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Abstract

Identifying along which lineages shifts in diversification rates occur is a central goal of comparative phylogenetics; these shifts may
coincide with key evolutionary events such as the development of novel morphological characters, the acquisition of adaptive traits,
polyploidization or other structural genomic changes, or dispersal to a new habitat and subsequent increase in environmental niche
space. However, while multiple methods now exist to estimate diversification rates and identify shifts using phylogenetic topologies,
the appropriate use and accuracy of thesemethods are hotly debated. Herewe test whether five Bayesianmethods—Bayesian Analysis
of Macroevolutionary Mixtures (BAMM), two implementations of the Lineage-Specific Birth–Death–Shift model (LSBDS and PESTO), the
approximate Multi-Type Birth–Death model (MTBD; implemented in BEAST2), and the Cladogenetic Diversification Rate Shift model
(ClaDS2)—produce comparable results. We apply each of these methods to a set of 65 empirical time-calibrated phylogenies and
compare inferences of speciation rate, extinction rate, and net diversification rate. We find that the five methods often infer different
speciation, extinction, and net-diversification rates. Consequently, these different estimates may lead to different interpretations of
the macroevolutionary dynamics. The different estimates can be attributed to fundamental differences among the compared mod-
els. Therefore, the inference of shifts in diversification rates is strongly method dependent. We advise biologists to apply multiple
methods to test the robustness of the conclusions or to carefully select the method based on the validity of the underlying model
assumptions to their particular empirical system.

Keywords: diversification-rate analyses, phylogeny, BAMM, RevBayes, BEAST, ClaDS2, macroevolution

Lay summary

Understanding why some groups of organisms have more species than others is key to understanding the origin of biodiversity. The-
ory and empirical evidence suggest that multiple distinct historical events, such as the evolution of particular morphological features
(e.g., the flower, the tetrapod limb) and competition among species, can produce this pattern of divergent species richness. Identifying
when and where on the tree of life shifts in diversification rates occur is important for explaining the origin of modern-day biodiver-
sity and understanding how disparity among species evolves. Several statistical methods have been developed to infer diversification
rates and identify these shifts. While these methods each attempt to make inferences about changes in the tempo of diversification,
they differ in their underlying statistical models and assumptions. Here we test if these methods draw similar conclusions using a
data set of 65 time-calibrated phylogenies from across multicellular life. We find that inferences of where rate shifts occur strongly
depend on the chosen method. Therefore, biologists should choose the model whose assumptions they believe to be the most valid
and justify their model choice a priori, or consider using several independent methods to test an evolutionary hypothesis.
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Introduction
Understanding the patterns and processes that shape the tree of
life is one of the central pursuits of biology. However, inferring the
tempo of evolution among lineages—the patterns of speciation
and extinction that gave rise to our extant biodiversity—remains
a difficult problem both theoretically and computationally (Louca
& Pennell, 2020; Moore et al., 2016; Rabosky, 2010).

Several methods estimate diversification rates (speciation and
extinction rates, individually), assuming that rates are constant
across the tree (Morlon, 2014). Recently developed methods have
built on constant-rate models by allowing diversification parame-
ters to vary depending on the state of a focal character (Maddison
et al., 2007) or, even more recently, among branches of the phy-
logeny, which allows for lineage-specific diversification rate esti-
mates (e.g., Barido-Sottani et al., 2020; Höhna et al., 2019; Maliet
& Morlon, 2022; Rabosky, 2014).

Such lineage-specific methods have the potential to offer pow-
erful insights into our understanding of evolution, such as the
potential time dependency of macroevolutionary diversification
(Henao Diaz et al., 2019), the macroecological and macroevo-
lutionary causes of the latitudinal diversity gradient (Givnish
et al., 2018; Rabosky et al., 2018), and macroevolutionary support
of Darwinian and Simpsonian theories of microevolution within
adaptive zones (Cooney et al., 2017).

The application of diversification-rate estimation methods,
however, has been marred by controversy over their implemen-
tation (Meyer et al., 2018; Meyer & Wiens, 2018; Moore et al.,
2016; Rabosky et al., 2017; Rabosky, 2018) and by theoretical find-
ings that seemingly undermine the general reliability of infer-
ring diversification parameters fromphylogenies of extant species
(Helmstetter et al., 2021; Kopperud et al., 2023b; Louca & Pennell,
2020). These issues are liable to discourage empiricists, who may
wonder if the disagreements among model developers and the-
orists correspond with biologically relevant inference differences
in empirical studies.

To address this question, we assess how inferences under five
leading contemporary Bayesian methods—Bayesian Analysis of
Macroevolutionary Mixtures (BAMM; Rabosky, 2014); the Lineage-
Specific Birth–Death–Shift model (LSBDS; Höhna et al., 2019) and
its MCMC-free implementation: Phylogenetic Estimation of Shifts
in the Tempo of Origination (PESTO; Kopperud & Höhna, 2023a);
the approximate Multi-Type Birth–Death model (MTBD; Barido-
Sottani et al., 2020); and the Cladogenetic Diversification Rate
Shift model (ClaDS2; Maliet et al., 2019)—compare to each other.

While all five methods aim to estimate lineage-specific diversi-
fication rates, they differ in how and where rate shifts are allowed
to occur.

