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Abstract: Protein–protein assemblies act as a key component in numerous cellular processes. Their
accurate modeling at the atomic level remains a challenge for structural biology. To address this
challenge, several docking and a handful of deep learning methodologies focus on modeling protein–
protein interfaces. Although the outcome of these methods has been assessed using static reference
structures, more and more data point to the fact that the interaction stability and specificity is
encoded in the dynamics of these interfaces. Therefore, this dynamics information must be taken
into account when modeling and assessing protein interactions at the atomistic scale. Expanding
on this, our review initially focuses on the recent computational strategies aiming at investigating
protein–protein interfaces in a dynamic fashion using enhanced sampling, multi-scale modeling, and
experimental data integration. Then, we discuss how interface dynamics report on the function of
protein assemblies in globular complexes, in fuzzy complexes containing intrinsically disordered
proteins, as well as in active complexes, where chemical reactions take place across the protein–protein
interface.

Keywords: protein interactions; protein interfaces; protein dynamics; molecular modeling;
protein docking

1. Introduction

Protein–protein interactions (PPIs) lie at the heart of the machinery of life. Numerous
cell mechanisms, such as metabolic pathways, transport or immune response, rely heavily
on protein interaction networks [1–3]. As a consequence, dysfunctional PPIs are often
linked to diseases [4], putting PPIs out as a central target in drug discovery. Protein–protein
assemblies cover a wide range of size and shapes [5–8], from simple dimers to the large
viral capsids that are formed by over a thousand protein chains [9]. Protein complexes can
also be distinguished based on their lifetime in the cell, from weak transient complexes with
micromolar binding affinities that will only last a few seconds, to permanent complexes
with nanomolar binding affinities [10].

Experimentally, a wealth of data regarding the protein interactome can be acquired
from proteomics [11,12]. Atomistic resolution information on macromolecular assem-
blies, on the other hand, is gathered by X-ray crystallography, NMR spectroscopy, and
cryo-electron microscopy (cryo-EM) techniques (as deposited in the Protein Data Bank
(PDB)) [13]. Recent advances in cryo-EM techniques in particular have put the structural
determination of large molecular machines within our reach [14,15]. The interested reader
will find a detailed listing of the various biophysical methods used for the detection of PPIs,
listing their advantages and disadvantages, in a recent review by Zhou et al. [16].
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In parallel with experimental techniques, in silico approaches have also evolved to pro-
vide a promising complementary strategy in both predicting the interaction partners [17–19]
and determining the three-dimensional (3D) structure of protein complexes [20–22]. In re-
cent decades, the most prominent tool to model protein complexes has been docking, where
one attempts to determine the structure of a protein complex starting from its individual
partners. Established in 2001, the CAPRI (Critical Assessment of predicted Interactions)
initiative has fostered significant developments in docking and scoring methods [23–25]. In
recent years, CASP (Critical Assessment of Predicted Interactions) has also introduced an
assembly category in order to combine both worlds, i.e., tertiary and quaternary structure
prediction methods [26–28]. In both CAPRI and CASP, the standard assessment criteria
used to validate protein complex models rely on a single reference X-ray structure of the
target complex. This view endorses the image of a static protein–protein interface, which
has been increasingly questioned over recent years. We now have a considerable amount of
data indicating that protein interfaces are dynamic, presenting conformational heterogene-
ity, especially when they include disordered, flexible segments [29–34]. Within the limits of
the current docking strategies, one could deal with conformational flexibility upon starting
from an ensemble of structures or performing a short interface refinement. However, none
of these aspects provide enough sampling to report on the stability and specificity of the
complexes. Therefore, new approaches should be developed to take functional interfacial
dynamics into account to model stable and specific protein interactions [35–40].

To aid the development of such tools, in this review, we first focus on the recent
strategies established to investigate protein–protein interfaces in a dynamic perspective
(which are summarized in Figure 1), including enhanced sampling, multi-scale modeling,
and experimental data integration. The second half of the manuscript discusses recent work
where interface dynamics report on function in the case of globular protein complexes,
fuzzy complexes encompassing intrinsically disordered partners, and active complexes,
where chemical reactions take place across the protein–protein interface.
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Figure 1. The accurate modeling of protein interface dynamics relies on three choices: system
representation, system focus, and the sampling algorithm. If the level of information is sought at the
atomic scale, then all atom representation should be selected. Depending on the resources that can
be invested, the dynamics of the whole complex or only the interface could be chosen as the focus.
In such a situation, classical MD would generate the finest level of sampling. Though, for bigger
systems or shorter computing times, faster enhanced sampling methods could be used. If larger-scale
motions are expected, then coarse grain (CG) force fields or elastic network models could be used as
system representations. Those can be sampled with any of the sampling methods listed. Finally, in
case the binding mechanism is investigated, rigid body minimization driven docking could deliver
several solutions that could represent encounter complex formation. This solution set could also tell
us how different solutions in a well-defined interface can fluctuate, thus indirectly reporting on the
interface dynamics.

