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Algorithms and software were developed for analysis of B-scan ultrasonic signals acquired from commercial diagnostic ultrasound
system. The algorithms process raw ultrasonic signals in backscattered spectrum domain, which is obtained using two time-
frequency methods: short-time Fourier and Hilbert-Huang transformations. The signals from selected regions of eye tissues are
characterized by parameters: B-scan envelope amplitude, approximated spectral slope, approximated spectral intercept, mean
instantaneous frequency, mean instantaneous bandwidth, and parameters of Nakagami distribution characterizing Hilbert-Huang
transformation output. The backscattered ultrasound signal parameters characterizing intraocular and orbit tissues were processed
by decision tree data mining algorithm. The pilot trial proved that applied methods are able to correctly classify signals from corpus
vitreum blood, extraocular muscle, and orbit tissues. In 26 cases of ocular tissues classification, one error occurred, when tissues
were classified into classes of corpus vitreum blood, extraocular muscle, and orbit tissue. In this pilot classification parameters
of spectral intercept and Nakagami parameter for instantaneous frequencies distribution of the 1st intrinsic mode function were
found specific for corpus vitreum blood, orbit and extraocular muscle tissues. We conclude that ultrasound data should be further
collected in clinical database to establish background for decision support system for ocular tissue noninvasive differentiation.

1. Introduction

Ultrasound scanning of eye is a well-known instrumental
investigation [1–3]. Ultrasound B-scans help to visualize
internal structure of the tissues. In ophthalmology, B-
scans are used to show cross-sectional view of the eye
by displaying an image of ultrasound signal intensities
originating from nonhomogeneities within tissue. The ultra-
sound methods combined with optical methods are of high
importance in diagnosis and management of eye tumors
[4, 5]. Limited set of B-scan based-measurement parame-
ters (mostly geometrical: height, cross-sectional areas, and
shape, microstructure homogeneity, and reflection intensity)
are used for diagnostics of intraocular tissues and tumor
in conventional diagnostic systems [6–8]. Statistical B-
scan texture analysis-based parameters are also used for

intraocular tumors [9] and thyroid tissue characterization
[10].

The conventional ultrasound B-scan diagnostic systems
use video (demodulated) signals to represent diagnostic
images. This means that large part of information which is
possibly embedded in raw or radio frequency signal (RF)
representing backscattered ultrasound waves is thrown away.
The information extracted from RF signals, however, could
be successfully used for tissue characterization and develop-
ment of quantitative ultrasound diagnostic systems [11]. For
example, one-dimensional ultrasound RF signals, that is, A-
scan signals are used to estimate tumor thickness, internal
reflectivity, spontaneous vascular pulsation parameters [12,
13]. RF A-scan signal parameters (mean spectral frequency,
the width of power spectrum, effective values of correlation
function, and backscattering coefficient) can be successfully
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used for followup of brachytherapy treatment and character-
ization of malignant melanoma of choroid [14, 15].

RF ultrasound signals from B-scan-diagnostic systems
were also analysed. Spectral analysis was used to obtain
parameters such as the size of acoustic scatterer, acoustic
concentration of scatterers, spatial variability, backscat-
tering coefficient, attenuation coefficient and root mean
square velocity fluctuation, spectral slope, and intercept.
These parameters of RF signals were used as the prog-
nostic indicators for uveal melanoma [16], correlated with
microcirculatory patterns in uveal melanomas [17] and used
for modeling of intraocular tumor tissues [18]. The effective
scatterer size, acoustic concentration, intercept, and slope of
3D regions of interest calculated from spectral parameters of
RF signals were used for characterization of cancerous lymph
nodes [19] and for characterization of mammary tumors
[20]. Two-dimensional spectrum analysis of RF signals was
applied in ocular tumor diagnosis [21].

The literature survey shows that ultrasound RF signals
are analyzed using statistical, nonparametric (Fourier), and
model-based spectral analysis methods by fitting approx-
imated backscattered spectrum model. These spectrum
estimation methods suffer when data is highly nonstationary
as is the case in RF ultrasound signals. Hilbert-Huang
transform (HHT) [22] is a promising tool for nonstationary
and nonlinear data analysis. To the best of our knowledge
HHT-based methods are not yet used in the field of
ultrasound-based eye tissue characterization.

The aim of this research is to develop parameteriza-
tion algorithms for backscattered ultrasound RF signals
received from eye tissues and to provide supplementary
B-scan parametric maps, which could improve ultrasound
characterization and differentiation of intraocular tissues.