1. BAMM models diversification rates as varying across lineages
by testing among models that include different numbers of
diversification-rate regimes (sets of speciation and extinc-
tion parameters) and different placements of those regimes
in the tree; however BAMM does not model rate shifts on
extinct (thus unobserved) branches (Rabosky, 2014).

2. The LSBDSmodel, as implemented in RevBayes (Höhna et al.,
2016), samples rate regimes from a prior distribution dis-
cretized into a fixed number of rate categories; this dis-
cretization facilitates computation and allows the method
to model shifts on extinct branches (Höhna et al., 2019).

3. PESTO is a new implementation of the LSBDS model that
analytically computes the posterior mean speciation and
extinction rates conditional on a set of hyperparameters

without the need for Monte Carlo sampling (Kopperud &
Höhna, 2023a).

4. The MTBD method is based on a multitype birth–death pro-
cess that infers the number of rate regimes as well as the
transition rate 𝛾 between rate regimes (Barido-Sottani et al.,
2020). This approach allows for the same rate regime to
be present in different parts of the tree. The approximate
MTBD, tested here, assumes that no rate changes occur in the
extinct parts of the tree; this approximation, when applied
with a high transition rate prior, has been found to not sub-
stantially differ from the exact MTBD method, which allows
rates changes along extinct lineages (Barido-Sottani et al.,
2020).

5. Finally, in the ClaDS2 model, diversification rates only
change at speciation events. Descendant lineages inherit
the speciation rate via a stochastic process that is influ-
enced by the 𝛼 parameter, which represents the long-term
trend (i.e., increase or decreases) of the speciation rate
(Maliet et al., 2019). This model results in many small and
frequent shifts in diversification rate regimes, unlike the
other methods, which tend to infer a few large shifts in rate
regimes (Maliet et al., 2019; Maliet &Morlon, 2022). Another
aspect of ClaDS2 is that extinction rates are not inferred
per branch. Instead, the model estimates a global turnover
parameter (𝜖 = 𝜇i/𝜆i). However, shifts are allowed to occur
along extinct branches.

Other methods, not tested here, leverage hidden states using a
maximum likelihood framework (e.g., Vasconcelos et al., 2022).

To assess whether the theoretical and computational differ-
ences among these methods result in biologically meaningful
differences, we reanalyze 65 empirical data sets, compiled from
HenaoDiaz et al. (2019), using each of BAMM, LSBDS, PESTO, MTBD, and
ClaDS2. We address the question: do different analytical meth-
ods for estimating branch-specific diversification rates produce
significantly different results across an array of empirical data
sets?

Methods
Empirical data
Our empirical data are derived from the set of 104 chronograms
compiled and analyzedwith BAMM byHenaoDiaz et al. (2019). From
the set by Henao Diaz et al., we excluded trees with fewer than 30
extant taxa in order to concentrate onmore informative data sets,
resulting in our final set of 76 chronograms.

Model settings
Our goal was to apply each method as a typical diligent user
might. For each chronogram, we used the incomplete-sampling
fraction collected from the original study by Henao Diaz et al.
(2019) and applied that sampling fraction when we ran each of
the five inference methods. While the methods differ in their spe-
cific parameterizations of the birth–death process, we attempted
to use comparable settings and priors across methods.

For BAMM analyses, we modified the control files from
Henao Diaz et al. (2019). We set lambda to be time constant rather
than time variable in order to more closely match the inferences
of other methods. We set BAMM priors for each phylogeny using
the setBAMMpriors() function in the BAMMtools R package (Rabosky
et al., 2014b). This function computes data set-specific priors by
estimating metrics from the data set such as the root age of the



Evolution Letters (2024), Vol. 8 191

chronogram and then estimating reasonable and broad expecta-
tions for shifts and rates. We ran BAMM v2.5.0 using the BAMMtools
priors and control files, which determined the phylogeny-specific
number of generations for a single MCMC chain. We removed the
first 10% of the MCMC samples as burnin and assessed conver-
gence by computing estimates of effective sample size (ESS) using
the R package coda (Plummer et al., 2006). We specifically looked
for convergence of the log-likelihood parameter and the “num-
ber of distinct regimes” parameter, as is recommended (Rabosky
et al., 2014a). Analyses that did not reach convergence were run
for additional generations until they converged.

For LSBDS analyses, we used the same set of priors for all
phylogenies (except for sampling fraction) with eight categories
for speciation and for extinction (64 total rate categories). The
number of rate categories was chosen after performing a test on
one representative phylogeny, which found that increasing the
rate categories above 64 did not result in a significant change
in model fit. For each chronogram, we ran four MCMC chains
for 5,000 generations. Convergence was assessed for each chain
by checking that the ESS values for all model parameters in
the log files were greater than 200 using the R package coda
(Plummer et al., 2006). Chains that did not reach convergence
were restarted and run for an additional 5,000 generations. We
merged the posteriors, retaining the last 4,000 generations from
the MCMC (10% burnin for nonrestarts and 60% burnin for
restarts).

