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Simple Summary: Desmoplastic reaction (DR) has previously been shown to be a promising prog-
nostic factor in colorectal cancer (CRC). However, its manual reporting can be subjective and con-
sequently consistency of reporting might be affected. The aim of our study was to develop a deep
learning algorithm that would facilitate the objective and standardised DR assessment. By applying
this algorithm on a CRC cohort of 528 patients, we demonstrate how deep learning methodologies
can be used for the accurate and reproducible reporting of DR. Furthermore, this study showed
that the prognostic significance of DR was superior when assessed through the use of the deep
learning classifier than when assessed manually. In this study, we demonstrate how the application
of machine learning approaches can help by not only identifying complex patterns present within
histopathological images in a standardised and reproducible manner, but also report a more accurate
patient stratification.

Abstract: The categorisation of desmoplastic reaction (DR) present at the colorectal cancer (CRC)
invasive front into mature, intermediate or immature type has been previously shown to have high
prognostic significance. However, the lack of an objective and reproducible assessment methodology
for the assessment of DR has been a major hurdle to its clinical translation. In this study, a deep
learning algorithm was trained to automatically classify immature DR on haematoxylin and eosin
digitised slides of stage II and III CRC cases (n = 41). When assessing the classifier’s performance
on a test set of patient samples (n = 40), a Dice score of 0.87 for the segmentation of myxoid stroma
was reported. The classifier was then applied to the full cohort of 528 stage II and III CRC cases,
which was then divided into a training (n = 396) and a test set (n = 132). Automatically classed
DR was shown to have superior prognostic significance over the manually classed DR in both the
training and test cohorts. The findings demonstrated that deep learning algorithms could be applied
to assist pathologists in the detection and classification of DR in CRC in an objective, standardised
and reproducible manner.

Keywords: deep learning; image analysis; desmoplastic reaction; colorectal cancer; digital pathology

1. Introduction

Colorectal cancer (CRC) is one of the most common cancers worldwide [1] and is
currently staged according to the tumour, node, metastasis (TNM) staging system [2]. It
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is now well established that the tumour microenvironment (TME) contributes to tumour
aggressiveness and patient survival [3,4]. Desmoplastic reaction (DR) or desmoplasia, refers
to the presence of excessive extracellular matrix at the invasive tumour front [5]. Previous
studies have shown that DR is associated with adverse clinicopathological findings in CRC
such as advanced T stage, lymphatic or venous invasion and poor clinical outcome [5–7].

A 3-tier classification system for the categorisation of DR has previously been shown
to be promising in the stratification of CRC patients into high-, mid- and low-risk of
disease-specific death [5–7]. This system requires the identification and assessment of
all haematoxylin and eosin (H&E) slides, generated per patient, and which contain any
invasive tumour front beyond the muscular layer. DR is then categorised into immature,
intermediate or mature based on the presence of myxoid stroma or keloid-like collagens.
Patients with immature DR were shown to have the worst disease-specific survival rate
followed by patients with intermediate DR, whereas patients with mature DR were shown
to confer the best disease-specific survival rate [6,7].

Although previous studies demonstrated that this 3-tier classification system can be
promising in the stratification of CRC patients into prognostic subgroups, this method
requires the assessment of multiple slides. Previously, we developed a more efficient
single-slide method where only the slide containing the deepest tumour invasion was
examined for DR. The single-slide method results were shown to be highly correlated with
the results of the currently used multi-slide method. Moreover, the prognostic significance
of DR when assessed on a single slide was almost identical to the results from the multi-
slide method [7]. Therefore, assessment of the slide containing the deepest portion of the
invasive front was shown to be sufficient for the stratification of CRC patients according
to DR.