2. RF Ultrasound Data

The hardware used for acquisition of raw RF signals com-
prising ultrasound B-scans was described in [23]. Briefly,
the hardware system could be specified as follows. The
ultrasound B-scan system is Mentor Advent A/B (Advent,
Norwell, MA, USA), with mechanically scanning 15 MHz
transducer. The original ultrasound scanner is supplemented
with signal acquisition extension [23]. Data acquisition sys-
tem was prototyped using computerized digitizer PICO 5203
(Pico Technology, Cambridgeshire, UK) having 32 MB of
buffer memory, 8 bits in amplitude resolution, and 250 MHz
of sampling frequency.

3. Algorithms for Characterization of
Backscattered Signals

Empirical mode decomposition (EMD) and ensemble
empirical mode decomposition (EEMD) followed by Hilbert
transform (Hilbert-Huang transform) were used for synthe-
sis of parametric maps and tissue characterization [22, 24].
Both EMD and EEMD methods extract so-called intrinsic
mode functions (IMFs) from the raw RF ultrasound B-scan
signals. IMFs serve as an input to Hilbert transform, which
outputs analytical (complex) signals. By taking modulus

and argument of complex signals. analytical amplitude and
phase are extracted from each IMF. Finally, distributions of
instantaneous frequency (derivative of analytical phase) and
amplitude are calculated for each IMF.

In order to characterize instantaneous amplitudes and
frequencies, Nakagami distribution was used since it has
been found to be suitable for ultrasound signal characteriza-
tion previously [25]. Nakagami distribution is parameterised
by two parameters: scaling parameter Ω, which reflects
distribution of signal power, and m, which determines
the shape of the distribution. The Nakagami distribution
parameters were estimated from the 1st EMD IMF and 2nd
EEMD IMF. Both instantaneous amplitudes and frequencies
were parameterized for all B-scan RF signal lines.

Two additional parameters, spectral slope and intercept
[26], were calculated for characterization of echograms
inside the regions of interest (ROI). The signals were divided
into segments and then windowed using Hamming windows.
Fourier transform-based estimates of power spectrum were
averaged in order to reduce spectrum dispersion. The
parameters (intercept and slope) were obtained after linear
fitting of calibrated spectral function in frequency band 5–
18 MHz. One more method to characterize nonstationary
RF signal by mean instantaneous frequency (MIF) and
mean instantaneous bandwidth (MIB) was used as described
previously in [23].

The newly developed software allows opening and
processing of raw RF ultrasound data files obtained by
ultrasound diagnostic scanner. At first, RF ultrasound one-
dimensional signals (A-scans) comprising B-scan sector are
demodulated and mapped from sector data to raster data as
a greyscale B-scan image (see grayscale images in Figure 1).
Then two ROIs are selected interactively by dragging cursors.
The first ROI is primarily meant to mark the suspicious tissue
and the second ROI—the healthy tissue. Selected regions
(matrixes of raw RF ultrasound data) are passed to param-
eterization algorithms. The results of parameterization by
selected algorithm are added as a new layer to B-scan at
locations of selected ROIs (the colored boxes in Figure 1).

RF ultrasound (B-scan) signals were registered for 57
clinical cases. An experienced ophthalmologist has selected
two ROIs for each B-scan case. The size of ROIs was kept
to cover the area of the image with B-scan amplitude as
uniform as possible. In order to achieve uniformity of
B-scan amplitude, the ROI size was varied from 1.1 mm to
1.8 mm in depth (the mean being 1.5 mm) and from 5 to 12
echoscopy lines in width (the mean being 8.6). Then the RF
signals of both ROIs were processed by the parameterization
algorithms, and calculated parameters were stored into the
database.

4. Visualization of Tissue-Characterizing
Parameters

The “rose” or “radar” type diagrams were used in order to
present all sixteen parameters (see Table 1) in one diagram.
Such presentation of parameters that characterize the tissue
could be useful during visual preliminary analysis, that
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Figure 1: Representative examples of B-scan images with manually selected regions: (a) in healthy orbit and extraocular muscle (case no.
164), (b) in healthy orbit and intraocular blood (case no. 84).

Table 1: The list of parameterization algorithms and extracted parameters.

