
Using a Bayesian Hierarchical Model for Identifying
Single Nucleotide Polymorphisms Associated with
Childhood Acute Lymphoblastic Leukemia Risk in Case-
Parent Triads
Ying Cao1☯, Philip J. Lupo2☯, Michael D. Swartz1, Darryl Nousome3, Michael E. Scheurer2*

1 Division of Biostatistics, The University of Texas School of Public Health, Houston, Texas, United States of America, 2 Section of Hematology-Oncology,
Department of Pediatrics, Baylor College of Medicine, Houston, Texas, United States of America, 3 Division of Epidemiology, Human Genetics and
Environmental Sciences, The University of Texas School of Public Health, Houston, Texas, United States of America

Abstract

Childhood acute lymphoblastic leukemia (ALL) is a condition that arises from complex etiologies. The absence of
consistent environmental risk factors and the presence of modest familial associations suggest ALL is a complex trait
with an underlying genetic component. The identification of genetic factors associated with disease is complicated by
complex genetic covariance structures and multiple testing issues. Both issues can be resolved with appropriate
Bayesian variable selection methods. The present study was undertaken to extend our hierarchical Bayesian model
for case-parent triads to incorporate single nucleotide polymorphisms (SNPs) and incorporate the biological grouping
of SNPs within genes. Based on previous evidence that genetic variation in the folate metabolic pathway influences
ALL risk, we evaluated 128 tagging SNPs in 16 folate metabolic genes among 118 ALL case-parent triads recruited
from the Texas Children’s Cancer Center (Houston, TX) between 2003 and 2010. We used stochastic search gene
suggestion (SSGS) in hierarchical Bayesian models to evaluate the association between folate metabolic SNPs and
ALL. Using Bayes factors among these variants in childhood ALL case-parent triads, two SNPs were identified with a
Bayes factor greater than 1. There was evidence that the minor alleles of NOS3 rs3918186 (OR = 2.16; 95% CI:
1.51-3.15) and SLC19A1 rs1051266 (OR = 2.07; 95% CI: 1.25-3.46) were positively associated with childhood ALL.
Our findings are suggestive of the role of inherited genetic variation in the folate metabolic pathway on childhood ALL
risk, and they also suggest the utility of Bayesian variable selection methods in the context of case-parent triads for
evaluating the role of SNPs on disease risk.
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Introduction

Childhood acute lymphoblastic leukemia (ALL) is considered
to be a condition that arises from complex etiologies involving
multiple factors. The absence of consistent environmental risk
factors and the presence of modest familial associations
suggest ALL is a complex trait with an underlying genetic
component [1]. Although previous genome-wide association
studies (GWAS) and candidate gene approaches have
identified susceptibility loci contributing to the genetic basis of

ALL, they only explain a small fraction of the heritability [1-5].
The identification of genetic factors associated with disease is
complicated by complex genetic covariance structures and
multiple testing issues. Both issues can be resolved with
appropriate Bayesian variable selection methods.

Bayesian variable selection methods have demonstrated
remarkable performance in a variety of settings, including those
with weakly collinear covariates [6,7]. Additionally, stochastic
search gene suggestion (SSGS) methods combine hierarchical
Bayesian models with stochastic search variable selection
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technology to explore the posterior distribution on the model
space to make inferences about the importance of genetic loci
[6,8].

SSGS has many qualities that make it a strong candidate for
the identification of loci involved in genetic susceptibility.
Calibrated priors provide a strong balance of power and false
discovery control [6,9,10]. The hierarchical nature of the priors
for variable selection allows us to easily model the biological
structure of single nucleotide polymorphisms (SNPs) grouped
within genes. Also, many of the studies developing and
applying stochastic search variable selection have
demonstrated adequate performance when modeling
correlated data, such as SNPs in linkage disequilibrium (LD)
[6,11]. The hierarchical nature of the model provides a means
to incorporate a priori known covariance structure into the
model, which can improve variable selection among multiple
predictors [7]. SSGS and other Bayesian variable selection
methods model disease risk in a “holistic” manner, jointly
considering all SNPs in question, while balancing power and
false discovery control, which is important when evaluating
high-dimensional data [6,9,10].

