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Mastitis is a common disease for mammals all around the world. Figuring out why mastitis mainly occurs
around parturition may be helpful for dealing with the disease. Lipolytic activity and oxidative stress take
place around parturition, which may leads to alteration in fatty acids profile and proinflammatory
cytokine expression. Thus, the aim of the present study was to further our understanding about the high
incidence of mastitis around parturition by comparison of plasma fatty acid profile and mammary
inflammation indicators at different reproductive stages. A total of 47 female rats were included in the
present study. After mating, all the pregnant and non-pregnant rats began to receive the same experi-
mental diet. Blood samples were collected at day 1 and 14 of gestation as well as day 3 postpartum.
Mammary samples were collected at day 14 of gestation and day 3 postpartum from pregnant and non-
pregnant rats. The results showed that rats at d 3 postpartum had greater (P < 0.05) plasma concen-
trations of non-esterified fatty acids (NEFA), arachidonic acid (ARA) and docosahexaenoic acid (DHA) as
well as ARA: eicosapentaenoic acid (EPA) ratio than those at d 14 of gestation. The mRNA abundances of
interleukin-1b (IL-1b), tumor necrosis factor-a (TNF-a), IL-8 and xanthine oxidoreductase (XOR) in
mammary of the pregnant rats were greater (P < 0.05) than those in age-matched non-pregnant rats.
Rats at d 3 postpartum had higher (P < 0.05) protein expression levels of IL-1b and TNF-a as well as
meloperoxidase (MPO) activity and polymorphonuclear neutrophils (PMN) prevalence than those at d 1
of gestation. The rats at d 3 postpartum also had greater (P < 0.05) IL-1b and MPO activity than those at
d 14 of gestation. The results indicated that elevated mammary expression of proinflammatory cytokines
and XOR as well as altered fatty acid profile around parturition might facilitate the recruitment of
neutrophils into mammary glands.

© 2016, Chinese Association of Animal Science and Veterinary Medicine. Production and hosting
by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mastitis is a common disease for mammals all over the world
that occurs frequently around parturition (Compton et al., 2007).
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Previous studies showed the average prevalence of mastitis in sows
was about 13% (Gerjets and Kemper, 2009) while it was about 25.5%
in lactating heifers in Dutch (Santman-Berends et al., 2012). Piglet
mortality around one week in the litters of coliform mastitis-
affected sows varies from 5.0% to 38.6% (Gerjets and Kemper,
2009). Cows often have mastitis without obvious clinical symp-
toms named subclinical mastitis (Hansen et al., 2004). Subclinical
mastitis results in leakage of plasma constituents into milk and
causes gut damage of infants. Antibiotics are often used to deal with
mastitis while overuse of antibiotics may lower the quality and
safety of animal products and thus threaten the health of humans
(Hortet and Seegers, 1998; Seegers et al., 2003).

Up to date, we know little about how to effectively prevent
mastitis, and there is little knowledge about the underlying
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Table 1
Ingredients and composition of the experimental diet (air-dry basis).

Ingredient Content, % Composition Content, %

Corn starch 39.75 Crude protein 16.23
Casein 20 ME, Mcal/kg 3.81
Gelatinization starch 13.2 Lysine 1.53
Sucrose 10 Methionine 0.57
Fat1 7 Calcium 0.50
Fiber 5 Available phosphorus 0.16
Mineral premix2 3.5
Vitamin premix3 1
L-cysteine 0.3
Choline Chloride 0.25
Total 100

1 The 7 kg fat was composed of 5 kg lard and 2 kg soybean oil in the lard diet.
2 Provided per kg of diet: calcium 5000 mg, phosphorus 1561 mg, potassium

3600 mg, sodium 1019 mg, chlorine 1517 mg, magnesium 510 mg, iron 35 mg, zinc
30 mg, manganese 10 mg, copper 6 mg, selenium 0.15 mg, iodine 0.2 mg.

3 Provided per kg of diet: vitamin A 4000 IU, vitamin D3 1000 IU, vitamin K3

0.75 mg, vitamin B1 6.0 mg, vitamin B2 7.0 mg, vitamin B6 6.0 mg, vitamin B12
0.02 mg, nicotinic acid 30.0 mg, D-calcium pantothenate 15.3 mg, folic acid 2.0 mg,
biotin 0.2 mg.