2. Tools for Calculating PPI Dynamics
2.1. Classical All-Atom Molecular Dynamics Simulations

Classical molecular dynamics (MD) simulations remain a first-choice tool in under-
standing the dynamics of biomolecular assemblies [41,42]. MD-produced trajectories do
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not only provide us with dynamic structural data on protein interfaces, but they also enable
us to characterize the conformational space of the whole complex. Information on interface
dynamics can be used to locate transient functional features, such as pockets, that would
elude X-ray crystallography. Such sites can be exploited as binding sites for drug screening
to modulate protein–protein interactions [43,44]. So, within this context, MD simulations
can help us gain a deeper understanding of the macromolecular mechanisms taking place
in the cell. Thanks to recent advances in hardware technologies, especially in graphics
cards, the last ten years have seen impressive achievements in the extent of complexes
simulated by MD [45]. One such example is the all-atom simulation of a complete ribosomal
structure during the translocation process [46]. As a result, the computational microscope [47]
offered by MD simulations has become a standard weapon to find where to target pathogen
proteins, with recent examples including the simulation of protein assemblies from the
Ebola virus [48] and diverse simulation studies on the interaction between the SARS-CoV-2
spike protein and the human ACE2 receptor [49].

2.2. All-Atom Enhanced Interface Sampling Approaches

The efficient sampling of the rugged conformational landscape of protein interfaces is
an expensive process. Despite advances in hardware technologies, the computational cost of
simulating long time scales (multiple microseconds) to escape local energy minima can still
present a limiting factor for many systems. These considerations led to the development
of enhanced sampling strategies, focusing only on the interface sampling over time [50].
For example, Peiffenberger and Bates [51] used metadynamics [52,53] simulations within
the contact map space (CMS). The CMS is built from the inter-residue contacts observed
between the receptor and ligand proteins deduced from the initial docked structure. This
procedure is used to refine protein–protein complex interfaces. The discrete molecular
dynamics (DMD) approach, where particles are assumed to move at a constant velocity
from collision to collision, was used by Emperador et al. [54] to relax protein–protein
interfaces. This approach greatly reduces the calculation costs, while improving the poses
provided by rigid-body docking. Siebenmorgen et al. [55,56] introduced a repulsive bias,
keeping the ligand protein at different distances from the receptor in a classic replica
exchange scheme (RS-REMD). This strategy accelerates the searching process for the correct
binding site and enabled them to identify the native binding site and calculate binding
affinities for protein complexes. Scafuri et al. [57] used scaled molecular dynamics (SMD)
to rank protein–protein docking poses that were initially produced by the rigid-body
docking procedure of HADDOCK [58]. In SMD, the potential energy is multiplied by a
scalar, λ < 1 [59], where the resulting weakening of the forces between the proteins induces
perturbations, permitting us to identify the most stable docking poses.

2.3. Sampling the Protein Interface at the Coarse-Grain Level

In docking, most approaches treat the interacting protein partners as rigid bodies
during the first exploratory steps. The backbone flexibility is only addressed at later
refinement stages. In these approaches, whereas side-chain flexibility can be addressed
to a certain extent, the backbone flexibility remains a costly challenge [60]. To reduce this
cost and enable the conformational sampling of backbone flexibility, coarse grain models
are used [61]. In this perspective, Kurcinski et al. [62] recently combined the CABS CG
protein model with Replica Exchange Monte Carlo (REMC) simulations, thus allowing the
sampling of large structural backbone conformational changes across a protein–protein
complex. The PACSAB coarse-grained force field [63] of Emperador et al. was specifically
developed to include conformational variations in many protein systems. Combined with
an implicit solvent model and DMD simulations [64], it was used to filter docking poses
of protein complexes, as nonnative poses tend to deviate significantly from their initial
conformation through time, thus leading to a complete disruption of the ligand-receptor
complex. Membrane protein complexes are particularly expensive to model at the atomic
scale, as they require the explicit modeling of their lipid environment. Therefore, coarse
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graining has been used quite often in membrane protein complex modeling [65]. For
example, Liao et al. [66] used a combination of all-atom, hybrid, and coarse-grain (with
the MARTINI model [67]) representations with MD simulations to study the dynamics of a
complex formed by two G protein-coupled receptors embedded in a lipid bilayer.

Another option when trying to address the interface flexibility with a reduced compu-
tational cost is to use elastic network models (ENM) [68–70]. ENMs can help identify the
collective low-energy modes controlling the structural fluctuations around a reference con-
formation. Zen et al. [71] used this approach to characterize the dynamics of the interface
in a set of 22 protein dimers (comprising both obligate and non-obligate complexes). They
showed that the mobility of the amino acids located at the dimeric interface is generally
lower than for the amino acids on the rest of the surface. Stadler et al. [72] calculated the
mechanical properties of the hemoglobin tetramer using a coarse-grain ENM and showed
how the amino acids presenting the largest mechanical variability when comparing the
human and chicken tetrameric Hb structures are located at the central interface of the
assembly.