We applied PESTO in a three-step fashion. First, we estimated
the parameters of a constant-rate birth–death process and treated
these as hyperparameters: the speciation rate (𝜆) and the extinc-
tion rate (𝜇). Second, we set up a state-dependent speciation-
extinction (SSE) model. In this model, we used rate values that
correspond to 10 quantiles of 2 lognormal distributionswithmedi-
ans 𝜆 and 𝜇, and standard deviation 0.587. In the SSE model,
we used all pairwise combinations of these (i.e., 100 rate cate-
gories). Furthermore, we fixed the shift rate parameter (𝜂) such
that we would expect 10 rate shifts across the phylogenies (i.e.,
𝜂 = 10/tree-length). Third, we calculated the posterior state
probabilities along each branch. Finally, we plotted the poste-
rior mean rates averaged over the time span for each individual
branch.

We ran the MTBD model under default priors (implemented in
BEAST2; Bouckaert et al., 2014; Barido-Sottani et al., 2020). We ran
three MCMC chains for 100,000,000 generations per phylogeny.
We removed the first 25% as burnin and assessed MCMC conver-
gence by checking that ESS values were higher than 200 for all
rates.

We ran ClaDS2 using the default priors (as described in Maliet
& Morlon, 2022). We ran three MCMC chains for each data set
and took a 25% burnin, as is the default setting for ClaDS2. We
assessed convergence by calculating the Gelman statistic (Gel-
man et al., 2014) every 1000th generation and stopping the analy-
sis once it achieved a Gelman statistic of 1.05, following the stan-
dard guidelines for ClaDS2. While we set up our BAMM analyses to
be time constant, ClaDS2 does not allow users to fix the inherited
speciation-rate parameter (𝛼). Thus our analyses estimate 𝛼 and
infer trends of increasing or decreasing speciation rate through
time.

All methods are conditioned on “survival”: the occurrence of
themost recent common ancestor and survival of the two descen-
dent lineages (Nee et al., 1994). However, there are method-
specific differences in the details of how methods condition for
different rate-shift scenarios that could potentially contribute to
different rate estimates across methods.

Processing model output
In cases where MCMC convergence was difficult, we aimed to
determine the potential underlying cause. To assess whether the
subset of trees where one or more methods failed to converge
was substantially different from the subset that did converge,
we compared descriptive metrics including phylogeny size, phy-
logeny age, incomplete sampling fraction, branch length variance,
and multidimensional scaling (MDS) via Robinson-Foulds (RF;
Robinson & Foulds, 1981) and Kuhner–Felsenstein (KF; Kuhner &
Felsenstein, 1994) distances.

Processing model output
We obtained estimates of the relevant diversification parameters
(e.g., speciation rate, extinction rate, etc.) from each model. BAMM
posterior estimates of speciation rate and extinction rate were
extracted using the getMarginalBranchRateMatrix() function in
the BAMMtools R package (Rabosky et al., 2014b).

We extracted LSBDS posterior distributions from the stochas-
tic branch rate log file produced by the mnStochasticBranchRate()
function in RevBayes. In the PESTO analyses, we computed the
branch rates averaged across the branch. If 𝜆k and 𝜇k are the rate
values in state k, and Pk(t) is the posterior probability of being in
state k at time t, then the average net-diversification rate along a
branch is

1

t1 – t0
∫

t1

t0

⎡⎢⎢⎢⎢⎣

k

(𝜆k – 𝜇k)Pk(t)
⎤⎥⎥⎥⎥⎦
dt, (1)

where t0 is the youngest and t1 is the oldest end point of the
branch.

The posterior distributions of speciation and extinction rates
of the MTBD model were obtained from the extended Newick
file produced by BEAST2 using a modified read.beast() function
from the treeio package (Wang et al., 2020). As ClaDS2 does not
directly infer extinction rates, we calculated extinction rates per
branch by multiplying the inferred global turnover value (𝜖) by
the branch-specific speciation rates (𝜇i = 𝜆i𝜖). For all branches
and models, we calculated net diversification by subtracting the
extinction rate from speciation rate (𝜆i –𝜇i) per MCMC generation.

Comparing model inferences
To compare inferences among the five models, we (a) visualized
rate estimates on individual chronograms, (b) summarized infer-
ences across all chronograms in the data set to reveal systematic
differences, (c) identified differences in the location and magni-
tude of inferred shifts among methods, and (d) tested for overlap
in the 95% HPD interval of the posterior distributions (described
in Supplementary Section S4).

Visualizing rates on trees
The canonical way of presenting the results of branch-specific
diversification-rate analyses is by coloring the branches of the tree
by the estimated rates. For each tree, we colored each branch by
the posterior median estimate of speciation, extinction, and net
diversification to visualize if the methods inferred similar shifts
in similar locations on the tree.

Comparing rate estimates by method
To understand whether the methods displayed any consistent
differences across the chronograms, we calculated six summary
statistics for each tree. For each diversification rate (i.e., speci-
ation rate, extinction rate, and net-diversification rate), we cal-
culated the posterior medians for each branch, and from those

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad044#supplementary-data
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posterior medians, we calculated the tree-wide mean and vari-
ance in branch rates for each phylogeny. For each of the six sum-
mary statistics (mean and variance for each of the three rates),
we set up a linear mixed-effect model:

log(summary statistic) = X𝛽 + Zu + r, (2)

with inference method as a fixed-effect categorical predictor
(effect sizes 𝛽), phylogeny as a random effect categorical predictor
(u), and an error term r. X and Z are design matrices for the fixed
and random effects. We visually checked that the residuals (r)
were normally distributed and did not suffer from heteroscedas-
ticity; phylogenies that violated these assumptions were excluded
from this analysis. For each linear model, we tested if the least-
square means of each pair of methods were statistically different
using Tukey’s corrected p-value for multiple comparisons.