Table 2
Fatty acid composition of the lard (g/100 g) and the diet (g/kg) (as fed basis).

Fatty acid1 Lard Lard diet

C14:0 1.25 0.42
C16:0 26.14 9.91
C18:0 19.89 7.20
C20:0 0.34 0.17
C16:1 1.48 0.52
C18:1 37.62 15.70
C20:1 0.91 0.40
C22:1 ND 0.17
C18:2n6 10.20 10.05
C18:3n3 0.98 0.96
C20:5n3 ND 0.087
C22:6n3 ND ND
Other 1.19 0.41
P

FA 100 46
P

SFA 47.62 17.70
P

MUFA 40.01 16.80
P

PUFA 11.18 11.09
P

SFA/
P

FA 47.62 38.48
P

MUFA/
P

FA 40.01 36.52
P

PUFA/
P

FA 11.18 24.11
P

n-3 0.98 1.04
P

n-6 10.2 10.05
P

n-6/
P

n-3 10.41 9.62

ND ¼ not detected; FA ¼ fatty acids; SFA ¼ saturated fatty acids;
MUFA ¼ monounsaturated fatty acid; PUFA ¼ polyunsaturated fatty acid.

1 P
FA means the sum of content of all fatty acids evaluated;

P
SFA means the

sum of C14:0, C16:0, C18:0 and C20:0 content;
P

MUFA means the sum of C16:1,
C18:1, C20:1 and C22:1 content;

P
PUFA means the sum of C18:2n6, C18:3n3,

C20:5n3 and C22:6n3 content;
P

n-3 means the sum of C18:3n3, C20:5n3 and
C22:6n3 content;

P
n-6 means the content of C18:2n6.
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mechanism. Although Escherichia coli has been proposed to play
critical roles in triggering mastitis through the toll-like receptor
(TLR) pathway (Porcherie et al., 2012) and infusion of lipopoly-
saccharide (LPS) has been proved to potentially stimulate
expression of proinflammatory cytokines (Frank et al., 2003), why
mammary glands are more susceptible around parturition
(Burvenich et al., 2007) remains to be elucidated. In humans,
increased concentration of non-esterified fatty acid (NEFA) can
stimulate systemic immune response and is linked to inflam
matory-based diseases (Wood et al., 2009). Notably, increased
lipolysis takes place around parturition and thus results in large
increases in NEFA concentration (Drackley et al., 2001). In addi-
tion, enhanced lipolytic activity around parturition also results in
break down of fat depots and rapid changes of plasma fatty acid
composition (Amusquivar et al., 2010). It was reported that
saturated fatty acids (SFA) concentration in plasma of women at
parturition was greater than that at week 24 of gestation (Stark
et al., 2005). Saturated fatty acids were convinced to be capable
of stimulating TLR-mediated proinflammatory signaling path-
ways (Huang et al., 2012). Moreover, our previous study indicated
that consumption of fish oil could attenuate mammary inflam-
mation which might be linked to reduced plasma concentration
of SFA (Lin et al., 2013). These results suggested that increased
fatty acids metabolism around parturition may play roles in
regulation of inflammatory responses in mammary glands.
Therefore, detecting the variation in fatty acid composition of
mammals across the reproductive cycle may be helpful for un-
derstanding why mammary inflammation occurs frequently
around parturition.

On the other hand, it is well documented in cows (Castillo
et al., 2005) and sows (Berchieri-Ronchi et al., 2011; Xie et al.,
2015) that oxidative stress occurs at late gestation and early
lactation due to severe catabolic status. And oxidative stress
was known to be strongly linked to production of proin-
flammatory cytokines (Escobar et al., 2009; Yin et al., 2013;
2014; 2015), which has been known to be key factors in
inducing mastitis (Oviedo-Boyso et al., 2007). In consequence,
enhanced oxidative stress around parturition may affect the
expression of proinflammatory cytokines in mammary gland.
However, the variation of the proinflammatory cytokines across
the reproductive cycle in mammary gland of mammals is poorly
understood.

In the present study, the pregnant and age-matched non-preg-
nant rats were used as models to evaluate changes in plasma fatty
acids profile and mammary proinflammatory cytokines expression
in different time point of a reproductive cycle, which may further
our understanding about the high incidence of mammary inflam-
mation around parturition.