ENMs are also commonly used to perform normal modes analysis (NMA) and investi-
gate the collective dynamics in a protein structure. For example, Liang et al. [73] studied
various states (active and autoinhibitory) of DNMT3A in dimeric and tetrameric assemblies
to determine its intrinsic dynamics and showed how the central interface infers allosteric
properties. Tsuchiya et al. [74] used a protein representation based on the dihedral angle
space and NMA [75] to study the interface dynamics in over 500 homodimers.

2.4. Integrating Experimental Data Reporting on the Protein Interface Dynamics

Next to the portrayed computational tools, several biophysical techniques can provide
information on the conformational heterogeneity of the interaction partners. The structure
and dynamics of interface residues, or the lifetime of local contacts, can be obtained via
X-ray crystallography, NMR, cryoEM, or FRET [38]. NMR and all-atom MD is a classic
combination to study protein assemblies, with NMR parameters being used to set up the
starting structures for the simulations [76]. Although the use of NMR is limited by the
molecular weight of the complex (as it should be <30 kDa), recent developments have made
the characterization of dynamic complexes far more accessible [6,77]. Solvent paramagnetic
relaxation enhancement (sPRE) experiments, which use NMR with the addition of soluble
paramagnetic molecules, will provide quantitative information regarding surface acces-
sibility at atomic resolution. These data can be used to map solvent-exposed regions in
protein assemblies and allows the detection of transient interactions in fuzzy complexes [78].
Similar data can be obtained from limited proteolysis [79] and H/D exchange [80] mass
spectrometry experiments. When coupled with protein cross linking, mass spectrometry
can also help to localize flexible protein regions that cannot be resolved with cryo-EM
or X-ray [81]. SAXS [82] or mass spectrometry [83], on the other hand, can provide data
about the stoichiometry and shape of the assembly. A recent work by do Nascimento
et al. combined a quartz crystal microbalance and dual polarization interferometry for the
real-time investigation of the thermodynamics and conformational dynamics of the TRIM12
antibody–antigen complex [84]. All this information can be converted in spatial restraints
that are used for sampling in integrative modeling platforms [85–87], in combination with
modeling tools (docking, NMA, Monte Carlo, or MD simulations).

For example, Kharche et al. investigated the interaction between the CXC chemokine
receptor 1 (CXCR1) and its cognate chemokin, interleukine-8 (CXCL8) [88]. Here, Kharche
et al. used MD simulations with the coarse-grain MARTINI force-field, which enabled us
to run microsecond-long simulations for this large system, comprising a receptor protein
embedded in a lipid bilayer. These were complemented by shorter all-atom MD simulations,
as well as by NMR chemical shifts. These were obtained for the receptor N-terminal region,
which is located across the protein–protein interface, and compared to values from NMR
experiments. This global strategy permits us to investigate the impact of ligand binding on
the receptor interface dynamics.
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Interestingly, coevolutionary data retrieved from the sequence of interacting proteins
can also bring precious information when investigating the dynamics of protein–protein
interfaces, as they can be used to guide the assembly formation [89]. Direct coupling analy-
sis [90] of over 13,000 sequences was used in combination with site-directed mutagenesis
and MD simulation by Dago et al. to predict interdomain contacts and multiple confor-
mations in the histidine kinase autophosphorylation complex [91,92]. Malinverni et al.
developed an approach combining molecular simulations based on both coarse-grained
and atomistic models with coevolutionary sequence analysis to shed light on a transient
HSP70/HSP40 complex [93].

2.5. Analysis of the Interface Dynamics

Various tools are now available that have been tuned to process all-atom MD trajec-
tories. These tools are developed to gauge changes in covalent (intra) and non-covalent
(inter) interactions, as well as changes in the intrinsic dynamics of a biomolecular complex.
These analysis tools usually come together with the simulation package used to create the
relevant MD trajectory. In the case of GROMACS, for example, a vast collection of gmx
scripts allow the user to calculate changes in interfacial backbone-related terms (such as
dihedral angles), hydrogen bonds, salt bridges, specific interfacial distances, buried surface
area, interfacial water molecules, and RMSDs/RMSFs [94]. The corresponding analysis
package for NAMD is VMD (Visual Molecular Dynamics) [95], whereas for AMBER, it is
CPPTRAJ/PYTRAJ (Amber Tools) [96]. Next to their own internal formats, all these tools
can also work with any ensemble file, if recorded in the PDB format. Among these tools,
gmx and CPPTRAJ are command-line-based, VMD is GUI-based, and PYTRAJ provides
something in between, i.e., it runs on a Jupyter notebook with the NGL viewer molecule
visualization option.