The present study was undertaken to extend our hierarchical
Bayesian model for case-parent triads to incorporate single
nucleotide polymorphisms (SNPs) and incorporate the
biological grouping of SNPs within genes. This approach uses
conditional logistic regression likelihood to model the
probability of transmission to an affected child [6]. Additionally,
the case-parent triad design provides an advantage to the
traditional case-control design as it is immune to population
stratification bias. This is because analyses are based on
whether the inheritance of alleles by affected children deviates
from Mendelian expectation rather than a comparison of
genotypes between a case group and a control group [12,13].
As the folate metabolic pathway is suspected to play an
important role in the development of childhood ALL due to its
role in the synthesis, repair, and methylation of DNA [14], we
selected 128 tagging SNPs in 16 folate metabolic genes (Table
1), which is an extension of our previous assessment of folate
metabolic genes and childhood ALL [15].

Materials and Methods

Study Population
The study population included 118 ALL case-parent triads

recruited from the Childhood Cancer Epidemiology and
Prevention Center at Texas Children’s Hospital (Houston, TX)
between 2003 and 2010. Both males and females, and
individuals of all racial/ethnic groups were eligible to
participate. After written informed consent was obtained from
the parent, we obtained a blood sample from each participant.
Additionally, saliva samples were collected from parents.
Participation of both parents was not required for our analysis
[12]. These samples were used to obtain DNA for genotyping.
Demographic and clinical data were abstracted from medical
records. The study protocol was approved by the Baylor
College of Medicine Institutional Review Board.

SNP Selection and Genotyping Methods
Sixteen genes in the folate metabolic pathway (Table 1) were

selected because of their role in DNA synthesis, repair, and
methylation. Previous literature was also used in our selection
strategy [14,16]. Tagging SNPs for the 16 genes were selected
using an r2 threshold of 0.80 and the MultiPop-TagSelect
Algorithm (due to the multi-ethnic composition of the study
population) in the Genome Variation Server, which utilizes
information from multiple HapMap populations [17,18].
[17]SNPs with minor allele frequencies of <10% were not
included in the analysis due to the sample size. Based on
these criteria, 128 SNPs were available for analysis.

DNA was extracted from peripheral blood lymphocytes and
saliva using the QIAmp DNA Blood Mini Kit (Qiagen, Valencia,
CA) according to the manufacturer’s protocol. Genotyping was
done using the Sequenom MassARRAY iPLEX platform
(Sequenom, San Diego, CA) in the Human Genetics Center at
The University of Texas School of Public Health according to
the manufacturer’s instructions.

Statistical Analysis
SSGS was used to analyze the ALL case-parent triad data.

SSGS was specifically designed to model genetic case-parent
triad data because it combines the conditional logistic
regression to model the likelihood of allele transmission from
parents to a diseased child with a Bayesian hierarchical model
to incorporate genetic structure in variable selection [6].

Data Preparation and Post Processing.  To prepare data
for analysis using SSGS, we used SimWalk2 [19] to obtain the
most likely haplotypes from linkage format data. Maximum
likelihood estimators and the covariance matrix of conditional
logistic regression coefficients were computed using the clogit
command of Stata to provide necessary components for
Metroppolis-Hastings sampling within SSGS. We used a

Table 1. Summary of 128 Tagging Single Nucleotide
Polymorphisms.

Gene Chromosome Number of Tagging SNPs
MTHFR 1 11
MTR 1 16
MTHFD2 2 4
MTRR 5 13
BHMT2 5 4
BHMT 5 7
DHFR 5 2
NOS3 7 6
FOLH1 11 5
FOLR2 11 2
MTHFD1 14 16
SHMT1 17 8
TYMS 18 8
CBS 21 14
SLC19A1 21 4
TCN2 22 8

doi: 10.1371/journal.pone.0084658.t001
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modified C/C++ program SSGS [6] to sample from posterior
distributions; where we modified the software to incorporate
SNP data. The Markov chain output from SSGS was analyzed
using the R package Bayesian output analysis (boa) [20] to
obtain posterior inference and assess the convergence and
stationarity of Markov chains.

Prior Distributions.  We used a hierarchical prior
distribution with two levels to model variable selection: one
level for selecting genes and a second level for selecting SNPs
within a gene. We assigned both the prior probability of
including a gene as 0.5. These values for prior probability of
inclusion have been shown to control well for both false
positives and false negatives [6,9,10]. These prior settings also
have the interpretation that every gene has a 50% chance of
being associated with the disease and every SNP within a
selected gene has a 50% chance of being associated with the
disease. The prior distributions of regression coefficients were
independent normal distributions with mean 0. The prior
settings were chosen to best control for both false positives
and false negatives [9].