Even though assessment of DR on a single slide might reduce the time and effort
required by the pathologist, the interobserver agreement is suboptimal. Several factors
can influence the degree of interobserver variability such as the stain colour variation.
Although the interobserver agreement reported in previous studies was within acceptable
ranges [7–9], concerns regarding its reproducible reporting is one of the main barriers to its
clinical translation. Previously, through the use of machine learning and automated image
analysis, we have successfully automatically quantified other features present at the CRC
invasive front, such as tumour budding [10], lymphocytic and macrophage infiltration [4]
and poorly differentiated clusters [11]. However, in those studies, multiplex immunoflu-
orescence was used to label these specific features of interest and hence threshold-based
algorithms in combination with shallow machine learning approaches were used for their
classification. DR, however, is not a specific feature but a pattern which needs to be recog-
nised and categorised on H&E slides. Deep learning algorithms have previously been
shown to be promising in identifying patterns on H&E whole-slide images [12–15]. In
the present study, we aimed to develop a deep learning algorithm for the automatic DR
classification on a single H&E slide containing the deepest tumour invasion of each patient.
We further aimed to assess and compare the prognostic significance DR assessed through
the deep learning algorithm and by eye.

2. Results
2.1. Patients’ Characteristics

This study included a training cohort of 396 patients, of which 159 were female
and 237 were male. The test set included 132 patients of which 54 were female and 78
were male. Two hundred and six stage II and 190 stage III patients were included in the
training cohort, whereas 74 stage II and 58 stage III patients were included in the test set.
Ninety-four patients were found to have immature DR within the training cohort, whereas
31 patients with immature DR were included within the test set. The full clinicopathological
characteristics of the training and test sets are shown in Table 1.
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Table 1. Patient clinicopathological characteristics for the training and test sets.

Features
Training Set (n = 396) Test Set (n = 132)

Freq. (%) Freq. (%)

Age
≤70 247 (62.4) 84 (63.6)

71–79 108 (27.3) 40 (30.3)
≥80 41 (10.4) 8 (6.1)

Gender
Male 237 (59.8) 78 (59.1)

Female 159 (40.2) 54 (40.9)
pT Stage

pT3 303 (76.5) 99 (75.0)
pT4 93 (23.5) 33 (25.0)

pN Stage
pN0 206 (52.0) 74 (56.1)
pN1 132 (33.3) 34 (25.8)
pN2 58 (14.6) 24 (18.2)

Tumour Site
Left 121 (30.6) 34 (25.8)

Right 114 (18.8) 39 (29.5)
Rectal 161 (40.7) 59 (44.7)

Differentiation
Moderate 206 (52.0) 59 (44.7)

Poor 25 (6.3) 18 (13.6)
Well 165 (41.7) 55 (41.7)

Tumour Type
Adenocarcinoma 378 (95.5) 121 (91.7)

Mucinous 18 (4.5) 11 (8.3)
DR type

Immature 94 (23.7) 31 (23.5)
Other 302 (76.3) 101 (76.5)

Abbreviations: Freq., frequency; DR, desmoplastic reaction.

2.2. Classifier Accuracy Evaluation

A single digitised H&E slide, selected from all slides per case, containing the deepest
portion of the invasive front, from all cases within the study, was manually selected and
categorised into immature or other DR type based on the presence of myxoid stroma in the
extramural tumour front. A DenseNet neural network, integrated within HALO® AI was
then trained to segment myxoid stroma from non-myxoid stroma areas using 41 cases. The
classifier’s accuracy was assessed on 40 unseen cases, 20 immature DR cases (containing
annotated myxoid stroma), and 20 other DR type cases. The Dice score was then used
in order to assess the performance of the classifier and results showed that the classifier
achieved a Dice score of 0.87 in segmenting myxoid stroma. Examples of images with
manual annotations and automatically segmented myxoid stroma areas are shown in
Figure 1.

2.3. Automated DR Classification

The classifier was then applied to the remaining patient samples, so that all cases
(n = 528) had been automatically analysed for the detection of myxoid stroma. Specifically,
the classifier was run across 2 automatically created regions of interest, within a width
span of either 500 or 1000 µm outwards from the manually delineated tumour’s invasive
front (Margin 1 and Margin 2, respectively; Figure 2). The total myxoid stroma area, the
average myxoid stroma area, and the largest single myxoid stroma area present within
these regions were automatically detected. These features were categorised according
to optimal cut-off points obtained through survival analysis of the training cohort data
(n = 396). However, the largest single myxoid stroma area was also categorised according
to the literature-dictated cut-off point [6,7,16] (0.196 mm2) for comparison. Since the
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largest single myxoid stroma area was categorised according to two cut-off points, the
automatically derived value is referred to as the automatic cut-off point (ACP) whereas
the one used when manually assessing for DR is referred to as the manual cut-off point
(MCP). All features and their cut-off points are shown in Table 2. Cases with feature values
greater than the cut-off points were regarded as having immature DR, whereas patients
with feature values less than the cut-off points were regarded as having other DR type.
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stained slides with myxoid stroma; (B,E) Manually annotated regions of myxoid stroma shown in green; and (C,F) Image 
analysis mask, automatically classified myxoid stroma regions shown in red. 
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Table 2. Cut-off point values for desmoplastic reaction features derived from image analysis.  
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Average myxoid stroma area in Margin 1 0.00622 
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Largest single myxoid stroma area in Margin 1 MCP 0.19600 