If the user requires an analysis that is beyond what is provided by these widely used
simulation engines, then they can refer to cross-platform analysis tools, such as MDTraj
and MDAnalysis [97]. Both tools are composed of various Python libraries to perform
MD trajectory analysis. Besides their common analysis functions, they have tool-specific
options, such as the calculation of fraction of native contacts (MDAnalysis) or an extended
hydrogen bond analysis, where different h-bond definitions can be invoked (MDTraj).
There are also approaches that utilize the libraries of MDAnalysis and MDTraj. One such
tool, ProLIF, is specifically finetuned for calculating non-covalent interfacial contact types
(hydrogen bond donor/acceptor, pi stacking, anionic, cationic, etc.) and their propensi-
ties throughout the whole trajectory [98]. A similar tool to ProLIF is Interfacea, another
Python library, which provides interfacial non-bonded contacts, as well as OpenMM-based
interaction energetics [99]. gRINN can also calculate residue-based interface energetics
using a network-based approach [100]. The gRINN tool uses energy values calculated
either by GROMACS or VMD to present residue-based energy changes and correlations
through a GUI. ProDy and MD-TASK, two other network-based tools, allow us to calculate
the essential dynamics of the whole complex, from which the interface region could be
specifically investigated [101,102]. All the aforementioned tools for MD analysis are listed
in Table 1.

As introduced above, to visualize MD analysis results, VMD has been widely used.
In their very complete review on the visualization of biomolecular interactions [103], Aga-
mennone et al. show how Visual Molecular Dynamics (VMD) [95] can be used to retrieve
dynamic interface information from an MD trajectory of the spike RBD-ACE2 complex.
More specifically, in this example, the stability of the contacts is measured by monitoring the
occupancy of hydrogen bonds along time. Recently, a web-based tool, 3dRS, was published
to provide non-experts with the opportunity to investigate MD trajectories and share their
visual representations (https://mmb.irbbarcelona.org/3dRS/, accessed on 10 January 2022,
ref. [104]). In their work, Bayarri et al. enable tracing of the trajectory details over a web
browser by keeping the predefined structural annotations. Each visualization session has
a unique link, which can be shared and reworked. This is achieved using NGLview and

https://mmb.irbbarcelona.org/3dRS/
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MDSrv tools that are built upon the MDAnalysis package [105,106]. The use of this tool
holds great potential to provide a general understanding of the protein–protein interaction
dynamics explored by MD trajectories.

Table 1. List of the described MD analysis tools that can be used to dissect interface dynamics.

Tool Name Related Link (All Sites Were Accessed on 28 January 2022)

GROMACS https://manual.gromacs.org/documentation/2021/reference-manual/analysis.html
VMD https://www.ks.uiuc.edu/Research/vmd/

PYTRAJ/CPPTRAJ https://amber-md.github.io/pytraj/latest/index.html
MDTraj https://www.mdtraj.org/1.9.5/index.html

MDAnalysis https://www.mdanalysis.org
ProLIF https://github.com/chemosim-lab/ProLIF

interfacea https://github.com/JoaoRodrigues/interfacea/tree/master
gRINN grinn.readthedocs.io
ProDy http://prody.csb.pitt.edu/

MD-TASK https://md-task.readthedocs.io/

3. E Pur Si Muove! How Can We Relate Protein Function to Interfaces Dynamics?

The dynamics of interfaces reflect fundamental properties of the protein–protein as-
sembly such as the interaction specificity, the stability of the complex, or the kinetics of
association and dissociation [107,108]. Notably, these properties can be directly linked
to characteristics of the binding energy landscape, such as funneling, roughness or shal-
lowness, and the dimensionality of the essential movements [109]. Although the roles of
several key factors on association have been explored (e.g., [110–115]), a global view of
how the characteristics of the interface dynamics influence specificity, association strength,
or binding rates remains to be constructed [108]. Contrary to the generally accepted idea
that strong binding affinity requires precisely defined interactions across the interface, a
recent study associated a highly disordered interface and very strong binding affinity for
the histone H1 bound to its nuclear chaperone prothymosin-α [116]. This suggests that
extracting pertinent descriptors of the interface dynamics that would efficiently capture
biologically meaningful assembly properties [117] is not straightforward. Yet, this knowl-
edge is essential to understanding how association can be regulated via modifications of
the pH, salt concentration, or small ligand binding [118], and more generally, to efficiently
design PPI-targeting drugs. It is also important to evaluate the accuracy of protein complex
modeling efforts.