SSGS Analysis.  The SSGS analysis proceeded in two
steps. In step 1, we performed SNP screening using SSGS
within each chromosome. The 16 genes in the folate
metabolism pathway reside on 10 different chromosomes
(Table 1). Since LD typically does not span across
chromosomes, we first performed independent SSGS analyses
for the SNPs on each chromosome. Any SNPs with posterior
probability of inclusion greater than 0.2, corresponding to
Bayes factor greater than 0.75, proceeded to step 2. We used
this threshold for posterior probability of inclusion, recognizing
that we wanted to include as many SNPs in the second step as
possible, even if the posterior evidence is mildly in favor of non-
inclusion. In step 2, all the SNPs selected from step 1 were
analyzed simultaneously to identify SNPs associated with
childhood ALL. Posterior inference, including odds ratios (ORs)
and their 95 percent credible intervals (95% CIs), were
calculated for SNPs with Bayes factor greater than 1. For each
SSGS analysis, we ran two chains with different initial values
for 600,000 iterations and used the last one-third iterations of
two chains for pooled posterior inference. All the Markov chains
passed the Geweke convergence diagnostic and the
Heidelberger-Welch test for stationary using R package boa. In
addition, two chains from different initial values for each
analysis had high correlations, indicating convergence to the
same posterior distribution.

Results

The population characteristics of childhood ALL cases
included in our study were summarized in Table 2. There were
118 cases recruited from Texas Children’s Cancer Center from
2003 to 2010, including 65 males and 53 females. For the
study period, the participation rate was 85%. Of the 118
families, 36% were complete triads, however, based on
previous assessments this is unlikely to bias the results [12].
The study included individuals of all racial/ethnic groups, 59
non-Hispanic whites, 6 non-Hispanic blacks, 46 Hispanics, and

7 belonging to other racial/ethnic groups. All the cases were
under 14 years old when recruited.

We analyzed 128 tagging SNPs of 16 folate metabolic genes
to identify SNPs associated with childhood ALL. The SNPs with
posterior probability of inclusion greater than 0.2 in the initial
screening within each chromosome proceeded to the final
analysis. In the initial screening, 7 SNPs among the 128
tagging SNPs were identified, 2 SNPs in gene MTHFD2, 3
SNPs in gene BHMT2, 1 SNP in gene NOS3, and 1 SNP in
gene SLC19A1 (Table 3).

In the final analysis of 7 selected SNPs from initial screening,
NOS3 rs3918186 and SLC19A1 rs1051266 had Bayes factors
greater than 1 (Table 4). In other words, the posterior odds of
including the two SNPs in the model were greater than the prior
odds of including the two SNPs, indicating that our data
supported the association between the two SNPs and
childhood ALL risk. Specifically, NOS3 rs3918186 had a Bayes
Factor of 7.38, whereby for each copy of the minor allele, there
was a 2.16 times risk of developing childhood ALL (OR = 2.16;
95% CI: 1.51-3.15) [21]. We found less evidence in our data for
SLC19A1 rs1051266 being associated with childhood ALL. For

Table 2. Population characteristics of childhood acute
lymphoblastic leukemia cases, Texas Children’s Cancer
Center, 2003-2010.

Characteristic No. (%)
Triads included 118
Case sex  
Male 65 (55.0)
Female 53 (45.0)
Race/ethnicity  
Non-Hispanic White 59 (50.0)
Non-Hispanic Black 6 (5.1)
Hispanic 46 (39.0)
Other 7 (5.9)
Age (range 0-14 years)  
<4 years 56 (47.4)
4-7 years 46 (39.0)
>7 years 16 (13.6)

doi: 10.1371/journal.pone.0084658.t002

Table 3. SNPs Selected from Initial Screening.

Gene SNP
PPI* from chromosomal
analysis (Phase 1)

Bayes factor from joint
analysis (Phase 2)

MTHFD2 rs1667627 0.335 0.341
MTHFD2 rs12196 0.227 0.268
BHMT2 rs670220 0.245 0.576
BHMT2 rs682985 0.449 0.580
BHMT2 rs557302 0.405 0.311
NOS3 rs3918186 0.854 7.381
SLC19A1 rs1051266 0.216 1.926
* Posterior probability of inclusion.
doi: 10.1371/journal.pone.0084658.t003
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each copy of the minor allele of SLC19A1 rs1051266, there
was a 2.07 times risk of developing childhood ALL (OR = 2.07;
95% CI: 1.25-3.46).