Total myxoid stroma area in Margin 2 0.31949 
Average myxoid stroma area in Margin 2 0.15859 

Figure 1. Examples of automatic desmoplastic reaction detection on annotated slides with myxoid stroma. (A,D) H&E-
stained slides with myxoid stroma; (B,E) Manually annotated regions of myxoid stroma shown in green; and (C,F) Image
analysis mask, automatically classified myxoid stroma regions shown in red.

Table 2. Cut-off point values for desmoplastic reaction features derived from image analysis.

Features Cut-Off Value (mm2)

Total myxoid stroma area in Margin 1 0.27392
Average myxoid stroma area in Margin 1 0.00622

Largest single myxoid stroma area in Margin 1 ACP 1.04863
Largest single myxoid stroma area in Margin 1 MCP 0.19600

Total myxoid stroma area in Margin 2 0.31949
Average myxoid stroma area in Margin 2 0.15859

Largest single myxoid stroma area in Margin 2 ACP 0.17410
Largest single myxoid stroma area in Margin 2 MCP 0.19600

Abbreviations: ACP, automatic cut-off point; MCP, manual cut-off point.
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Figure 2. Desmoplastic reaction regions of interest. (A) Annotated tumour front, shown in yellow; 
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Figure 2. Desmoplastic reaction regions of interest. (A) Annotated tumour front, shown in yellow;
(B) Desmoplastic reaction Margin 1 shown in green, being a 500 µm border from the invasive
front; and (C) Desmoplastic reaction Margin 2 shown in blue, being a 1000 µm border from the
invasive front.
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2.4. Survival Analysis

Univariate Cox regression was initially applied to the training set in order to assess
the prognostic significance of T stage, N stage, differentiation, tumour type, automatically
assessed DR features and manually assessed DR. Results showed that all of the features
except differentiation were prognostically significant with hazard ratios varying between
1.792 and 3.527 (Table 3). Multivariate Cox regression with a forward stepwise method was
then applied in order to compare the prognostic significance of the features and to identify
the most prognostically significant factors. The total myxoid stroma area in Margin 2 was
shown to be the strongest prognostic factor (HR = 3.527; 95% CI, 1.784–6.973; p < 0.001),
followed by pN stage (HR = 1.490; 95% CI, 1.062–2.091; p = 0.021, Table 4). Manually
assessed DR was not found to be significant when multivariate Cox regression was applied.
KM survival analysis was also performed in order to identify the feature (from all DR-
related features) which stratified the training cohort with the greatest accuracy. Results
showed that the largest single myxoid stroma area in Margin 1 binarised using the ACP
could stratify the training cohort with the greatest accuracy (Figure 3). Specifically, patients
with a single myxoid stroma area larger than 1.04863 mm2 in Margin 1 were shown to
confer significantly worse disease-specific survival (26.0% survival rate) than patients with
a single myxoid stroma of a smaller area (72.7% survival rate, Figure 3a). KM survival
analysis also showed that the total myxoid stroma area in Margin 2 previously selected by
the multivariate Cox regression was significantly associated with disease-specific survival.
Patients with a higher total myxoid stroma area than 0.31949 mm2 in Margin 2 were shown
to confer significantly worse survival outcome (56.6% survival rate) than patients with
lower total myxoid stroma area than this value (83.1% survival rate, Figure 3c). Finally, KM
analysis showed that patients with immature DR conferred worse disease-specific survival
(38.2% survival rate) than patients with other stroma types (82.0% survival rate, Figure 3e)
when assessed using the manual classification method.

