig. 1  Outline of sample preparation and data analysis workflow. (a) Outline of sample preparation workflow. 
Bone marrow was collected from two female and two male 3-month-old C57BL/6 mice. Isolated neutrophils 
were labelled with HTOs and pooled for sequencing library preparation and sequencing. (b) Outline of data 
analysis workflow. HTO counts and gene-barcode matrices were quantified using CITE-seq-Count31 and 
Cellranger count29 functions, respectively. After demultiplexing, singlet neutrophils (annotated using SingleR32 
and ImmGen33 database) with gene count greater than 100 and mitochondrial gene count less than 25% were 
extracted to obtain a clean gene-cell expression matrix. Neutrophil subpopulation annotation and marker 
gene analyses were performed using singleCellNet39 and the Xie et al. dataset34. Sex-specific gene expression 
was quantified via pseudo-bulk analysis using muscat41. Pseudo-time trajectory analysis was performed using 
monocle340. HTO: Hash tag oligo. QC: Quality control.
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from the study by Xie et al.22 - we identified comparable proportions of neutrophil subpopulations in our bone 
marrow neutrophil dataset as in the bone marrow neutrophil data from the original study. Additionally, we per-
formed differential expression analysis of key marker genes for each neutrophil subpopulation between female 
and male bone marrow neutrophils. Overall, our dataset represents an important resource to investigate sex 
dimorphism in neutrophil biology.

Methods
Mouse husbandry.  All animals were treated and housed in accordance with the Guide for Care and Use 
of Laboratory Animals. All experimental procedures were approved by the University of Southern California 
(USC)’s Institutional Animal Care and Use Committee (IACUC) and are in accordance with the institutional and 
national guidelines. Samples were derived from animals on approved IACUC protocol #20804. Adult female and 
male C57BL/6 J mice (3-month-old animals) were obtained from Jackson Laboratories. Animals were acclimated 
at the animal facility at USC for 2 weeks before euthanasia. The animal facility at USC is on a 12-h light/dark 
cycle and animal housing rooms are maintained at 22 °C and 30% humidity. All animals were euthanized by CO2 
asphyxiation followed by cervical dislocation.

Isolation of primary neutrophils from the mouse bone marrow.  Mouse bone marrow neutro-
phils were isolated using a previously described protocol that yields highly pure neutrophils8,24. Specifically, 
hind limb long bones of each mouse were collected and kept on ice in D-PBS (Corning) supplemented with 
1% antibiotic-antimycotic (Gibco) until further processing. Muscle and connective tissues were removed from 
the bones, and the bone marrow from the cleaned bones was collected into clean tubes by centrifugation25. Red 
blood cells from the bone marrow were removed using the Red Blood Cell Lysis buffer (Miltenyi Biotec, no. 130-
094-183), according to the manufacturer’s instructions, albeit with no vortexing to avoid arbitrary neutrophil 
activation. The suspension was filtered on 70-μm mesh filters (Miltenyi Biotec, no. 130-110-916) to retain only 
single cells for downstream processing. Neutrophils were isolated from other bone marrow cells using MACS 
(Miltenyi Biotec, no. 130-097-658). Viability and yield were assessed using trypan blue exclusion and an auto-
mated COUNTESS cell counter (Thermo Fisher Scientific). Purified cells were immediately used for cell hashing.

Cell hashing, single-cell RNA-seq library preparation & sequencing.  Cell hashing was performed 
using TotalSeqTM-A Antibodies (BioLegend) according to the manufacturer’s instructions (TotalSeqTM-A 
Antibodies and Cell Hashing with 10x Single Cell 3′ Reagent Kit v3 or v3.1 (Single Index) Protocol) (Table 1). 
Specifically, 1 million purified neutrophils were first incubated with mouse Fc Blocking Reagent (Miltenyi Biotec, 
no. 130-092-575) at 4 °C for 10 minutes. Then, each blocked sample was incubated with 1 μg of specific TotalSeq 
Cell Hashing antibody (HTOs 1-4) at 4 °C for 30 minutes. After incubation, stained cells were washed 3 times, and 
assessed for viability and yield using the COUNTESS cell counter (Thermo Fisher Scientific). Female neutrophil 
samples (HTO 1, 3) and male neutrophil samples (HTO 2, 4) were pooled separately by sex of origin in equal 
volumes.