3.1. Interface Dynamics between Folded Partners

Addressing protein dynamics is a central problem in predicting protein–protein inter-
actions, as the formation of a protein assembly is likely to induce conformational changes
in the interacting partners. As a consequence, many docking algorithms will use confor-
mational ensembles of the interacting partners to produce dynamically relevant structural
models for the protein complex. Even so, these final complex models are still considered
rigid objects during their quality assessment and ranking, and the dynamic properties of
the generated interfaces are rarely investigated after docking, probably because of the high
computational cost associated with a follow-up simulation at the atomic scale.

https://manual.gromacs.org/documentation/2021/reference-manual/analysis.html
https://www.ks.uiuc.edu/Research/vmd/
https://amber-md.github.io/pytraj/latest/index.html
https://www.mdtraj.org/1.9.5/index.html
https://www.mdanalysis.org
https://github.com/chemosim-lab/ProLIF
https://github.com/JoaoRodrigues/interfacea/tree/master
grinn.readthedocs.io
http://prody.csb.pitt.edu/
https://md-task.readthedocs.io/
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precious information on their function: (a) A protein complex with fully folded partners, target 29
from the CAPRI score-set [119], tRNA m7G methylation complex from yeast (pdb code 2vdu) with the
catalytic unit Trm8 (in cyan) and its partner Trm82 (in magenta); (b) A protein complex comprising
disordered regions, p150 unit from the eukaryotic initiation factor 4F (in magenta) folds upon binding
the translational initiation factor A4 (in cyan), but its N-terminal tail remains disordered (pdb 1rf8);
(c) A protein complex with active interfaces, cryo-EM structure of a microtubule fragment with GDP
(in orange) bound at the interface between the tubulin α (in cyan) and β (in magenta) chains. (pdb
3j6f). All graphical representations were made with VMD [95].

3.1.1. Dynamics of the Isolated Partners

One key issue when attempting to model protein–protein interactions is the accurate
location of the binding patches on the partner surfaces. To reveal the binding sites through
the lens of protein dynamics, Kuttner and Engel used steered MD simulations to investigate
protein backbone dynamics [120]. They show that some surface residues will form stability
patches, i.e., residues presenting a reduced local mobility, and that their location overlaps
with the protein–protein interface. Once the binding sites have been located on the protein
surface, their dynamics can play a key role for biomolecular recognition. Fuchs et al. [31]
performed MD simulations to investigate the specific binding of thrombin with various
peptides, using the binding site dynamics to calculate the entropic contribution to binding
affinity and predict specificity. The isolated proteins’ intrinsic dynamical properties are
also tightly connected to their promiscuity, i.e., the ability to interact with different partners.
Fornili et al. [121] performed a large-scale study on 250 proteins extracted from the PDB.
They found a significant difference between the conformational flexibility of monopartner
and multipartner residues, the latter being, on average, more flexible.

In a “pre-docking” perspective, the protein dynamics can also be accounted for using
alternative conformations of the partners. The PRISM (Protein Interactions by Structural
Matching) tool [30,34,122] uses conformational ensembles for each partner to predict com-
plex structures and build protein–protein interaction networks. NMA has also proved to
be a useful tool for sampling the conformational variability of the interacting partners. In
the SwarmDock algorithm [123,124], the multiple backbone conformational states of the
protein partners are generated using low-frequency modes, resulting from NMA on an
elastic network model.

3.1.2. Interface Dynamics within the Protein Complex

When analyzing the dynamics of interfaces, a first source of information can be
obtained via docking simulations since these methods extensively sample possible binding
geometries. Even rigid-body sampling can provide a useful overview of the interface
properties. In its selection process, the ClusPro server explicitly includes the relative sizes of
the clusters of lowest-energy predicted structures, identified during Fast Fourier Transform



Molecules 2022, 27, 1841 8 of 19

sampling [125]. Inclusion of this entropy-related criterion is one of the strengths of the
method, which contributes to its success in the last Capri rounds [126]. Further, in a study
that used both rigid-body FFT sampling and the RosettaDock Monte Carlo minimization
algorithm, Kozakov and collaborators could characterize the energy landscape of encounter
complexes in the vicinity of more than 40 complexes. In this way, they showed that
association occurred along a small number of preferred pathways [109]. Readers wishing to
analyze docking-generated conformational ensembles can consult Table 2, which includes
the most commonly used protein–protein docking servers (refs. [125,127–136].

Table 2. List of automatic docking web servers.

Server Name Web Site (Accessed on 28 January 2022) Conformational Ensemble
Retrieval Reference

ClusPro https://cluspro.org/ 10 most populated low energy
clusters, irmsd > 9 Å [125]

PatchDock http://bioinfo3d.cs.tau.ac.il/PatchDock/
Up to 100 top ranking

candidates; clustering cutoff
adjustable

[127]

GRAMM-X http://vakser.compbio.ku.edu/resources/
gramm/grammx/

Up to 300 lowest energy
conformations [128]

RosettaDock http://rosettadock.graylab.jhu.edu 1000 decoys can be
downloaded [129]

MDockPP https:
//zougrouptoolkit.missouri.edu/MDockPP/

Up to 3000 generated
geometries; clustering cutoff

adjustable
[130]

HADDOCK https://wenmr.science.uu.nl/haddock2.4/ All generated geometries can
be downloaded [131]

pyDockWEB http://life.bsc.es/servlet/pydock Top 100 lowest energy
conformations [132]