2. Materials and methods

2.1. Animals and facilities

All procedures outlined in this study were approved by the
Animal Care and Use Committee of the Animal Nutrition Institute,
Sichuan Agricultural University. All experiments involved animals
were conducted in conformity with the Public Health Service
Policy on Humane Care and Use of Laboratory Animals. The
experimental rats (Virgin female Sprague-Dawley rats) were
purchased from Sichuan Academy of Medical Sciences-Sichuan
Provincial People's Hospital Experimental Animal Research
Institute (Sichuan, China), and housed in galvanized-steel cages
with bedding and maintained at a controlled temperature
(22 ± 2�C) and relative humidity (60 ± 10%) with a 12-h light/
dark cycle.
2.2. Diets and treatments

The experimental diet (Table 1) was formulated to meet or
exceed the nutrient requirements of gestating and lactating rats as
recommended by AIN-93G. To set a proposed level of dietary SFA
and n-3 polyunsaturated fatty acid (PUFA), the 7 kg fat included in
the experimental diet was composed of 5 kg lard and 2 kg soybean
oil. The fatty acid (FA) composition of the diet is showed in Table 2.
The diet was stored at �20�C to avoid PUFA oxidation during the
experimental period. A total of 47 rats were included in the
experiment. When rats grew to sexual maturity, 1 female rat
(231 ± 5 g) per cage was housed together with 1male rat (weighing
300 to 330 g) in the same cage to complete mating. The females
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were examined each morning for the presence of a seminal plug in
the vagina. The day detecting a plug was designated embryonic day
1 of gestation and plug-positive females were considered ‘preg-
nant’. Immediately after the first observation of a plug, the female
rats were removed and housed individually, and began to receive
the experimental diet. At the same time, age- and body weight-
matched virgin rats also began to receive the experimental diet.
All rats had free access to water at all times. Mammary tissue
samples were obtained at days 1 and 14 of gestation as well as day 3
postpartum, respectively. All blood samples were obtained (about
3 mL) through intra-orbital bleeding (for rats to be slaughtered
thereafter) or by tail-cutting (for virgin rats that continued to be
reared) and collected in duplicate in heparinized tubes. The sam-
ples were then centrifuged at 1500 � g for 15 min at 4�C. All blood
samples were obtained after a 12-h fast and stored at �20�C until
analysis. Immediately after anesthesia, the mammary tissue sam-
ples for detection of mRNA abundance were collected, snap frozen
in liquid nitrogen and stored at �80�C. The mammary tissue
samples for histopathologic examination and immunohistochem-
istry detection were fixed in 4% paraformaldehyde and stored at
4�C until analysis.

2.3. ELISA analysis

Non-esterified fatty acids concentration was determined in
duplicate by commercial ELISA kits (GBD, San Diego, CA, USA) as
described by themanufacturer's protocol. About 100 mL of standard,
blank, and sample was added to the wells of the assay plate,
respectively, and the assay plate was covered with the adhesive
strip. After incubation for 2 h at 37�C, the liquid of each well was
removedwithout washing. Then,100 mL of Biotin-antibodyworking
solution was added to each well. After incubation for 1 h at 37�C,
liquid in the wells was aspirated, and 200 mL of wash buffer was
used to wash the wells, guaranteeing that liquid was removed
completely in each step. Next, 100 mL of HRP-avidin working solu-
tion was added to each well, and a new adhesive strip was used to
cover the plate, allowing incubation for 1 h at 37�C. Afterward, the
wells werewashed as described above. This was followed by adding
90 mL of Trimethyl boron substrate to each well with incubation for
30 min at 37�C. Keep the plate away from drafts and other tem-
perature fluctuations in the dark. At last, 50 mL of stop solution was
added to each well and the reaction was thus halted. The optical
density of each well was determined within 30 min using a
microplate reader set at 450 nm. A standard curve was created and
the corresponding NEFA concentrations were determined accord-
ing to the standard curve.

The plasma meloperoxidase (MPO) activity was determined
using a spectrophotometric method. The MPO activity was calcu-
lated with the absorbance (at 460 nm) changes causing by reducing
H2O2 with the presence of o-dianisidine. All reagents were included
in a commercial MPO kit (Nanjing Jiancheng Bioengineering Insti-
tute, Nanjing, China).