The 2 most prognostically significant DR-related features identified from the training
set (largest single myxoid stroma area in Margin 1 ACP and total myxoid stroma area in
Margin 2) as well as the manually assessed DR, were assessed on the test set for survival
analysis. The values of the cut-off points for the features derived from the training set were
directly applied to the test set. Univariate Cox regression showed that all 3 features had high
prognostic significance (largest single myxoid stroma area in Margin 1 ACP: HR = 4.654;
95% CI, 1.912–11.330; p < 0.001, total myxoid stroma area in Margin 2: HR = 3.743; 95%
CI, 1.091–12.830; p = 0.036, and manually assessed DR: HR = 2.635; 95% CI, 1.083–6.408;
p = 0.033; Table 5). KM analysis was further applied and results showed that all 3 features
were significantly associated with disease-specific survival. However, the prognostic
significance of the automatically detected DR was superior. Specifically, the use of the
automatically calculated size cut-off for the largest single myxoid stroma area outperformed
the manual one that used the area of the size of the microscopic field of a 40× objective
lens. Furthermore, the largest single myxoid stroma area in Margin 1 binarised using the
ACP achieved the most significant patient stratification. Patients with a single myxoid
stroma area larger than 1.04863 mm2 in Margin 1 were shown to confer significantly worse
disease-specific survival (28.6% survival rate) than patients with a single myxoid stroma
of a smaller area (76.6% survival rate, Figure 3b). Similarly, patients with a higher total
myxoid stroma area than 0.31949 mm2 in Margin 2 were shown to confer significantly
worse survival outcome (49.7% survival rate) than patients with lower total myxoid stroma
area than this value (93.7% survival rate, Figure 3d). Finally, patients with immature DR
were shown to confer worse disease-specific survival (47.6% survival rate) than patients
with other DR types (74.2% survival rate, Figure 3f) when assessed manually.
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Table 3. Univariate Cox regression results for the clinicopathological data, and automatic and manual desmoplastic reaction
assessment on the training set.

Features Freq. (%)
Univariate

HR (95% CI) p

pT Stage 1.887 (1.091–3.265) 0.023
pT3 303 (76.5)
pT4 93 (23.5)

pN Stage 1.795 (1.297–2.484) <0.001
pN0 206 (52.0)
pN1 132 (33.3)
pN2 58 (14.6)

Differentiation 0.969 (0.744–1.263) 0.816
Moderate 206 (52.0)

Poor 25 (6.3)
Well 165 (41.7)

Tumour Type 2.813 (1.204–6.573) 0.017
Adenocarcinoma 378 (95.5)

Mucinous 18 (4.5)
Total myxoid stroma area in Margin 1 2.742 (1.559–4.821) <0.001

High 197 (49.7)
Low 199 (50.3)

Average myxoid stroma area in Margin 1 2.439 (1.293–4.600) 0.006
High 250 (63.1)
Low 146 (36.9)

Largest single myxoid stroma area in Margin 1 ACP 2.546 (1.395–4.646) 0.002
Yes 51 (12.9)
No 345 (87.1)

Largest single myxoid stroma area in Margin 1 MCP 1.792 (1.071–2.998) 0.026
Yes 169 (42.7)
No 227 (57.3)

Total myxoid stroma area in Margin 2 3.527 (1.784–6.973) <0.001
High 239 (60.4)
Low 157 (39.6)

Average myxoid stroma area in Margin 2 2.356 (1.293–4.295) 0.005
High 50 (12.6)
Low 346 (87.4)

Largest single myxoid stroma area in Margin 2 ACP 2.941 (1.612–5.367) <0.001
Yes 216 (54.5)
No 180 (45.5)

Largest single myxoid stroma area in Margin 2 MCP 2.671 (1.501–4.752) <0.001
Yes 207 (52.3)
No 189 (47.7)

Manually Assessed DR 2.588 (1.546–4.331) <0.001
Immature 94 (23.7)

Other 302 (76.3)

Abbreviations: Freq., frequency; HR, hazard ratio; CI, confidence interval; ACP, automatic cut-off point; MCP, manual cut-off point;
DR, desmoplastic reaction.
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Table 4. Features entered into the multivariate forward stepwise Cox regression.