Location and magnitude of rate shifts
We additionally tested whether the methods inferred consistent
locations and magnitudes of rate shifts, using the rooted version
of the Kuhner–Felsenstein distance (KF; Kuhner & Felsenstein,
1994). To do this, we first replaced branch lengths of each timetree
with the posterior median rate estimate, from a given method,
then scaled each branch by the total tree height. This produces
a method-dependent tree with branch lengths that provide infor-
mation regarding the magnitude and location of rate shifts but
with identical topology. We calculated KF distances between the
rescaled trees from each pair of methods; this distance is equiva-
lent to the mean square error (MSE) given that the two trees being
compared have the same topology, as they do in our analyses. For
each tree and for each diversification parameter, we computed
the mean square error among the different methods:

MSE =
1

N

N


i

(𝜆i – 𝜆′
i)

2, (3)

where 𝜆i (or similarly 𝜇i, or (𝜆i – 𝜇i)) is the scaled diversification
rate parameter for branch i.

A largeMSE tells us that the twomethods being compared infer
different rate magnitudes and/or rate shifts in different locations.
A small MSE, however, indicates that the two methods give us
similar results.

Diversification rates may vary according to clade age, poten-
tially due to sampling (Henao Diaz et al., 2019; Louca et al.,
2022); in particular, younger clades may exhibit faster diversifi-
cation rates. To pull apart the potentially compounding effects of
method and clade age on our results, we also tested whether the
method-specific patterns we observe still hold for phylogenies of
different ages by splitting our data set into older and younger phy-
logenies (where older and younger trees are defined as having a
root age greater or less than the median root age) and repeating
the above-described procedure for both groups.

Computation
We ran all diversification analyses either locally, on the Savio HPC
at UC Berkeley, or using the CIPRES Science Gateway v 3.3 (Miller
et al., 2010).

We performed all comparison analyses in R v 3.6.0 (R Core
Team, 2013). We performed data manipulation with the R
packages phytools, (Revell, 2012), tidyverse (Wickham, 2017),
reshape2 (Wickham, 2012), readr (Wickham & Hester, 2020), plyr
(Wickham, 2011b), and coda (Plummer et al., 2006). We gener-
ated plots with R packages see (Lüdecke et al., 2021), ggplot2
(Wickham, 2011a), ggpubr (Kassambara, 2018), ggtree (Yu et al.,

2018), ggsignif (Ahlmann-Eltze, 2017), ggExtra (Attali & Baker,
2016), cowplot (Wilke, 2016), RevGadgets (Tribble et al., 2022), and
pdftools (Ooms, 2020). We obtained linear mixed models using
the R package lmer (Bates et al., 2015) and obtain emeans esti-
mates using the R package eemeans (Lenth, 2020). We additionally
used smacof (Mair et al., 2022) and phangorn (Schliep, 2011) to per-
form MDS and to calculate RF and KF distances. Citations for R
packages were generated with RefManageR (McLean, 2014).

Results and discussion
Convergence
Our full data set contains 76 chronograms from multicellular
organisms, with 31–4,161 extant tips, root ages of 4.9–349.8 mil-
lion years ago (MYA), and 0.014%–0.100% of extant species sam-
pled (Supplementary Figure S1A and Supplementary Table S1).
All methods converged for 43 trees (the “complete subset”; Sup-
plementary Figure S1B). Of the methods tested, LSBDS had the
most difficulty achieving MCMC convergence (it converged for 46
trees). All methods except LSBDS converged for 65 trees (the “par-
tial subset”; Supplementary Figure S1C); PESTO directly computes
the posterior mean and thus “convergence” does not apply. Trees
that did not converge have poorer taxon sampling (i.e., the ratio
of sampled species to total species richness; p-value = .039), older
root ages (p-value = .0001), and greater branch-length variance (p-
value = .00006) than the converged trees, but sample size (number
of tips) was not an important factor (p-value = .076; Supplemen-
tary Figure S2C–F). The branch-length variance is consistent with
the degree of spread between the KF and RF MDS analyses (Sup-
plementary Figure S2A and B); the KF MDS—which accounts for
branch lengths as well as topology—has a larger spread than the
RF MDS. Overall, these results fit with our intuitive understand-
ing of the challenges in inferring shifts in diversification rates.
We expect that older trees and trees with greater variation in
branch lengths should undergo more rate shifts than younger
trees and those with less variation in branch lengths. Thus infer-
ring the diversification-rate parameters of these trees should be
generally more challenging for the MCMC. These results suggest
that users should be particularly attentive to MCMC convergence
if their chronogram(s) are poorly sampled, old, or have a lot of
branch-length variation, and especially so if they are using LSBDS.
In these cases, evenmore so than usual, it is important to run each
MCMC multiple times independently, to assess both stationarity
and convergence.