2.4. FA composition analysis

Plasma FA composition were analyzed according to previous
research (Fernandez-Real et al., 2003) with modification. Briefly,
30 to 50 mg plasma sample was weighed in glass tubes. About
4 mL acetyl chloride and methanol solution (1:10, volume) was
added slowly. After transesterification, the pooled solvent ex-
tracts were dried under a gentle stream of nitrogen at room
temperature. Residues were dissolved in 5 mL hexane with in-
ternal standard. After water bath at 80�C for 2 h, 5 mL 7% po-
tassium carbonate was added, vibrating until uniform, standing
for stratification and collecting supernatant. Analysis was
performed on a Hewlett-Packard 6890 gas chromatograph
equipped with a flame ionization detector. The column temper-
ature was held at 180�C for 10 min and in a stepwise fashion
reached a plateau of 230�C. The detector temperature was 270�C.
Helium was used as carrier gas.

2.5. RNA analysis

RNA analysis was performed as we described previously (Lin
et al., 2013). Briefly, total RNA was extracted using a TRIzol re-
agent kit (Invitrogen, Carlsbad, CA, USA). The cDNA was pre-
pared using a reverse transcription (RT) kit (TAKARA, Dalian,
China) following the manufacture's instruction. Primers were
synthesized by Chengdu Tiantai Biological Company (Chengdu,
China). b-actin was used as an internal control according to the
work of Gu et al. (2010). The nucleotide primer sequences are
listed in Table 3. Quantitative real-time RT-PCR analysis was
performed using a 7900 real-time PCR system (Applied Bio-
systems, Foster City, CA, USA) and SYBR Green assays (Master
Mix SYBR Green TAKARA, Dalian, China). The specificity of PCR
products were examined with melting curve analysis. Results
(fold changes) were expressed as 2�DDCt with DDCt ¼ (Ct ij � Ct
b-actin j) � (Ct i1 � Ct b-actin1), where Ct ij and Ct b-actin j are
the Ct for gene i and for b-actin in a sample (named j), and
where Ct i1 and Ct b-actin1 are the Ct in sample 1, expressed as
the standard.

2.6. Histopathologic examination

Tissue specimens were fixed in 4% paraformaldehyde for 24 h.
Standard dehydration and paraffin-wax embedding procedures
were used to produce tissue blocks. Hematoxylin and eosin stained
slides were prepared using standard methods. The prevalence of
the polymorphonuclear neutrophils (PMN) in alveoli was estimated
by light microscopic (Olympus BH2, Tokyo, Japan) analyses at a
magnification of 400� as previously described (Miao et al., 2007).
Briefly, 4 sections of the rat mammary tissue samples were quan-
tified for each animal. Ten fields were selected randomly per
sample. Results are presented as average PMN infiltration scores for
each time point.

2.7. Immunohistochemistry

Polyclonal antibodies combined with the avidin-biotinper
oxidase complex technique were used for the immunohisto-
chemical detection of interleukin-1b (IL-1b) (Abnova, Walnut, CA,
USA) and tumor necrosis factor-a (TNF-a) (Novus, SaintCharles,
MO, USA). All samples from 1 animal were analyzed within the
same assay run, and within each assay run treatment animals to
be compared were included. The quantification of IL-1b and TNF-
a protein expression level in mammary tissue samples was per-
formed as previously described (Zhu et al., 2007). For each
sample, a relative value of the amount of cytokine produced was
expressed as the average percentage of the positively stained
areas in 10 (for IL-1b) or 5 (for TNF-a) randomly selected view
fields.

2.8. Statistical analysis

Data were analyzed using the General Linear Model procedures
of SAS statistical package (V8.1, SAS Institute Inc., Cary, NC). Least-
squares means comparison was used to evaluate differences
among treatments. P-value �0.05 were considered statistical sig-
nificance. Values were presented as means ± SE.



Table 3
Primer sequences used to amplify rat cytokines.

Gene Primer sequences (50 to 30) Product size, bp GenBank accession No.