Single-cell RNA-seq libraries were generated using the Chromium Next GEM Single-cell 3′ v3.1 assay 
(10xGenomics) according to the manufacturer’s instructions (10xGenomics User Guide Chromium Next GEM 
Single-cell 3′ Reagent Kits v3.1 (CG000204, Rev D))26 with modifications to accommodate for low RNA content 
of neutrophils. Briefly, cell numbers equivalent to a target cell recovery of 5,000 cells per sample after sequencing 
were loaded onto a 10x Genomics Chromium Next GEM G Chip with the reverse transcription enzyme master 
mix. We used the Chromium Next GEM Single-cell 3′ Reagent Kits v3.1 to perform mRNA capture, barcoding 
and reverse transcription within the GEMs. Single-cell RNA-seq libraries were generated using the Single-cell 
3′ Reagent Kit. To allow for library complexity despite low input RNA, an additional 2 cycles were added to the 
cDNA amplification step (for a total of 14 cycles). HTO Additive primer v2 (Integrated DNA Technologies) was 
added to the cDNA amplification reaction to amplify the HTO molecules. The amplified HTOs were recovered 
in the cleanup step for the cDNA amplification, and HTO libraries were built using the 2x NEBNext PCR Master 
Mix and Truseq indexing oligos (Integrated DNA Technologies).

Single-cell RNA-seq and HTO libraries were quantified and quality controlled using a Qubit fluorometer and 
the 4200 TapeStation system (Agilent Technologies) with a High Sensitivity DNA ScreenTape. Paired-end reads 
(26 + 8 + 98 bp) were generated on the Illumina NextSeq550 platform at the USC Genome Core.

Bioinformatic analysis.  For sequencing data analysis, we followed the best-practice recommendations for 
single-cell RNA-seq analysis (Fig. 1b). Our pipeline was tested and validated in R27 versions 3.6.3 and 4.1.2 and 
Seurat28 versions 3.2.2 and 4.1.0. We report here the results using R 4.1.2 and Seurat 4.1.0. Each step of our bioin-
formatic analysis pipeline is discussed in detail below.

Sample Sex Age HTO sequence

3m_F_1 Female

3-months-old

HTO1-ACCCACCAGTAAGAC

3m_M_1 Male HTO2-GGTCGAGAGCATTCA

3m_F_2 Female HTO3-CTTGCCGCATGTCAT

3m_M_2 Male HTO4-AAAGCATTCTTCACG

Table 1.  Sample information.
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Filter and demultiplex cells.  Raw reads were aligned to the mouse genome (mm10) and processed using the 
“cellranger count” (6.0.2) pipeline29 (--expect-cells = 5000 --include-introns) to generate gene-barcode matrices 
(Tables 2 and 3). We used the --include-introns option to account for the limited number of genes expressed in 
neutrophils30, as recommended by 10xGenomics. HTO quantification was performed using CITE-seq-Count 
(v. 1.4.5)31 with the following parameters: -cbf 1 -cbl 16 -umif 17 -umil 26 -cells 5000 (Table 4). Gene-barcode 
matrices and HTO counts were loaded into R and cells that were detected by both RNA and HTO were filtered 
for downstream analysis. Additionally, genes that were not detected in at least 20 cells were excluded to eliminate 
possible random noise. After setting up a Seurat28 object using the gene-barcode matrices, HTO counts were 
added to the Seurat object as an independent assay and normalized using the centered log-ratio (CLR) transfor-
mation. Cells were demultiplexed using the MULTIseqDemux() function into four samples according to their 
HTO barcode of origin.

Extract singlets and run QC.  Singlets were retained for downstream analyses based on the MULTIseqDemux() 
annotations. For quality control, cells that have unique feature counts less than 100 or mitochondrial gene count 
greater than 25% were excluded (subset = nFeature_RNA > 100 & percent.mito < 25) (Table 5). After removing 
the unwanted cells, the dataset was normalized using the NormalizeData() function with the following parame-
ters: normalization.method = “LogNormalize”, scale.factor = 10000.

Dimensional reduction and clustering.  Prior to dimensional reduction, the dataset was scaled using the 
SCTransform() function with vars.to.regress = c(“nFeature_RNA”, “percent.mito”). The first 15 principal com-
ponents (PCs) were used for Uniform Manifold Approximation and Projection (UMAP) (RunUMAP()) and 
clustering (FindNeighbors() and FindClusters(), resolution = 0.3).

SingleR cell annotation.  To eliminate possible contaminants (non-neutrophil cells) from the dataset, quality 
controlled singlets were annotated using SingleR v.1.8.132. The ImmGen expression dataset from celldex was 
used as the reference for cell annotation33. 6,025 cells out of 6,073 cells from the dataset were annotated as 
neutrophils (~99.21% purity). Cells annotated as non-neutrophil cells were excluded for downstream analysis.