Variables in the Equation

Multivariate Cox Regression Model

HR 95% CI p

Lower Upper

Total myxoid stroma area in Margin 2 3.527 1.784 6.973 <0.001
pN Stage 1.490 1.062 2.091 0.021

Variables not in equation

pT Stage NS
Differentiation NS
Tumour Type NS

Manually Assessed DR NS
Total myxoid stroma area in Margin 1 NS

Average myxoid stroma area in Margin 1 NS
Largest single myxoid stroma area in Margin 1 ACP NS
Largest single myxoid stroma area in Margin 1 MCP NS

Average myxoid stroma area in Margin 2 NS
Largest single myxoid stroma area in Margin 2 ACP NS
Largest single myxoid stroma area in Margin 2 MCP NS

Significant features are shown on the top half of the table and features which are not significant are shown on the bottom half of the
table. Abbreviations: HR, hazard ratio; CI, confidence interval; DR, desmoplastic reaction; ACP, automatic cut-off point; MCP, manual
cut-off point.

Table 5. Univariate Cox regression results for the total myxoid stroma area in Margin 2, manually assessed DR and the
largest single myxoid stroma area in Margin 1 ACP of the test set.

Features Freq. (%)
Univariate

HR (95% CI) p

Total myxoid stroma area in Margin 2 3.743 (1.091–12.830) 0.036
High 82 (62.1)
Low 50 (37.9)

Manually Assessed DR 2.635 (1.083–6.408) 0.033
Immature 31 (23.5)

Other 101 (76.5)
Largest single myxoid stroma area in Margin 1 ACP 4.654 (1.912–11.330) <0.001

Yes 21 (15.9)
No 111 (84.1)

Abbreviations: Freq., frequency; HR, hazard ratio; CI, confidence interval; ACP, automatic cut-off point; DR, desmoplastic reaction.



Cancers 2021, 13, 1615 9 of 15

Cancers 2021, 13, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 3. Kaplan–Meier survival analysis for the largest single myxoid stroma area in Margin 1 ACP, total myxoid stroma 
area Margin 2, and manual DR Assessment for the training and test sets. (a) Largest single myxoid stroma area in Margin 
1 ACP for the training set, (b) largest single myxoid stroma area in Margin 1 ACP for the test set, (c) total myxoid stroma 
area Margin 2 for the training set, (d) total myxoid stroma area Margin 2 for the test set, (e) manual DR Assessment for 
the training set, and (f) manual DR Assessment for the test set. p values from KM analysis. HR and CI from univariate Cox 
regression analysis. 

Figure 3. Kaplan–Meier survival analysis for the largest single myxoid stroma area in Margin 1 ACP, total myxoid stroma
area Margin 2, and manual DR Assessment for the training and test sets. (a) Largest single myxoid stroma area in Margin 1
ACP for the training set, (b) largest single myxoid stroma area in Margin 1 ACP for the test set, (c) total myxoid stroma
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training set, and (f) manual DR Assessment for the test set. p values from KM analysis. HR and CI from univariate Cox
regression analysis.
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3. Discussion

A wealth of studies has previously aimed to understand the complex tumour–stroma
interactions and their association with patient clinical outcome [17,18]. DR, referring to
the excessive fibrous tissue formation surrounding the tumour, has been shown to be
highly prognostic in CRC. Specifically, immature DR, categorised based on the presence of
large areas of myxoid stroma at the extramural tumour front, has repeatedly been associ-
ated with adverse clinicopathological features and poor disease-specific and relapse-free
survival [5,6,16]. In the methodology currently presented in the literature, DR categori-
sation is performed manually on all tumour slides containing any invasive front beyond
the muscular layer [19]. However, we have previously shown that DR can be assessed
on a single tissue slide containing the tumour deepest invasive front [7]. Although this
approach is more time-efficient, it does not guarantee the reporting of standardised and
reproducible results.