IL-1b Forward TGACCTGTTCTTTGAGGCTGAC 113 M98820.1
Reverse CGAGATGCTGCTGTGAGATTTG

TNF-a Forward CCACTCTGACCCCTTTACTCTGA 154 NM_013693.2
Reverse CTGTCCCAGCATCTTGTGTTTC

IL-8 Forward CCAGCAGGAAACCAGAAGAAAG 123 NM_001173399.2
Reverse CAACTTTGTCACGACCATACCC

XOR Forward GATTCTCACACACCTCCTGACG 156 NM_011723.2
Reverse CCCCACACACACACACACACTAT

b-actin Forward CTGTGTGGATTGGTGGCTCTATC 133 NM_031144.2
Reverse GCTCAGTAACAGTCCGCCTAGAA

IL-1b ¼ interleukin-1b; TNF-a ¼ tumor necrosis factor-a; IL-8 ¼ interleukin-8; XOR ¼ xanthine oxidoreductase.

Table 4
Plasma fatty acid concentration (mg/mL) of the rats at different reproductive stages.

Fatty acid Day 1 of gestation Day 14 of gestation Day 3 postpartum

Mean SE Mean SE Mean SE

C18:3n3 10.32 1.16 12.42 1.59 9.03 1.10
C20:5n3 6.28 0.93 6.16 0.59 4.97 0.72
C22:6n3 65.09ab 6.19 45.71b 1.95 91.36a 15.86
C20:4n6 309.89ab 50.52 248.16b 13.24 406.70a 52.01
ARA:EPA 50.61b 7.80 42.06b 2.31 84.31a 7.22
n-3 PUFA 81.69ab 6.11 65.42b 3.87 106.47a 16.37
SFA 1542.50 150.96 1230.73 178.83 1431.02 145.23
Total FA 2577.71 192.64 2209.09 183.43 2632.85 286.82

ARA ¼ arachidonic acid; EPA ¼ eicosapntemacnioc acid; PUFA ¼ polyunsaturated
fatty acids; SFA ¼ saturated fatty acids; FA ¼ fatty acids; SE ¼ standard error.
a,b Mean values within a row without a common superscript differ (P < 0.05).
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3. Results

3.1. Plasma NEFA concentration and FA profile at different
reproductive stages

As shown in Fig. 1, plasma NEFA concentration in non-
pregnant rats was not changed (P > 0.05) with the advance of
time. It was also not different (P > 0.05) between the value of the
pregnant rats at day 1 and those at day 14 of gestation. However,
a significant (P < 0.05) increase in plasma NEFA concentration
was observed at day 3 postpartum compared with that at day 14
of gestation. The concentration of several FA greatly changed,
especially the PUFA (Table 4). At day 3 postpartum, plasma
arachidonic acid (ARA), docosahexaenoic acid (DHA) and total n-3
PUFA concentrations were significantly (P < 0.05) greater than
those at day 14 of gestation. Notably, ARA:eicosapentaenoic acid
(EPA) ratio at day 3 postpartum was higher than that at day 1 and
day 14 of gestation.

3.2. Mammary inflammation mediators at different reproductive
stages

Real time-PCR results indicated that the mRNA abundance of
IL-1b, TNF-a, IL-8 and XOR in mammary of the pregnant rats at day
14 of gestation was greater (P < 0.05) than that of age-matched
non-pregnant rats (Fig. 2). Immunohistochemistry analysis
Fig. 1. Plasma non-esterified fatty acids (NEFA) concentration (mg/mL) of the rats at
different reproductive stages. Blood samples were collected at day 1 of gestation from
non-pregnant rats (n ¼ 5) and pregnant rats (n ¼ 13), day 14 of gestation from non-
pregnant rats (n ¼ 6) and pregnant rats (n ¼ 12) and day 3 postpartum from non-
pregnant rats (n ¼ 6) and pregnant rats (n ¼ 5) and determined using ELISA kits.
Values are presented as means ± SE. Different letters signify statistical difference
(P < 0.05).
revealed that the protein levels of IL-1b and TNF-a were greater at
day 3 postpartum than those at day 1 of gestation. In addition, the
protein level of IL-1b at day 3 postpartum was higher than that at
day 14 of gestation (Fig. 3). Moreover, MPO activity (Fig. 4) and
PMN prevalence (Fig. 5) were greater (P < 0.05) at day 3 post-
partum than those at day 1 of gestation. Meloperoxidase activity at
day 3 postpartumwas also greater (P < 0.05) than that at day 14 of
gestation.
Fig. 2. The mRNA abundance of interleukin-1b (IL-1b), tumor necrosis factor-a (TNF-a),
IL-8 and xanthine oxidoreductase (XOR) in udder of rats. The mRNA abundances of IL-
1b, TNF-a, IL-8 and XOR were determined by RT-PCR with mammary tissues obtained
after saline infusion at day 14 of gestation from pregnant rats (n ¼ 7) and age-matched
non-pregnant rats (n ¼ 11). Values are presented as means ± SE. Differences between
pregnant and non-pregnant rats were indicated by asterisks (****P < 0.0001,
***P < 0.001, **P < 0.01 and *P < 0.05).