Neutrophil subpopulation annotation and marker gene analysis.  Neutrophil heterogeneity has been reported by 
multiple studies16,18,19. A recent work by Xie et al. characterized neutrophil subpopulations (G0-G4 and G5a-c) in 
the murine bone marrow via single-cell RNA-seq analysis of flow cytometry22 (hereafter referred to as the “Xie et 
al. dataset”34). To annotate the neutrophil subpopulations in our dataset, we leveraged the gene-barcode matrix 

Sample Reads
Q30 Bases in 
Barcode

Q30 Bases in 
RNA Read

Q30 Bases 
in UMI

Confident Mapping 
to Genome

Confident Mapping 
to Transcriptome

Female Pool 199,687,860 96.9% 90.6% 95.8% 94.7% 87.3%

Male Pool 215,735,119 97.1% 90.9% 96.0% 95.0% 88.0%

Table 2.  Detailed QC report of 10x Genomics sequencing files (Cell Ranger).

Sample
Estimated Number 
of Cells

Mean Reads 
per Cell

Median Genes 
per Cell

Median UMI 
per Cell

Fraction Reads 
in Cells

Sequencing 
Saturation

Female Pool 2,848 70,115 1,691 5,712 96.8% 87.9%

Male Pool 3,630 59,431 1,544 4,755 97.3% 87.7%

Table 3.  Sequencing statistics of 10x Genomics libraries (Cell Ranger).

Sample Reads
Mean Quality 
Score

Matched 
Hashtags

Female HTO 1,722,815 27.2 79%

Male HTO 2,042,585 27.4 82%

Table 4.  QC and information for HTO libraries.

Sample
QC 
Neutrophils

Median Genes 
per Neutrophil

Median UMI 
per Neutrophil

Median HTO 
per Neutrophil

Mean Mitochondrial 
Reads

3m_F_1 1,396 1,662 5,552 331 <0.5%

3m_F_2 1,205 1,737 5,980 208 <0.5%

3m_M_1 1,802 1,541 4,716 273 <0.5%

3m_M_2 1,622 1,540 4,765 260 <0.5%

Table 5.  Final per sample information after HTO demultiplexing, singlet and neutrophil filtering.
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(GSE13753934) and cell annotation data (GSM408154535, GSM408154636, GSM408154737 and GSM408154838) 
from the Xie et al. dataset provided in the Gene Expression Omnibus (GEO) database. singleCellNet v.0.1.0 was 
used to classify neutrophil subpopulations within our dataset39. After extracting the common genes found in 
both our dataset and the Xie et al. dataset, we trained a classifier using the scn_train() function with the follow-
ing parameters: nTopGenes = 100, nTopGenePairs = 50, nRand = 50, nTrees = 1000. scn_predict() and get_cate() 
functions were used to classify cells within our dataset and assign annotation to each cell, respectively. Marker 
genes for neutrophil subpopulations identified from the Xie et al. dataset (17 genes) were used to analyze marker 
gene expression in our dataset22. Dot plots of marker gene expression levels were generated using the DotPlot() 
function from Seurat28.

Pseudo-time trajectory analysis.  Single-cell trajectory was constructed using monocle3 v.1.0.040. After learning 
the principal graph (learn_graph()), cells were ordered using order_cells (root_cells = “G2”). “G2” subpopulation 
was used as root cells as they were the least matured neutrophil subpopulation detected in our dataset22.

Pseudo-bulk analysis of sex-specific gene expression.  As a quality control, we assessed the expression of 
sex-specific genes, Xist and Ddx3y, in each neutrophil subpopulation using pseudo-bulk analysis with muscat 
v.1.5.241. Each neutrophil subpopulation single-cell data was aggregated to pseudo-bulk data using the aggrega-
teData() function with the fun = “sum” option. Differential state was assessed using the pbDS() function with the 
following parameters: method = “edgeR”, min_cells = 8 (edgeR v. 3.36.0).

Dimensional reduction of pseudo-bulk analysis data.  To assess the potential global sex differences in the tran-
scriptional landscapes between female and male neutrophils (globally and for each subpopulation), muscat 
v.1.5.241 was used to perform Multidimensional Scaling (MDS, pbMDS()) of the aggregated pseudo-bulk data 
(output of aggregateData(), described above).