In this study, we have developed a deep learning-based methodology to automatically
categorise DR present at the extramural tumour front on a single tissue section containing
the deepest advancing edge of the tumour. The deep learning classifier was shown to have
high accuracy in detecting myxoid stroma when assessed on unseen cases with a Dice score
of 0.87. The DR categorisation using the results from the automated deep learning classifier
was shown to have high prognostic significance both on a training and a test set of CRC
patient samples. Furthermore, the automatic DR categorisation was found to be superior
to the manual DR categorisation in patient stratification.

The accuracy of the algorithm to identify myxoid stroma was assessed on an unseen
set of images and this evaluation translated into significant survival statistics when the
algorithm was applied to identify myxoid stroma across the entire patient cohort. When
comparing the prognostic significance of the automatically classed DR and the manual
assessment of DR, the automatically classed DR was shown to have superior prognostic
significance. This difference in the prognostic significance can be explained by the discrep-
ancies present within the 2 methods. During its manual assessment, DR is categorised as
immature if the myxoid stroma is larger than a microscopic field of a 40× objective lens.
Specifically, the entire area of the microscopic field needs to be taken up by the myxoid
stroma. Cases where myxoid stroma of a thin and elongated shape, which could be of
an area greater than a microscopic field of a 40× objective lens, and yet does not take up
the entire field of view, would not be classed as immature DR. Moreover, although this
cut-off point can be easily applied across institutes due to use of a standard 40× objective
microscope lens, interobserver agreement is suboptimal. The use of the deep learning
classifier and image analysis allows for the standardised and reproducible DR assessment
but also for the reporting of the exact size of every myxoid stroma area. This can, there-
fore, result in the quantitative DR reporting and in the identification of optimal cut-off
points for the classification of the DR as immature. Furthermore, this classifier not only
reports the size of the myxoid stroma but also the total myxoid stroma area present at the
extramural tumour front. The manual reporting of the total myxoid stroma area present in
each slide would be an extremely hard task to regularly perform as it is labour-intensive,
time-consuming and subjective. In fact, to the best of our knowledge, there has not been
any study assessing the prognostic significance of the total myxoid stroma area present
at the extramural tumour front. This study is therefore the first to demonstrate that this
feature had high prognostic significance in CRC when assessed both on a training and a
test set. Finally, as previously mentioned, H&E staining variability can contribute to the
sub-optimal inter-observer agreement when assessing for DR. Although stain variation
is also a well-known issue in image analysis, several techniques have been proposed to
overcome this. One such technique is colour augmentation, which simulates a variety of
stain variations throughout the training of the classifier in order to produce stain-invariant
classifiers [20]. Indeed, the deep learning algorithm used in this study included such a
colour augmentation step, as previously applied by Liu et al. [14], which addresses the
issue of colour variation and thus could be advantageous over manual DR assessment.
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Previous studies have shown that the prognostic significance of DR outperformed
that of other conventional prognostic factors used in international guidelines such as T
stage [5,21]. This is of particular interest in stage II CRC, where about 20–30% of the patient
population experiences disease recurrence or poor clinical outcome [22,23]. Currently,
a randomised controlled study regarding the use of adjuvant chemotherapy in stage II
CRC is being conducted in Japan. The target sample size of this study is 1680 patients
and the patient recruitment criteria are based on 4 pathological factors which include
DR categorisation [24]. Should the results of this study show that DR categorisation is
highly significant in identifying patients who would benefit from adjuvant therapy, its
clinical translation might be recommended. Modern pathology is moving toward a digital
workflow [25] evident by the Food and Drug Administration (FDA) clearance of the first
whole-slide imaging system for primary diagnostics in 2017 [26] and the initiation of
proceedings to undergo full digitisation of the National Health Service (NHS) Greater
Glasgow and Clyde in Scotland [27]. Given that standardisation and reproducibility are
key in diagnostic tests as well as patient care [28], the clinical translation of classifiers, such
as the deep learning system for the categorisation of DR proposed here, might prove to be
very promising. The advantages of an automated system would negate any inter-observer
variability and ensure the reliability and reproducibility of the results, but also could reduce
the workload of the pathologists while providing the potential to report results quickly
due to continuous analysis workflows.