Fig. 3. Immunohistochemical localization of interleukin-1b (IL-1b) and tumor necrosis factor-a (TNF-a) in mammary glands of the rats at different reproductive stages. Mammary
glands were collected after saline infusion from non-pregnant rats that designated as rats at day 1 of gestation (n ¼ 6), pregnant rats that was infused by saline at day 14 of gestation
(n ¼ 5) and day 3 postpartum (n ¼ 5). (A) Interleukin-1b and TNF-a production is presented as the average percentage of the positively stained areas. The microphotograph from one
rat with the positive primary IL-1b or TNF-a antibody was visualized with diaminobenzidine reaction. The area positive for (B) IL-1b and (C) TNF-a in mammary tissue of rats at
different reproductive stages was quantified by Easy Image 3000 software at a magnification of 400�. Values are presented as means ± SE. Different letters signify statistical
difference (P < 0.05) within the same protein.
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4. Discussion

In the present study, the plasma FA profile and mammary
inflammation indicators at different reproductive stages were
determined to explain the high incidence of mastitis around
parturition. Across the reproductive cycle, great changes took
place in plasma FA profiles. From day 14 of gestation to day 3
postpartum, the increased plasma concentration of DHA resulted



Fig. 4. Plasma meloperoxidase (MPO) activity (IU/L) at different reproductive stages.
Meloperoxidase activity was determined using a spectrophotometric method with
blood samples collected from the rats infused by saline at day 1 of gestation (n ¼ 6),
day 14 of gestation (n ¼ 6) and day 3 postpartum (n ¼ 6). Values are presented as
means ± SE. Different letters signify statistical difference (P < 0.05).
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in elevation of n-3 PUFA. The elevated DHA here could be
ascribed to increased NEFA concentration in plasma (Spector,
2001). At day 3 postpartum, NEFA concentration increased
significantly compared with that at days 1 and 14 of gestation
which was in line with a previous study (Contreras et al., 2010).
Increased plasma concentration of NEFA might indicate the
reduction in the body content of adipose tissue which could lead
to impaired immune cell function (Mora and Pessin, 2002) and
increased susceptibility to exogenous pathogens. Moreover, the
predominant FA in plasma NEFA was shown to be palmitic and
stearic acids, both of which were known to be capable of
enhancing the production of inflammatory cytokines. For
example, palmitic acid can enhance the production of cytokines
TNF-a, IL-1b and IL-8 in monocytes through its activated mole-
cule palmitoyl-CoA (Contreras et al., 2010). Moreover, stearate
and palmitate can induce the expression of cyclooxygenase 2, an
inflammatory eicosanoid enzyme (Lee et al., 2001). Notably,
ARA:EPA ratio at day 3 postpartum increased to twice that at day
14 of gestation and was significantly higher than that at day 1 of
gestation. Plasma concentration of ARA at day 3 postpartum was
also higher than that at day 14 of gestation. It was demonstrated
that increased production of ARA could cause inflammation by
triggering proinflammatory eicosanoid generation (Harizi et al.,
2008), which was attributable to oxygenation of ARA (Davies
et al., 1984). As mentioned above, parturition is accompanied by
extensive oxidative stress and may thus facilitate oxygenation of
ARA. Previous studies also showed that the decreased production
of IL-1 and TNF was accompanied by a decreased ARA:EPA ratio in
the membrane phospholipids of mononuclear cells, indicating the
significant role of ARA in proinflammatory responses (Endres
et al., 1989). In turn, the increased ARA:EPA ratio with the
advance of gestation might be accompanied by higher production
of IL-1 and TNF.