ZDOCK https://zdock.umassmed.edu/
Top 10 lowest energy

conformations; possibility to
retrieve top 500

[133]

InterPred http://bioinfo.ifm.liu.se/inter/interpred/ No conformational search
(template-based) [134]

HDOCK http://hdock.phys.hust.edu.cn/ Top 100 lowest energy
clusters, lmrsd > 5 Å [135]

LZerD https://lzerd.kiharalab.org/ Up to 50,000 generated
geometries [136]

MD simulations performed after docking are mostly used for the refinement of the
interfaces. In this case, though, the algorithms use very short time scales to save time.
For example, the HADDOCK [58,137] procedure includes a final refinement step of MD
simulations in explicit solvent or in vacuum. However, in this case, the standard duration of
the heating, sampling, and cooling phases lasts less than 10 ps, providing insufficient time
to investigate the dynamic properties of a protein–protein interface. Even if the interacting
partners are considered to be rigid, i.e., when the conformational changes induced by the
binding process lead to a root mean square deviation (RMSD) that is below 1 Å, the protein
interface remains a dynamic object, and trajectories from short (50 ns) MD simulations can
be used to study the effect of the solvent on the complex surface. For example, Visscher
et al. used this approach to show how the hydration layer contributes to the complex
stability [32].

Recently, research groups began using all-atom MD simulations to investigate the
stability of structural models produced by docking to assess their quality. Radom et al. [138]
used short-timescale (below 100 ns) MD trajectories, starting from near-native models of
complexes produced by RosettaDock [85]. They showed an increased stability of the
correctly docked complex compared to incorrectly docked complexes, as the latter tend to
unbind upon increasing the temperature in the simulation box. Jandova et al. [139] used a

https://cluspro.org/
http://bioinfo3d.cs.tau.ac.il/PatchDock/
http://vakser.compbio.ku.edu/resources/gramm/grammx/
http://vakser.compbio.ku.edu/resources/gramm/grammx/
http://rosettadock.graylab.jhu.edu
https://zougrouptoolkit.missouri.edu/MDockPP/
https://zougrouptoolkit.missouri.edu/MDockPP/
https://wenmr.science.uu.nl/haddock2.4/
http://life.bsc.es/servlet/pydock
https://zdock.umassmed.edu/
http://bioinfo.ifm.liu.se/inter/interpred/
http://hdock.phys.hust.edu.cn/
https://lzerd.kiharalab.org/
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combination of MD simulation and machine learning tools to try and distinguish native
from non-native docking models. Again, native models show higher stability in almost all
measured properties, including the criteria traditionally used for scoring complex models
in CAPRI, namely the ligand and interface RMSDs, and the fraction of native contacts
from the reference experimental structure of the protein complex. Prévost and Sacquin-
Mora also questioned the relevance of the current CAPRI criteria, as they are based on a
single static reference structure [140]. In their work, they ran MD simulations both on the
experimental reference structure and various near-native models for three CAPRI targets
(see, for example, T29 in Figure 2a) and showed how using dynamic criteria (based on the
trajectory analysis and not on a single structure) can impact the models’ ranking, as they
display different stabilities over time.

MD simulation of protein complexes can also help identify the residues playing a
part in partner selection in the signaling pathways. To this end, Van Wijk et al. [35] inves-
tigated the dynamics of E2–E3 interactions, using both wild-type and mutant structures.
They showed how a dynamic salt-bridge network controls the interaction selectivity via
the modulation of side-chain conformations. As a more recent example, Nicoludis et al.
explored how protocadherins specifically find their partners to polymerize, an essential
step during neuronal development. For this, they investigated interface dynamics through
MD simulations and combined this information with evolutionary couplings [37]. Finally,
Karakulak et al. demonstrated that comparative modeling and simulation of three paralog
complexes, taking a central role in cellular signaling (the TAM receptor pathway), can
deliver the partner selecting residues of the receptors [141]. Like in the E2–E3 case, salt
bridges were shown guide the partner selection.

Interestingly, numerous studies on protein complexes that use MD simulation do not
focus on the interface dynamics per se, but on other properties. For example, MD can
be used to determine the binding free energy in the complex. Hou et al. [142] performed
CG-MD simulations with the MARTINI protein force-field on near-native models from the
CAPRI Score_set [119] to evaluate their binding free-energy. These free-energy values were
then used as a scoring method to rank the docked structures. The GroScore approach [143],
developed by Perthold and Oostenbrink, relies on MD simulations to produce short (5 ns)
unbinding trajectories that are used to compute binding free energies. These free energies
were then used for the scoring of docked protein poses extracted from the CAPRI Score_set
benchmark [119].