Data Records
Sequencing data have been submitted to the Sequence Read Archive accessible through BioProject 
PRJNA79663442 (BioSamples SAMN2490530043, SAMN2490530144, SAMN2490530245 and SAMN2490530346; 
Table 6). We used publicly available neutrophil single-cell RNA-seq annotation data from the GEO 
(GSE13753934, 8-to-10-week-old female mouse bone marrow neutrophil samples) to annotate neutrophil sub-
populations within our dataset. The final annotated Seurat object47 has been made available on Figshare for use 
and analysis (https://doi.org/10.6084/m9.figshare.19623978).

Technical Validation
Quality control of the single-cell RNA-seq dataset.  We utilized cell hashing23 to multiplex our neu-
trophil single-cell RNA-seq samples. Biological replicates (n = 2 animals per sex) of each sex were pooled sep-
arately for sequencing library preparation (Fig. 1a). Hash tag oligo (HTO) quantification was performed using 
CITE-seq-Count31 (Fig. 1b). As shown in Fig. 2a, we confirmed clear enrichment of each HTO (HTO1, HTO2, 
HTO3 and HTO4) after demultiplexing using the MULTIseqDemux() function from Seurat28, indicating suc-
cessful cell hashing of neutrophils. Additionally, comparable Unique Molecular Identifier (UMI) counts were 
observed among four samples prior to quality control (Fig. 2b). To exclude potential low-quality data and noise, 
doublets and negative cells and cells with gene count less than 100 or mitochondrial gene count greater than 25% 
were excluded from the dataset (Fig. 2c). Additionally, to eliminate non-neutrophil cells from the dataset, we 
used SingleR32 and the ImmGen33 database to annotate the cells (Fig. 2d). Cells annotated as neutrophils (6,025 
cells out of 6,073 cells from the post-filter dataset; ~99.21%) were extracted for downstream analysis (Table 5). 
We used the filtered neutrophil singlets to perform dimensional reduction via Uniform Manifold Approximation 
and Projection (UMAP) using the first 15 principal components (Fig. 3a). We did not find any noticeable sample 
origin-related clustering and observed a homogeneous distribution of cells derived from female and male animals 
(Fig. 3a).

Annotation of neutrophil subpopulations.  Recently, Xie et al. identified eight distinct neutrophil sub-
populations (G0-4 and G5a-c) through a single-cell RNA-seq analysis of the bone marrow, peripheral blood, 
and spleen neutrophils from female mice22. In the same study, each subpopulation was identified as the follow-
ing neutrophil subsets in different maturation states: G0 – granulocyte-monocyte progenitors, G1 – committed 
neutrophil progenitors, G2 – pre-neutrophils, G3 – immature neutrophils and G4, G5a-c – mature neutrophils22. 
To identify and annotate neutrophil subpopulations in our dataset, we used singleCellNet39 and the annotation 
information from the Xie et al. dataset. As shown in Fig. 3b, we identified six neutrophil subpopulations, G2-4 
and G5a-c, within our dataset. Importantly, G0 and G1 subpopulations, granulocyte-monocyte progenitors and 
committed neutrophil progenitors, respectively, were not detected in our dataset, most likely due to depletion 

Library BioProject BioSample

Female Neutrophils PRJNA79663442 SAMN2490530043

Male Neutrophils PRJNA79663442 SAMN2490530144

Female HTO PRJNA79663442 SAMN2490530245

Male HTO PRJNA79663442 SAMN2490530346

Table 6.  Raw sequencing data accession.
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of progenitors by negative selection during the MACS neutrophil isolation step of our workflow8. To note, G0 
and G1 subpopulations were detected only in small proportions in the bone marrow data of the Xie et al. data-
set22. We also assessed the expression levels of marker genes associated with each neutrophil subpopulation. In 
the Xie et al. dataset, 18 marker genes were identified for subpopulations G2-4 and G5a-c. We observed sim-
ilar relative expression levels of the marker genes among the neutrophil subpopulations in our dataset as was 
shown for the Xie et al. dataset, except for Gm5483, which was not detected in our dataset, and the expression 
of marker genes with respect to each neutrophil subpopulation was not grossly affected by the biological sex 
(Fig. 3c and Supplementary Figure 1a). Additionally, we used monocle340 to construct a single-cell trajectory 
along pseudo-time to validate the temporal relationships among the neutrophil subpopulations along the mat-
uration process. As shown in Fig. 3d, we confirmed neutrophil maturation along the constructed trajectory in 
pseudo-time, starting from G2 through G5a-c, as was described for the Xie et al. dataset22.