Deep learning algorithms have shown promise in patient diagnosis and prognosis
across multiple cancers [12–15]. Most of these algorithms require the break-up of the
tissue architecture into small patches in order to successfully train and analyse the sample
by deep learning. The deep learning algorithm used in this study has the advantage of
being able to be directly applied on whole-slide images instead of small image patches.
This therefore negates the need of image reduction and patch extraction following the
digital image acquisition. Moreover, machine learning algorithms involve a number of
hyperparameters that can be tuned to achieve maximal classifier performance. Here, we
aimed to use a widely applicable, ready-to-deploy algorithm, and therefore, the default
values of hyperparameters that were specified within the commercially available DenseNet
neural network from Indica Labs were used. Unlike other studies, here there was no need
to generate a bespoke algorithm in, e.g., python or similar software. The results of this
study show the promise of validating an “off the shelf” deep learning architecture. Further,
it opens up this powerful research methodology to institutes that may not have access to
data scientists and the expertise to generate the complicated programming, previously
needed to apply this technology to the field of pathology.

Our work also has some limitations. First, the algorithm was trained on a limited set of
whole-slide images. Second, the images used to train and validate the performance of the
algorithm originated from a single centre. Although the performance of the algorithm was
shown to be significant on the unseen cases, the inclusion of additional multi-institutional
images, both for the training and the validation step of the algorithm, would increase
the robustness of the classifier and aid in its clinical translation. Finally, the manual DR
assessment involves the categorisation of DR into 3 types, those being the immature,
intermediate and mature type. However, in this study, DR was only classed as immature
or other DR type. This was due to the absence of any guidelines regarding the required
size of the keloid-like collagens to be classed as intermediate DR. Furthermore, as the
immature DR has been previously correlated to the worst survival, this was also seen as the
most important feature to be able to classify. However, pending further clarification of the
required keloid-like collagen size, an additional class could be added to the algorithm and
hence this classifier might prove to be also promising in categorising the DR into 3 types
instead of 2.
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4. Materials and Methods
4.1. Patient Material

This study included an initial cohort of 280 stage II and 248 stage III CRC patients
who had undergone surgical resection at the National Defense Medical College Hospital,
Japan, over the years 2006–2011. Associated clinicopathological data such as age, gender
and pT stage were taken from the original pathology report. Patient follow-up was up
to 11.2 years. The initial cohort was split into a training cohort which included 75% of
the patients (n = 396) and a test cohort which included 25% of the patients (n = 132).
This was performed using stratified sampling based on both clinical outcome and DR
category. Clinicopathological characteristics of these cohorts are summarised in Table 1.
This study was approved by the Ethics Committee of the National Defense Medical College
(approval ref: No. 2992). Further ethical clearance was not required as the acquired data
were anonymised.

4.2. Manual Histologic Evaluation of Desmoplastic Reaction

A single H&E glass slide containing the deepest portion of the invasive front was
manually selected from all diagnostic slides for each patient by I.P.N. and Y.K. This slide
was then digitised using a Leica Aperio AT2 whole-slide scanner (Leica Biosystems, Vista,
CA, USA) with a 40× objective. According to the 3-tier classification system previously
proposed [6], the presence of myxoid stroma greater than a microscopic field of a 40×
objective lens (0.196 mm2) beyond the muscularis propria is classed as immature DR. Those
samples with a presence of keloid-like collagens and absence of myxoid stroma greater
than 0.196 mm2 at the extramural tumour front are classed as intermediate DR. However,
due to the absence of any guidelines regarding the size of keloid-like collagens required to
be classed as intermediate DR, this category was abandoned in this study. Therefore, here,
DR was categorised into “immature DR type” based on the presence of myxoid stroma
greater than a microscopic field of a 40× objective lens (0.196 mm2) beyond the muscularis
propria or “other DR type” based on the absence of size significant myxoid stroma at the
extramural tumour front.