Title of the algorithm Title of the parameter

Amplitude demodulation (1) B-scan amplitude, dB

Short-time Fourier transform
(2) Mean instantaneous frequency, MHz

(3) Mean instantaneous bandwidth, MHz

Backscattered power spectra linear approximation
(4) Spectral slope, dB/MHz

(5) Spectral intercept, dB

Empirical mode decomposition

(6) Nakagami m parameter for EMD 1st IMF instantaneous frequencies

(7) Nakagami m parameter for EMD 1st IMF amplitudes

(8) Nakagami Ω parameter for EMD 1st IMF instantaneous frequencies

(9) Nakagami Ω parameter for EMD 1st IMF amplitudes

(10) Nakagami M parameter for EMD 2st IMF instantaneous frequencies

(11) Nakagami M parameter for EMD 2st IMF amplitudes

Ensemble empirical mode decomposition

(12) Nakagami m parameter for EEMD 2nd IMF noise

(13) Nakagami Ω parameter for EEMD 1st IMF instantaneous frequencies

(14) Nakagami Ω parameter for EEMD 1st IMF amplitudes

(15) Nakagami m parameter for EEMD 2nd IMF instantaneous frequencies

(16) Nakagami m parameter for EEMD 2nd IMF amplitudes

is, before application of automatic classification algorithms
such as rule-based classifiers or neural networks.

The whole set of 57 clinical cases of eye B-scan signals
were parameterized. The general view of these parameters
is presented in Figure 2. The parameter array (dimensions
57 × 16) was obtained from signals backscattered in healthy
tissue of orbit, and the same size array was obtained in case
of suspicious tissues inside the eyeball.

Close analysis of diagrams in Figure 2 shows that the
distributions of the parameter values are different for healthy
and suspicious tissues. For example, Ω for 1st IMF and Ω
for RF signal parameters are distributed widely in suspicious
tissues regions, while the same parameters in healthy orbit
tissues are uniformly close to zero. The wide spread of values
of the parameters could be noted as common feature of sig-
nals backscattered from intraocular suspicious tissues. The

smaller variability of parameters from healthy tissues of the
eye orbit could be explained by uniformity and similarities
of these tissues. Therefore, in future, the tissues of eye orbit
could be used as the reference backscattering target of eye.

Several clinically confirmed cases of healthy (extraocular
muscle) and pathologic (intraocular blood) tissues were
analyzed in order to investigate the power of proposed
technique to differentiate between types of ocular tissues.
The obtained illustrative diagrams (Figures 3(a) and 3(c))
indicate some differences among parameters characterizing
ultrasound signals backscattered from intraocular blood or
extraocular muscle. It can be also observed that parameters
estimated from healthy orbit tissues exhibit similar values
and patterns of radar type diagrams (Figures 3(b) and 3(d)).

The multitude of extracted parameters makes visual anal-
ysis difficult in case of subtle differences among eye tissues.
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Figure 2: General view of all parameters characterizing: (a) suspicious tissue inside the eye, (b) healthy orbit tissue.
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Figure 3: The distribution of parameter values for tissues differentiation: (a) healthy extraocular muscle (b) healthy orbit tissue (of the same
eye); (c) blood inside the eyeball (d) healthy orbit tissue (of the same eye).

Automatic data mining analysis methods and classification
techniques could potentially increase the accuracy of tissues
differentiation.

5. Automatic Classification of Ocular Tissues

The computer software for data mining, see 5.0/C5.0 [6],
was applied for automatic classification of RF ultrasound

B-scan signals in the database. In total, 26 cases have
been analyzed. The same sixteen parameters were used
from each of 26 signals representing different clinical cases.
We used predictive modeling algorithm for classification.
This algorithm forms a decision tree or a set of rules
understandable by a human. Classification of cases into
three classes (intraocular blood, healthy orbit tissue, and
extraocular muscle) was performed with decision tree of size
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Table 2: Results of automatic tissues differentiation.

Classified as
True class

Extraocular
muscle

Intraocular blood Orbit

9 — — Extraocular muscle

— 4 — Intraocular blood

(1) — 12 Orbit

3, and classification error was 3.8% (1 case in dataset, see
Table 2). The extraocular muscle and intraocular blood were
classified without errors. The only error occurred in one case,
when healthy orbit tissue was misclassified as extraocular
muscle tissue. The most specific parameter for differentiation
of intraocular blood was found to be spectral intercept. The
Nakagami distribution m parameter for EMD 1st IMF of
instantaneous frequencies was found to be the most specific
parameter for differentiation of healthy orbit tissue from
extraocular muscle. It should be mentioned that due to the
small dataset, there was no possibility to test classification
accuracy on new upcoming data.