Comparison of methods
Visualizing rates on trees
None of the 43 phylogenies in our “complete subset” had concor-
dant estimates among all methods given our evaluation criteria
(Figure 1). For some phylogenies, the methods inferred similar
shifts in net diversification (e.g., Figure 1A–E), whereas for others
the inferred shifts differed slightly (e.g., Figure 1F–J) or strongly
(e.g., Figure 1K–O). We would expect some differences when com-
paring differentmodeling approaches, as there are patterns to the
differences in our results that can be attributed to the fundamen-
tal differences between the models. We illustrate these patterns
using a few example phylogenies, which are representative of the
patterns one will find when perusing the full set of trees in the
supplemental materials (Supplementary Section S5).

Occasionally, two methods generally identified similar pat-
terns. For example, BAMM and LSBDS identified a similar shift of
about the same magnitude in speciation rates for some clades,
for example, the Lindsaeaceae (necklace ferns, clade i; Figure 1A

http://academic.oup.com/evlett/article-lookup/doi/10.1093/evlett/qrad044#supplementary-data
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Figure 1. Three representative phylogenies with Z-transformed (mean centering and scaling to unit variance) posterior median estimate of net diver-
sification painted on the branches. Columns show estimates from BAMM (A, F, K), LSBDS (B, G, L), PESTO (C, H, M), MTBD (D, I, N), and ClaDS2 (E, J, O). (A–E)
Phylogeny of Lindsaeaceae (necklace ferns; Testo & Sundue, 2016), (F–J) Phylogeny of Ruminants (tetrapod; Toljagić et al., 2018), and (K–O) Phylogeny of
Odonates (dragonflies and damselflies; Waller & Svensson, 2017). The rate values are in units of events per lineage per million years.

and B). Nonetheless, there are still differences between the two
methods, for example, a second nested rate shift in the LSBDS and
PESTO estimates (clade ii).

In the ruminants (tetrapods) phylogeny (Figure 1F–J), we find
that even for results that overall appear similar between meth-
ods, there are meaningful differences between their estimates.
For example, BAMM, LSBDS, and PESTO inferred a shift around
the ancestor of clade i, but LSBDS and PESTO also find approx-
imately two more shifts (Figure 1G, clades ii and iii). Likewise,
MTBD differs from the latter two as it infers several shifts in the
largest clade and low net-diversification rates on the backbone
of that lineage (Figure 1I). Similarly, ClaDS2 infers a slightly dif-
ferent history from all of them, including multiple slowdowns
as well as an increase in net diversification within clade i. BAMM,
LSBDS, and PESTO identify a shift in approximately the same node

(indicated by i), while MTBD infers many replicated increases in
rate within clade i. LSBDS and PESTO infer the same shift, which
is expected as they are based on the same underlying model and
assumptions.

Multiple diversification shifts across a phylogeny are common
to many of the MTBD trees (Figure 1I and N; Barido-Sottani et al.,
2020). This pattern is caused by the bimodal posterior distribu-
tion commonly inferred by this method (Barido-Sottani et al.,
2020). Point-estimate summary statistics (e.g., posterior median)
of these types of distributions are susceptible to small variation
between the ancestor-descendant branches, which causes point
estimates to switch between the two optima producing the rapid
switching pattern (Figure 1I and N).

Likewise, ClaDS2 is the only model in our analysis that directly
models trends in rates through time. The inherited speciation
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rate (𝛼) determines if daughter lineages inherit generally faster or
slower rates than the parental lineage. 𝛼 only changes at clado-
genic (speciation) events, which results in many small changes
at cladogenetic events, rather than the few large changes that
characterize the other methods (Maliet et al., 2019; Maliet & Mor-
lon, 2022). When 𝛼 < 1 evolutionary slowdowns occur where the
ancestral lineages have higher net-diversification rates than the
descendant lineages, a pattern observed in our data (Figure 1O;
Moen & Morlon, 2014).

On the other hand, BAMM, LSBDS, and PESTO are similar models
and therefore we may expect them to infer similar diversifica-
tion rates and shifts (Ronquist et al., 2021). While this is some-
times true (e.g., BAMM and LSBDS agree: Figure 1K and L), other
times there are pronounced differences (e.g., BAMM is different from
both LSBDS and PESTO: Figure 1F and G). Differences between BAMM
and the other two models may be due to the well-known differ-
ences between the models, namely assuming either rate shifts
can (LSBDS and PESTO) or cannot (BAMM) occur on extinct lineages
or unsampled lineages (Moore et al., 2016).

Likewise, LSBDS and PESTO are not always in agreement (e.g.,
Figure 1L andM).While they aremathematically equivalentmod-
els, their inferences may differ for two reasons: (a) The over-
all method of parameter inference and prior distributions. LSBDS
infers the mean speciation rate, mean extinction rate, and the
shift rate jointly using full Bayesian inference via MCMC using
stochastic character mapping. In contrast, PESTO uses empirical
Bayes hyperparameters (similar to BAMM), where the mean speci-
ation and extinction rates are first estimated using a constant-
rate birth–death process. This means that branch rates estimated
using PESTO are conditional on the parameters instead of inte-
grating over the parameter values in the MCMC as in LSBDS. (b)
We used a fixed shift rate in PESTO, (𝜂 = 10/tree-length) instead
of estimating it from the data. While the estimates of the shift
rate in LSBDS are sensitive to the shift rate prior, estimates of
branch-specific speciation and extinction rates are more robust
to their priors (Höhna et al., 2019). We argue that the inference
method (empirical Bayes vs. full Bayesian hierarchical model)
between PESTO and LSBDS as well as using 64 versus 100 rate cate-
gories largely explains the differences in the branch-specific rate
estimates.