Finally, NMA has been coupled with several docking approaches to model the confor-
mational changes that occur within the partners upon binding. Schindler et al. developed
iATTRACT [144], where the interface residues will move following a NMA-generated
harmonic potential, in order to refine models produced by an initial rigid-body docking
step. In iNMA [145], Frezza and Lavery used the protein partners internal coordinates
(namely the torsion angles) to capture large conformational changes in the partners and
generate structures closer to the partner’s bound state when starting from their unbound
shape. One should also note that changes in the interface dynamics can impact distant
residues that are located away from the binding site. Eren et al. used a combination of ENM
and NMA on the KRas4B GTPase [146] to reveal how the protein dynamics depend on its
interaction partner. The dependency of the interface dynamics on the protein partners was
also observed by Paul et al. in their study, where they used all-atom MD simulations on
ubiquitin bound to two different proteins [147]. Although the two complexes share the
same binding site on the ubiquitin side, both the dynamics of the interface residues and the
global ubiquitin dynamics are impacted differently depending on the interaction partner.

3.2. Interfaces Dynamics within Disordered Partners

Intrinsically disordered proteins (IDPs) or regions (IDRs) can be found in nearly a third
of the human proteome [148], and IDPs form around 10% of the 10,000 structures that are
deposited annually in the PDB [149]. Disorder is an important feature of protein interactions,
as disorder-to-order transitions are estimated to be present in 42–75% of binding events [29].
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Over recent decades, the key role played by IDPs and IDRs in numerous cellular processes
has become increasingly clear [33,150,151]. This protein group is estimated to harbor
around 25% of disease associated missense mutations [152], thus making IDPs/IDRs
a central therapeutic target. As protein assemblies comprising IDPs or IDRs are very
likely to form fuzzy complexes, where one or both partners in the interaction will retain
some disorder [153,154], investigating the dynamics of such complexes appears to be
an unavoidable step for understanding their function [50,155]. IDPs can also undergo
folding-upon-binding transitions when assembling with another protein partner [156] (see
Figure 2b). In that case, the initial conformational disorder in the unbound partner has
been shown to have a complex impact on the binding kinetics, as it can either increase or
decrease the association/dissociation rates between the partners [157,158]. Again, keeping
a dynamic view of the protein interface is essential to properly describe and understand
these assemblies.

3.3. Active Interfaces within Molecular Machines

So far, we have addressed the dynamic properties of unique, well-defined interfaces.
We have discussed how the dynamics of these interfaces and the conformational space
they sample at room temperature can be characterized. We now turn to the cases where
interface dynamics lead to transitions to alternative assembly formation. Indeed, many pro-
teins present ubiquitous binding modes [18], and these proteins can modify their binding
geometries in response to perturbations that include changes in the chemical environment
(salt concentration, pH, . . . ), mechanical forces, or chemical reactions. Interface switching
can have a functional role, notably, in macromolecular motors. It can constitute an essential
cog of the transformation process from chemical energy to mechanical energy.

Macromolecular motors are protein complexes with mechano-chemical properties;
they can, for example, act as helicase, translocase, recombinase, nuclease, or protease to
process other macromolecules, either DNA or proteins [159]. These systems transform
chemical energy, often the energy released by the hydrolysis of NTP cofactors, into trans-
lational or rotational movements. To this aim, they undergo cooperative conformational
changes, which involve interface reorganizations. In other words, the binding equilib-
rium between motor components is displaced by a chemical reaction towards interface
modification or even towards dissociation.

Within this context, we discuss here the case of oligomeric molecular motors. These
complexes present several instances of the same monomer–monomer interface. As a conse-
quence, even small changes in the interface can have a huge impact on the overall shape
of the oligomer [160]. In the absence of external perturbation, oligomeric assemblies do
not substantially modify their global shape in spite of the binding interfaces constantly
exploring the available conformational space as a result of thermal motions. Molecular
dynamics simulations on the nucleoprotein filament of RecA recombinases have shown
that during this exploration, interfaces typically conserve 70% to 80% on average of their
residue contacts [161]. However, small deformations in individual interfaces can produce
substantial modifications of the overall assembly. Microtubules provide another good
example of this interface variation amplification effect. They are tubular-shaped assemblies
of α,β-tubulin dimers that constitute an important part of the cytoskeleton. Microtubules
hydrolyze GTP cofactors bound at the longitudinal interface between consecutive dimers
(Figure 2c), which only marginally modifies the geometry of these interfaces [162]. Small
reorganization of the interface residues results in a slight compaction of the dimer interface
that displaces the binding equilibrium in a way that favors a slight curvature. When ampli-
fied by its repetition over a whole protomer (longitudinal assembly of α,β-tubulin dimers),
this slight curvature destabilizes the protomer assemblies and finally results in a catas-
trophic disassembly of the microtubule. Cycles of assembly/disassembly of microtubules
generate a force that is used in mitosis to displace the duplicated chromosomes.