Discussion

To our knowledge, this is the first application of Bayesian
hierarchical models designed for case-parent triads to identify
SNPs associated with disease. Previous assessments utilizing
this approach have explored microsatellite markers [6]. We
extended this method to include the evaluation of SNPs
because of the availability of high-dimensional SNP array data
for many phenotypes and as case-parent triads are becoming
more common in the role of inherited genetic variation on
childhood cancer risk [15,22-25]. The case-parent triad design
provides an advantage to the traditional case-control design as
it is immune to population stratification bias. This is because
analyses are based on whether the inheritance of alleles by
affected children deviates from Mendelian expectation rather
than a comparison of genotypes between a case group and a
control group [12,13]. Additionally, the case-parent triad design
is useful when appropriate controls are difficult to identify or
enroll. Finally, family-based designs often provide greater
power than traditional case-control designs [26].

In our study, we used SSGS to analyze 128 tagging SNPs in
16 folate metabolic genes to identify associations with
childhood ALL risk. Using Bayes factors among this variants in
childhood ALL case-parent triads, two SNPs were identified
with a Bayes factor greater than 1. There was evidence that the
minor alleles of NOS3 rs3918186 and SLC19A1 rs1051266
were positively associated with childhood ALL according to
commonly cited guidelines for Bayes Factors [21]. In fact, the
minor alleles of each of these SNPs carried twofold increase in
risk for childhood ALL.

Endothelial nitric oxide synthase 3 (NOS3) is responsible for
the production of nitric oxide (NO), which modulates
homocysteine concentrations by inhibition of 5-
methyltetrahydrofolate-homocysteine methyltransferase, the
enzyme that synthesizes methionine from homocysteine and 5-
mTHF [27]. NOS3 rs3918186 is an intronic variant [28]. Nitric
oxide and oxidative stress have been suggested as potential
mechanisms of childhood leukemogenesis [14,16,23,29,30]. To
our knowledge, this variant has not been assessed in relation
to childhood ALL.

The gene SLC19A1 encodes for reduced folate carrier 1
(RFC-1), which is a transmembrane protein that transports
folate across cell membranes, thereby influencing folate levels.
The G80A (rs1051266, G>A) polymorphism in RFC-1 is
associated with altered folate/antifolate levels [31,32]. While, to
our knowledge, SLC19A1 rs1051266 has not been evaluated
for childhood ALL risk, it has been associated with colorectal
cancer [33] and prostate cancer [34]. However, a recent
assessment by Metayer et al. evaluating SLC19A1, as well as
other genes in the folate pathway, used a tagging SNP
approach found no association with SNPs in SLC19A1 and
childhood ALL [16].

The major limitation of this study is the sample size (n =
118), which did not allow us to detect modest associations. In

fact, based on this sample size, with a minor allele frequency of
10% (our minor allele frequency inclusion criteria for SNPs),
α=0.05, β=0.8, and assuming a log-additive model of
inheritance, we had the power to detect an odds ratio of 2.12
based on power calculations using Quanto Version 1.2.5
[35-37]. Our SNP selection strategy may have also affected our
ability to identify associations, as we limited our inclusion to
those with a minor allele frequency of ≥10%. In other words, we
were not able to discover disease associations due to rare
variants. Additionally, we were not able to stratify our results by
ALL subtypes (e.g., B-lineage or T-lineage), as this information
was not available, or age at diagnosis. However, in spite of
these limitations, we were able to identify significant
associations between folate metabolic variants and childhood
ALL using SSGS. An important strength of our study was the
use of the case-parent triad design. Additionally the use of
SSGS allowed for the control for multiple comparisons [9],
which is important as we evaluated 128 SNPs.

Our findings are suggestive of the role of inherited genetic
variation in the folate metabolic pathway on childhood ALL risk.
We believe they also suggest the utility of Bayesian variable
selection methods in the context of case-parent triads for
evaluating the role of SNPs on disease risk, especially under
the circumstances of smaller sample sizes. We identified two
potential inherited effects that were undetected in our previous
study [15]. Our findings suggest that SSGS can be used to
incorporate LD information to identify disease associated SNPs
and to appropriately estimate the relative risk coefficients
through averaging the posterior distributions [6,10].
Additionally, as we evaluated 128 SNPs, the use of the priors
used here have been shown to control for false positive
findings in simulation studies [9]. The use of Bayes factors
offers a way to summarize the strength of evidence in our data
for specific SNPs [21], allowing us to prioritize future follow-up
investigations. Overall, SSGS provides a useful approach to
investigate genetic factors associated with early onset diseases
such as childhood ALL.
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