Comparisons of rate estimates by method
To gain a global perspective of the differences between thesemod-
els, we calculated two tree-wide summary statistics and distance
metrics in order to compare these methods across the entire data
set.

We ran all comparisons on the complete subset (the 43 trees
that converged for all methods; Supplementary Figure S4) and on
the partial subset (the 65 trees that converged for all methods
except LSBDS; Figure 2). Comparisons between these two subsets
reveal only one small difference (e.g., compare BAMM vs. MTBD—
Figure 2C vs. Supplementary Figure S4C), and themost significant
differences did not change. Given the large number of data sets
that did not converge for LSBDS but converged for all other meth-
ods (unconverged data sets = 22) as well as the theoretical simi-
larities between PESTO and LSBDS, we report the following results
for the partial data set (but see Figure S4A–F for summaries from
the complete data set).

We recover consistent differences in rate estimates among
methods, particularly between PESTO and all other models;
ClaDS2 also was an outlier, albeit to a lesser extent (Table 1,
Supplementary Table S2). In contrast, BAMM and MTBD tended to

infer similar speciation and extinction rates. We find that tree-
wide average speciation and extinction estimates of PESTO are
statistically different from all other methods (Figure 2A and B).

While PESTO inferred higher tree-wide average speciation val-
ues, the magnitude of the differences is small (ratio of means
< 1.2 for all significant contrasts; Table 1). Conversely, PESTO
inferred lower tree-wide averages of extinction rates with larger
magnitude changes (ratio of geometic means > 1.2; Table 1). The
significant difference between PESTO and other methods holds
for tree-wide average net-diversification as well, except for the
comparison between PESTO and ClaDS2 (Figure 2C), which is not
significant.

Additionally, ClaDS2 tree-wide average net-diversification esti-
mates are significantly different from BAMM and MTBD (Figure 2C). A
significant difference in net diversification could be driven by the
ClaDS2 parameterization of extinction: extinction is not directly
estimated in ClaDS2. Therefore, the net diversification rates of
ClaDS2 are scaled speciation rates. Alternatively, the differences
between methods could be due to the wider variance of net diver-
sification estimates that both BAMM and MTBD have compared to
ClaDS2 (Supplementary Figure S3A–C). However, similar to tree-
wide average speciation, the magnitude of the difference between
the contrast is not large (Table 1). There is also a weakly signifi-
cant difference between speciation rates of BAMM and MTBD in our
partial subset that was not found in the smaller complete sub-
set. Despite these differences, the methods tend to agree on the
top three data sets with the fastest net-diversification rate (Sup-
plementary Figure S5), generally inferring that the same set of
lineages is evolving remarkably rapidly.

All methods generally had comparable tree-wide average
extinction-rate estimates with the exception of PESTO, which
sometimes infersmuch lower extinction rates for some trees than
the other methods (though, on average, it infers higher extinc-
tion rates). The inference of extinction rate has been the subject
of substantial debate, particularly in how failures to account for
diversification shifts along extinct branches can impact the like-
lihood function (Moore et al., 2016; Rabosky et al., 2017). Regard-
less of the theoretical importance of correctly inferring extinction
rates, we demonstrate that differences between extinction and
speciation ratesmanifest in statistically different estimates of net
diversification in empirical studies. Therefore, our results indicate
that method-dependent tree-wide bias in diversification param-
eter inference may influence the interpretation of evolutionary
shifts in diversification rates.

We find discrepancies between results derived from tree-wide
summary statistics and our visual inspection of trees (see section
“Visualizing rates on trees”). For example, we find that ClaDS2 and
PESTO show no statistical difference in average net diversification
(Figure 2C). However, visual inspection of many trees suggests
that ClaDS2 and PESTO often differ greatly in the number and posi-
tion of inferred rate shifts (e.g., Figure 1). Conversely, BAMM and
LSBDS often look very similar when we assess individual phylo-
genies and yet significantly differ when we compare speciation,
extinction, and diversification averages (Supplementary Figure
S3A–C). This discrepancy reveals the difficulty of summarizing
diversification rate estimates across phylogenies to reveal general
patterns and motivates the topology-informed rate comparisons,
discussed in the following section.

Location and magnitude of rate shifts
We also test whether the models recover similar locations and
magnitudes of rate shifts by comparing the mean squared error
(MSE) of branch rates; this metric bridges the discrepancies
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Table 1. Post hoc pairwise comparisons of inference methods using the tree-wide average of summary statistics: speciation, extinction, and net-
diversification rates. Columns contain the summary statistics, contrasts of inference methods, the ratios of geometric means, standard errors, degrees
of freedom, t-ratios, Tukey-adjusted p-values, significances, and the percent variances explained by the random effect.

Summary statistic Contrasts Means ratio SE DF T-ratio Adj. p-Value Sig. % Var.