Consequently, proinflammatory cytokines in mammary glands
across the reproductive cycle were determined. An important
finding was that with the advance of pregnancy, there was up-
regulated mRNA expression of proinflammatory cytokines in
mammary glands including IL-1b, TNF-a and IL-8, the mRNA
abundance of which was significantly greater in pregnant rats at
day 14 of gestation than that in the match-up non-pregnant rats.
Moreover, immunohistochemistry analysis revealed that the
protein expression level of TNF-a was greater at day 14 of
gestation and day 3 postpartum than that at day 1 of gestation
and the protein expression level of IL-1b was the greatest at day 3
postpartum among the three time points evaluated. Previous
study showed that there was a significant increase in IL-1b, TNF-a
and IL-8 at both mRNA levels (Zhu et al., 2008) and protein levels
(Zhu et al., 2007) in the inoculated mammary glands of sows that
developed clinical signs of mastitis. It was therefore inferred that
proinflammatory cytokines in mammary glands, linked closely
with mastitis, tended to increase with the advance of gestation
and lactation. Those inflammatory cytokines were known to play
critical roles in neutrophils recruitment into the mammary
glands (Oviedo-Boyso et al., 2007). In the present study, plasma
MPO activity and PMN prevalence in mammary glands were
observed to reach a peak at day 3 postpartum. Meloperoxidase
activity was known as a marker reflecting the function of
neutrophil (Roth and Kaeberle, 1981). Polymorphonuclear neu-
trophils prevalence has been proved to be a principal marker of
mastitis after intramammary infection with E. coli (Shuster et al.,
1997). The aggravated PMN prevalence in the mammary glands
might be induced by the over expression of IL-1b and TNF-a, both
of which were documented as key mediators that participate in
neutrophil recruitment to the mammary glands. Moreover, neu-
trophils recruited to the site of infection would phagocytize
bacteria and produce reactive oxygen species, low molecular
weight antibacterial peptides, and defensins, which eliminate a
wide variety of pathogens that cause mastitis (Oviedo-Boyso
et al., 2007).

Another important finding was that the mRNA abundance of
XOR was also greater in pregnant rats at day 14 of gestation than
that in the match-up non-pregnant rats. Previous studies have
shown that increased XOR expression contributed to increased
synthesis of numerous ROS (Vorbach et al., 2003), which may
facilitate activation of TLR4 signaling pathway (Enos et al.,
2013). Toll-like receptor 4 is a member of pattern-recognition
receptors that play critical roles in the innate immune system
in response to microbial pathogens. The high activity of TLR4
may enhance the innate immune responses of the organisms.
Therefore, with the advance of gestation, TLR4 in mammary
gland cells can be activated more easily in response to exoge-
nous pathogens owing to enhanced expression of XOR. Activa-
tion of TLR4 may further promote the production of
proinflammatory cytokines and recruitment of neutrophils to
mammary glands.
5. Conclusion

In conclusion, our results indicate that expression of proin-
flammatory cytokines and XOR as well as plasma NEFA and ARA:-
EPA ratio were all increased with the advance of gestation.
Increased plasma NEFA and ARA:EPA ratio as well as the mRNA
expression level of XOR could enhance the production of proin-
flammatory cytokines, which would facilitate the neutrophil
recruitment to mammary glands. Therefore, in late gestation and
early lactation, the mammary glands are in a vulnerable status.
Once invaded by pathogens, inflammatory responses may be



Fig. 5. Histopathology of mammary glands of rats at different reproductive stages. (A) Hematoxylin and eosin stained slides were made with mammary tissues collected from non-
pregnant rats that designated as rats at day 1 of gestation (n ¼ 6), pregnant rats at day 14 of gestation (n ¼ 5) and day 3 postpartum (n ¼ 5). (B) Polymorphonuclear neutrophils
prevalence in alveoli was estimated by using light microscopic (Olympus BH2, Toyko, Japan) analysis at a magnification of 400�. Values are presented as means ± SE. Different
letters signify statistical difference (P < 0.05).
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stimulated. These results may be helpful for understanding the
high incidence of mastitis around parturition.
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