Expression analysis of sex-linked genes.  To quality check for sex-specificity of our dataset, we assessed 
the expression of sex-chromosome linked genes, i.e. female-specific Xist and male-specific Ddx3y (Fig. 4a,b). 
Through sample-wise single-cell expression analysis and subpopulation-wise pseudo-bulk analysis of Xist and 
Ddx3y expression, we confirmed the expression of sex-specific genes in their respective samples (Fig. 4a,b). 
Additionally, our sex-wise comparisons confirmed that all six neutrophil subpopulations (G2-4 and G5a-c) were 
represented across the female and male samples in similar proportions (Fig. 4c).
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Fig. 2  Single-cell RNA-seq dataset quality assessment. (a) Ridgeplots of HTO sample enrichment after 
demultiplexing. (b) Violin plot of UMI counts (nCount_RNA) from each sample after demultiplexing.  
(c) Violin plots of gene counts (nFeature_RNA, left panel), UMI counts (nCount_RNA, middle panel) and 
percentage of mitochondrial gene counts (pecent.mito, right panel) after quality control filtering. (d) Heatmap 
of cell annotation scores and cell annotation via SingleR32 and ImmGen33 database. HTO: Hash tag oligo.  
UMI: Unique molecular identifier.
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Pseudo-bulk-level analysis of sex-dimorphic neutrophil transcriptomes.  More generally, to 
determine whether the transcriptomes of neutrophils and the underlying neutrophil subpopulations dis-
played sex-dimorphic expression patterns, we further analyzed the pseudo-bulk expression data. Using Multi 
Dimensional Scaling (MDS) as a dimensional reduction approach, we observed clear distinction between female 
and male samples at the global level (Fig. 4d). Further, when we compared the transcriptomes of each neutrophil 
subpopulation, we found similar clustering of female vs. male samples in all subpopulations, except for G5b 
(Fig. 4e and Supplementary Figure 1b), consistent with the notion that sex-dimorphic gene regulation occurs 
across neutrophil subpopulations. This observation suggests that the majority of neutrophil subpopulations pres-
ent with sex-dimorphic transcriptional landscapes.

Together, through the technical validations described above, we show that our single-cell RNA-seq dataset of 
bone marrow neutrophils from adult female and male mice is of high-quality. Additionally, we observed distinct 
neutrophil transcriptional landscapes between females and males. This dataset will serve as a valuable resource 
to interrogate sex differences in neutrophil landscapes at the single-cell level and to investigate the regulatory 
mechanisms underlying sex-dimorphism in neutrophil biology.

Usage Notes
Here, we generated a single-cell RNA-seq dataset of murine primary bone marrow neutrophils from adult female 
and male animals. From our neutrophil subpopulation marker gene expression analysis, we observed compa-
rable expression levels of the marker genes among female and male samples (Supplementary Figure 1a). Thus, 
cell identities of neutrophil subpopulations seem to be preserved between the two sexes. On the other hand, 
our pseudo-bulk-level analysis revealed distinct transcriptional landscapes of neutrophils between female and 
male subjects (Fig. 4d), which is consistent with previous studies that showed sex-dimorphic transcriptomes of 
neutrophils via bulk RNA-seq analyses7,8. In addition, we also provide evidence that sex-dimorphic gene expres-
sion also occurs in different neutrophil subpopulations (Fig. 4e and Supplementary Figure 1b), and is likely to 
not stem solely from sex-dimorphism in underlying patterns of heterogeneity. A potential limitation of this 
dataset includes the relatively small sample size (n = 2 per sex), which only allows for the discovery of large sex 
differences. Thus, future studies with larger numbers of animals will be needed for the detection of more subtle 
sex-dimorphic effects. Overall, the dataset described here will be an invaluable resource to start assessing the sex 
differences in the gene expression profiles across neutrophil subpopulations. This dataset may also be leveraged 
to identify differences in RNA velocity and/or transcription factor regulon activity as a function of sex and stage 
of neutrophil maturation (for example, using SCENIC48). Importantly, this dataset represents data from sexu-
ally mature C56BL/6J animals in good health and should be treated as such when inferring potential biological 
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responses as a function of genetic background, in response to infection or with respect to animal organismal age. 
Future work including profiling of neutrophils from other mouse strains (both inbred and outbred), other ages 
and/or health states will be important to determine the conservation of sex-dimorphic transcriptional patterns 
of neutrophils across biological contexts.

Code availability
All analytical code used for processing and technical validation is available on the Benayoun Laboratory GitHub 
repository (https://github.com/BenayounLaboratory/Neutrophil_scRNAseq_2022). The provided R code was 
run and tested using R 4.1.227.
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