Speciation BAMM/ClaDS2 1.0114 0.0336 189 0.3402 .986 N.S. 94.57
BAMM/PESTO 0.8833 0.0294 189 –3.7326 .001 ∗∗
BAMM/MTBD 1.0352 0.0344 189 1.041 .726 N.S.
ClaDS2/PESTO 0.8733 0.029 189 –4.0728 .000 ∗ ∗ ∗
ClaDS2/MTBD 1.0236 0.034 189 0.7009 .897 N.S.
PESTO/MTBD 1.172 0.039 189 4.7736 .000 ∗ ∗ ∗

Extinction BAMM/ClaDS2 1.2616 0.3006 189 0.9752 .764 N.S. 58.65
BAMM/PESTO 3.0505 0.7268 189 4.6808 .000 ∗ ∗ ∗
BAMM/MTBD 1.119 0.2666 189 0.4718 .965 N.S.
ClaDS2/PESTO 2.418 0.5761 189 3.7056 .002 ∗∗
ClaDS2/MTBD 0.887 0.2113 189 –0.5034 .958 N.S.
PESTO/MTBD 0.3668 0.0874 189 –4.209 .000 ∗ ∗ ∗

Net diversification BAMM/ClaDS2 0.6467 0.0406 188.067 –6.9392 .000 ∗ ∗ ∗ 81.83
BAMM/PESTO 0.6666 0.0419 188.067 –6.4555 .000 ∗ ∗ ∗
BAMM/MTBD 0.8278 0.052 188.067 –3.0073 .016 ∗
ClaDS2/PESTO 1.0309 0.0644 188.0003 .4863 .962 N.S.
ClaDS2/MTBD 1.2802 0.08 188.0003 3.9523 .001 ∗ ∗ ∗
PESTO/MTBD 1.2419 0.0776 188.0003 3.466 .004 ∗∗

between the global metrics and the observed patterns across the
trees (both described above; Figure 2).

When quantifying differences in the location and magnitude
of shifts in speciation and net diversification rates, ClaDS2 dif-
fers the most (larger MSE), compared with the other methods
(Figure 2D and F) and it is by far the biggest outlier across the
models when visually inspecting the trees (Figure 1E, J, and O).
This result indicates that ClaDS2 estimates differ strongly from
those of the other methods in the degree of the shifts it infers,
and in their locations. This result is in contrast to the tree-wide
averages presented above (see also Figure 2A–C), where ClaDS2 is
unexceptional. These results are also corroborated by analyses
that take into account uncertainty in rate estimates (see Sup-
plementary Section S4, especially Supplementary Figure S6 and
Supplementary Table S3). We recover the same pattern when we
subset our data by older and younger trees (Supplementary Figure
S7), indicating that our comparisons are robust to clade age.

Tools for assessing methods
Inferred rates generally differ depending on the analysis method;
how then should an empirical biologist choose which method
to use? A reasonable conclusion from our analyses is that these
methods are inherently unreliable. However, given the continued
interest (both via use and development) in these methods, we
advise empirical users who wish to conduct diversification-rate
analyses to take one of two paths.

The first path is to carefully select a method based on the
model assumptions. The methods presented in this analysis have
theoretical differences in their approach,which appear to produce
corresponding differences in results. For example, methods differ
in whether shifts in diversification rates are allowed on extinct or
unsampled lineages (LSBDS, PESTO, and the “exact MTBD” not tested
here), whether diversification rates of each regime are drawn
from a continuous distribution (BAMM, MTBD, and ClaDS2) or from
a set of discrete rate categories (LSBDS and PESTO), and if shifts
occur at cladogenetic events (ClaDS2) or along lineages (BAMM, MTBD,
LSBDS, and PESTO). The models make additional assumptions,
such as whether shifts in diversification rates affect the process-
intrinsic parameters (the speciation and extinction rates) or trans-
formations thereof (e.g., the net-diversification or turnover rate)

and whether shifts affect single parameters or combinations of
parameters. These assumptions lead to notably different inter-
pretations of how values change through time. Choice of method
can be supported by taxon-specific data such as species distribu-
tion, fossil record, or phenotypic data (Morlon, 2014). Thus, users
should also familiarize themselveswith how thesemodels param-
eterize and estimate diversification rates and ensure that these
modeling choices reflect the user’s assumptions about biological
processes.

The second path is to critically compare multiple methods
when performing diversification analyses. We have shown that—
despite the difference in models—in some cases multiple meth-
ods produce results with similar biological interpretations. To
facilitate the adoption of this practice, we provide R code to eas-
ily visualize the results of multiple diversification-rate models
across the same phylogeny: https://github.com/Jesusthebotanist/
CompDiv_processing_and_plotting.

Regardless of the path taken, these methods are known to be
sensitive to prior choice (e.g., LSBDS: prior on number of rate shifts
𝜂,Höhna et al. 2019, MTBD: prior on state change rate 𝛾, Barido-
Sottani et al. 2020, and BAMM: prior on the rate of shifts, Mitchell
& Rabosky 2017; Moore et al. 2016). Method developers generally
recommend making inferences under a range of priors to charac-
terize the impact of prior choice on the analysis. While assessing
the impact of the prior choice is outside of the scope of this article,
we strongly recommend researchers investigate prior sensitivity
when using these methods.