4.3. Training the Deep Learning Classifier

Digitised whole-slide images of the slide containing the deepest portion of the invasive
front were uploaded into HALO® software (Indica Labs, Inc., Corrales, NM, USA) for
the image analysis process. Forty-one cases were randomly selected for the training of
the classifier. These included 37 immature DR type cases (stage II: n = 19 and stage III:
n = 18) and 4 stage II cases that contained myxoid stroma but not of an area greater
than a microscopic field of a 40× objective lens (thus they would be classified as “other
DR type”). Myxoid stroma areas present on these 41 slides were jointly annotated by
I.P.N. and H.U. within the HALO® software. These were used to train a DenseNet neural
network, integrated within HALO® AI, to identify myxoid stroma areas. This network
was developed based on the DenseNet-121 [29] deep learning model. Other types of
tissue classifications, such as the muscle layers, fat and tumour cells, were also annotated
and were used to train the classifier to detect non-myxoid stroma areas. The algorithm
performance was evaluated by visual inspection iteratively throughout the algorithm
training process. Where misclassification of tissue occurred, additional annotations in these
areas were made and added as new training regions for the classifier to learn from. In total,
the DenseNet algorithm was trained with 1235 training annotations representing the two
classes: myxoid stroma (357 annotations, total area: 17.98 mm2) and non-myxoid stroma
(878 annotations, total area: 683.80 mm2). Training and classification were performed at a
1 µm/px resolution and 215,631 training iterations. The minimum detected object size by
the classifier was set to 0.1 mm2. The probability threshold was set to 80%.

The performance of the classifier to segment myxoid stroma was assessed using
the Dice Coefficient which was defined as Dice score = (2 * true positive area)/((2 * true
positive area) + false positive area + false negative area). The true positive, false positive
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and false negative areas were calculated by applying the trained classifier on 40 unseen
H&E images. Twenty images were randomly selected within each DR category (immature
DR type: n = 20, other DR type: n = 20). The myxoid stroma areas present within the unseen
immature DR type cases were manually annotated prior to comparing to the automatically
identified DR regions of interest and were used as the ground truth (Figure 1).

4.4. Automated DR Classification

The invasive tumour front, defined as the tumour periphery close to the non-cancerous
surrounding tissue [30], was manually annotated within the HALO® software for all cases
(n = 528; Figure 2a). The deep learning classifier was then run within an automatically
created region with either a 500 or 1000 µm border outward from the invasive tumour
front, forming two comparable DR regions of interest, namely Margin 1 and Margin 2,
respectively (Figure 2b,c). The areas of myxoid stroma which were automatically identified
by the classifier resulted in the creation of three histopathological parameters, namely,
total myxoid stroma area, the average myxoid stroma area, and the largest single myxoid
stroma area, detected within Margin 1 and Margin 2 of each digitised patient sample. These
parameters were exported for statistical analysis.

4.5. Survival Analysis

The exported data from the classifier run within the HALO® software were in contin-
uous form. In order to categorise patients into immature or other DR type, the continuous
data were binarised according to the optimal cut-off points derived using the maximally
selected rank statistic from the R survminer package [31]. These cut-off points were ac-
quired using survival data from the training set (n = 396) and were directly applied to the
testing set of patients (n = 132). The largest single myxoid stroma area was also binarised
according to the size of the area as dictated by the manual methodology (area = 0.196 mm2),
as previously described [6]. The 81 cases which were used in the training and accuracy
assessment of the image analysis algorithm were included as part of the training set for the
survival analysis.

Univariate Cox regression and Kaplan–Meier survival analysis were performed to
assess the prognostic significance of DR both classed manually and by the deep learning
classifier on both training and test cohorts using Rstudio [32]. p values less than 0.05 were
considered statistically significant. Using the Benjamini–Hochberg procedure [33], p values
from the KM analyses were corrected for false discover rate. Multivariate Cox regression
with a forward stepwise method was also performed using SPSS v24 [34]. Disease-specific
survival was used for all our survival analysis. This was defined as the length of time
(in months) from the date of surgical resection to the date of death from CRC or the last
censoring date for surviving patients.

5. Conclusions

In conclusion, we present the first study to develop a deep learning algorithm for
the standardised and reproducible classification of DR in CRC whole-slide H&E images.
Furthermore, we demonstrated that the automatically classed DR is of high prognostic
significance. Specifically, the automatically classed DR was superior to the manual DR
classification in patient stratification both on the training and a test cohort. The present
study therefore suggests that the application of machine learning approaches can help
by not only identifying complex patterns present within histopathological images in a
standardised and reproducible manner, but also report a more accurate patient stratification.
This could, therefore, aid clinical decision making on adjuvant therapy and follow-up, and
hence improve the current patient prognosis.
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