6. Discussion

The algorithms and software for eye tissues differentiation
were developed using the analysis of modulated (RF)
ultrasound B-scan signals. The algorithms parameterize
the RF ultrasound signals in frequency and joint time-
frequency domains. The classical Fourier and relatively new
Hilbert-Huang transforms were employed to characterize the
signals from selected regions of eye tissues. In particular,
the following parameters were calculated: B-scan envelope
amplitude (dB), approximated spectral slope (dB/MHz),
approximated spectral intercept (dB), mean instantaneous
frequency (MHz), mean instantaneous bandwidth (MHz),
and Nakagami distribution parameters m and Ω character-
izing Hilbert-Huang transformation output. The extracted
signal parameters were processed using data mining software
and used to build the decision tree for automatic tissue
classification. The pilot trial to automatically differentiate
among corpus vitreum blood, extraocular muscle, and orbit
tissues resulted in classification error of 3.8% in the database
of 26 clinical cases of ocular tissues.

Our research is limited due to lacking of comparison
with gold standard imaging modality such as MRI or
with histological confirmation. However, application of the
proposed method could be compared to similar research
of eye tissue differentiation. In this pilot study we first
evaluated differentiation of the simplest ocular tissues. As
discussed by Fu et al. [4], the differentiation of eye tissues
is often performed using the following ultrasonographic
characteristics [4]: shape of lesion, reflectivity (low, medium,
and high), internal structure consistency or irregularity,
acoustic shadowing, and attenuation (from negligible up to
high). However, this subjective and qualitative interpretation
of B-scan images of eye tissue is hard to quantify and to
use in automatic tissue differentiation algorithms. Output of
our method estimates quantitatively these ultrasonographic

characteristics using set of RF signals processing algorithms,
similarly as was reported in [16, 19, 21]. Related study [4]
proposed to use the identification of extraocular muscle as
a reference to avoid misinterpretation of extrascleral growth
of intraocular tumor. Internal blood was also assessed [4] as
another important factor when discriminating hemorrhagic
lesion from choroidal melanoma. In rare cases choroid
hemangiomas may grow in spite of benign histology [27].
These pathologies were found hard to differentiate which
complicates decision on the best treatment. In such cases
ultrasonic followup should be provided for evaluation of
changes in formation size and internal reflectivity [27].
Therefore, improvement of internal blood differentiation is
important. The extremely high internal reflectivity typical
for choroid hemangioma should be verified with biopsy.
Fledelius [27] also has described the classical CT-scan
error miss interpreting oblique section of inferior rectus
muscle. Supplementary ultrasonography of external eye
muscles was found valuable in ophthalmologist’s evaluation.
Therefore improvement of muscle differentiation is also
important. Our results confirm forecasted [28] advantages
of the RF-based quantitative analysis, allowing additional
digital manipulation for overcoming certain limitations of
qualitative interpretation. The second issue of our approach
was application of complex algorithms for tissue character-
ization in relation with backscattering spectra model-based
methods [18, 29, 30] and empirical or statistical estimation
methods [25]. The backscattering models were theoretically
and practically tested [29] with regard to the properties of
the observed backscattering spectra. The estimated sizes of
acoustic scatterers quite well correspond to the dimensions
of observed histological structures. Our study showed that
complex evaluation of backscattering spectra model based
methods together with empirical or statistical estimation
methods provides additional information and allows for
better tissue characterization.

In conclusion, RF ultrasound signal analysis can be used
to differentiate different ocular tissues. The critical problem
in decreasing the tissues classification error is the availability
of representative database having sufficient amount of anno-
tated ultrasound data. One possible application of proposed
method is the differentiation of intraocular tumors.
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Barzdžiukas, “Application of data mining technique for diag-
nosis of posterior uveal melanoma,” Informatica, vol. 13, no. 4,
pp. 455–464, 2002.

[7] K. Kawana, F. Okamoto, H. Nose, and T. Oshika, “Ultrasound
biomicroscopic findings of ciliary body malignant melanoma,”
Japanese Journal of Ophthalmology, vol. 48, no. 4, pp. 412–414,
2004.

[8] V. L. L. Torres, N. Allemann, and C. M. Erwenne, “Ultrasound
biomicroscopy features of iris and ciliary body melanomas
before and after brachytherapy,” Ophthalmic Surgery Lasers
and Imaging, vol. 36, no. 2, pp. 129–138, 2005.
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