The future of diversification analyses
The rise of methods aiming to identify shifts in diversification
speaks to the importance of these analyses for understanding the
drivers and impacts of important evolutionary events. However,
we advocate for caution, for two reasons described below.

First, taking a cautious approach is especially important in
light of the many potential problems with these methods, includ-
ing the controversy surrounding the identifiability of birth–death
models (Louca & Pennell, 2020, but see also Helmstetter et al.
2021; Kopperud et al. 2023b; Legried & Terhorst 2022; Morlon et al.
2022, among others).
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Figure 2. Comparison of tree-wide summary statistics acrossmethods for the partial subset (n = 65). (A–C) Tree-widemean of posteriormedian estimates
of the branch-specific rate parameters, plotted on a log scale. Asterisks correspond to the p-value of linear mixed model, calculated on the natural log
of the rates (*.05 > p-value >.01; **.01 > p-value >.001; ***.001 > p-value). (D–F) Pairwise mean squared error (MSE) between inference methods of phylo-
genies with branch lengths scaled by rates (speciation, extinction, and net diversification), plotted on a log scale. Split colors correspond to inference
method color in (A–C). Distributions closer to zero indicate that the inference methods produced more similar rate estimates, whereas higher values
indicate greater dissimilarity. (D) MSE of speciation-scaled phylogenies; (E) MSE of extinction-scaled phylogenies; (F) MSE of net-diversification-scaled
phylogenies.

Louca & Pennell (2020) presented a class of birth–deathmodels
that are unidentifiable if the rate functions are time-varying (but
homogeneous across lineages) and allowed to take any contin-
uous shape. Nonetheless, hypothesis-driven approaches are not
allowed to take any arbitrary shape. Since the rate shapes are
designed to test diversification scenarios, defined a priori, it has
been shown that this approach is not prone to the identifiabil-
ity issue (Morlon et al., 2022). Even time-varying models that are
more agnostic about prior hypotheses are not typically allowed to
take any continuous rate shape. Among the “agnostic”models, the
piecewise-constantmodel is themost eminent (Magee et al., 2020;
Stadler, 2011), and this model has been proven to be asymptoti-
cally identifiable provided there are not too many pieces (Legried
& Terhorst, 2022).

However, in spite of the nonidentifiability, inferences of rapidly
changing speciation and extinction rates are still typically robust
(Kopperud et al., 2023b). The issue of nonidentifiability remains
to be investigated thoroughly in lineage-heterogeneous models.
These models are more parameter-rich than their homogeneous
cousins, and so we do not expect the issue of nonidentifiability to
be any simpler here.

Second, we caution against relying too heavily on the estimates
from a singlemethodwithout justifying the assumptions encoded
into the model’s choices regarding parameterization and estima-
tion, as we describe in detail in “Tools for assessing methods.”

Some users may wish to use model testing or model adequacy
analyses to choose among methods, but we currently do not
recommend these approaches. Model testing—especially across
models implemented in different software packages—is likely to
pick up signals from differences in prior specifications that may
mislead or otherwise confuse the results. In addition, Bayes fac-
tors for thesemodels, if calculated frommarginal likelihoods (e.g.,
by stepping-stone or path sampling), are unreliable due to the
conflation of prior and likelihood in the tree model: such Bayes
factors may offer decisive support for the wrong model (May &
Rothfels, 2023). Model adequacy approaches have not yet been
implemented (to our knowledge) in any of the software for these
types of analyses. For example, posterior predictive simulations in
PESTO or LSBDS would not condition on the observed rate shifts and
instead would simulate from the prior distribution of rates. The
development of appropriate methods for model adequacy under
these models would be a highly useful tool for future research.
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However—for now—we recommend that users look toward other
sources of data on diversification rates (e.g., the fossil record,
expected time to speciation, etc.) to verify whether the mod-
els’ estimated rates fall within reasonable expectations given the
particularities of the system.

The methods investigated in this article vary in their underly-
ing model and assumptions, but are theoretically related (Ron-
quist et al., 2021). Due to these model differences, we expect
differences in inferences which, in turn, could translate into dif-
ferent biological interpretations. Using a set of empirically derived
phylogenies, we show that this is true (Figure 1): no two meth-
ods inferred the same shifts for any phylogeny. In some cases,
methods generally agreed on the location and timing of inferred
shifts, but in other cases, methods strongly disagreed. Method-
dependent differences of individual trees were corroborated by
tree-wide summary statistics, which indicated small but signifi-
cant differences between methods (Figure 2; Table 1). While these
results hold up when we take into account the uncertainty in rate
estimates, we also urge caution in relying too heavily on sum-
mary statistics and encourage users to carefully examine their
posterior distributions, as 95% HPD intervals vary among meth-
ods and distributions may be bimodal, which may mislead com-
mon Supplementary statistics (Supplememtary Figure S8, see also
Barido-Sottani et al., 2020).

Regardless, it is clear there will be a continued interest in
using diversification analyses with a renewed appreciation for the
complexities of these methods and the details of how rates are
parameterized and estimated.

Supplementary material
Supplementary material is available online at Evolution Letters.
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All scripts, data, and outputs can be found on Dryad at
(doi:10.6078/D18Q68) upon publication. A set of R functions
to help users analyze outputs of studied Bayesian methods
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processing_and_plotting.
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