In cyclic ring motors, where a limited number of monomers are assembled, con-
sequences of interface changes are less spectacular. Nonetheless, they are of particular
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interest, as ring closure requirements necessitate that interface changes are non-uniformly
distributed along the ring. The simultaneous presence of different binding geometries that
break the ring motor symmetry has first been detected by electron microscopy [163]. In
such complexes, the interfaces can be modified in a coordinated manner, which is coupled
with the progression of the hydrolysis cycle along the ring: at a given time, the particular
state of each interface is defined by the state of the ATP hydrolysis process. State progres-
sion along the ring has been characterized by single-molecule experiments in a series of
systems (see [164] and references herein), revealing different ways of coupling between
the hydrolysis states, which correspond to different kinetic regimes of the motor activity.
These observations needed an interpretation in terms of interface dynamics, which has been
offered by a molecular dynamics study of Ma and collaborators [165]. They simulated the
transition between different states of ATP hydrolysis within the ring-shaped ATPase motor
Rho, which translocates an RNA strand across membranes. This work notably showed
how the changing network of interactions, within protein interfaces and between proteins
and the processed RNA strand, coordinates the strand translocation, the positioning of
residues involved in ATP hydrolysis, and the accessibility of ADP for its replacement by
ATP. The study enabled characterizing the free energy of transition between the different
substates involved in the motor mechanism.

In the absence of a strong coupling such as the one found in Rho, ATP hydrolysis may
induce breaks in the ring. Indeed, such breaks have been observed that resulted in the
transformation from the ring assembly into a spiral assembly. Examples of oligomers that
can assemble either as rings or spirals have been highlighted in cases such as the DnaB
hexamer, which acts during replication [163]. Both forms may be involved in the oligomer
function. Another impressive visualization of the dynamic transition between ring-shaped
and spiral assemblies of ClpB, a protein hexamer disaggregation machine, was captured via
high speed atomic microscopy [166]. It was observed that the frequency of such transition
events is directly linked to the concentration of ATP in the sample.

Finally, reported changes in binding geometry in response to perturbations in oligomeric
systems show a large range of variations. We have seen that in microtubules, the change
expands on minor rearrangements [162]. In cyclic systems such as the Rho hexamer [165],
the interface where ATP hydrolysis takes place loses up to 60% of the residue-residue
contact interactions with respect to its neighboring interfaces, but the remaining interfaces
conserve at least 70% and up to 90% of the contact interactions (analysis performed with
the PTools/Heligeom tool [160], not shown). In the open, spiral filament of RecA proteins
active in homologous recombination, the totality of interface residue–residue contacts
between rigid regions are lost when ATP is hydrolyzed [160] (Figure 3). In this instance,
the transition from one interface to the other involves a 20 Å relative displacement of
the two monomers that obviously will require more than thermal motion assisted by the
local interface rearrangement due to the Pi dissociation. Concerted movements, probably
coordinated by the DNA strands bound to the filament interior, are expected to play a key
role in this intriguingly large interface rearrangement.
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represented in the presence of ATP (left) or ADP (right). In both views, the top monomer is in surface
mode, colored white, and the bottom monomer is in cartoon mode, colored dark grey. The ATP and
ADP molecules are represented in licorice, respectively, in magenta and cyan. The bottom monomers
are represented in the same orientation. (b) Projection of the ATP (left, interface in magenta) and ADP
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that are present in the other interface are in light yellow. Although the two interfaces overlap, amino
acids that are present in both interfaces interact with different amino acids in the opposite partner.

4. Conclusions and Perspectives

The dynasome, i.e., the ensemble of mobility patterns that can be presented by
a protein, has been considered a central element in our understanding of proteins for
over a decade, as it was often described as the missing link between structure and func-
tion [167]. This led to the creation of the MoDel (for Molecular Dynamics Extended Library,
http://mmb.irbbarcelona.org/MoDEL/, accessed on 30 November 2021) dataset, which
comprises over 1700 trajectories, from atomistic MD simulations of soluble monomeric
proteins [168]. Numerous additional databases storing data from biomolecular simu-
lations now exist. They deal with specific protein families such as GPCR (GPCRmd,
https://submission.gpcrmd.org/home/, accessed on 30 November 2021) [169], or specific
systems, such as the BioExcel-CV19 platform (https://bioexcel-cv19.bsc.es/#/, accessed
on 30 November 2021), which provides web access to atomistic-MD trajectories for macro-
molecules involved in the COVID-19 disease. However, we are still missing similar initia-
tives for protein–protein assemblies. This is of importance, as such initiatives play a key
role for the development of artificial intelligence and machine learning (AI/ML)-based
approaches, since they rely on the availability of large datasets. The year 2021 has shown
very promising work using AI/ML strategies for the prediction of protein assemblies [170],
notably when investigating SARS-CoV-2-related proteins [171,172], thus highlighting the
need for similar large repositories dedicated to protein interfaces.

As high-performance computing facilities now render long simulations increasingly
accessible worldwide, it is high time for us to address the fourth dimension of macromolec-
ular assemblies, namely time, and start investigating their dynamic properties in a more
systematic fashion, if we want to decipher the protein social network in the cell.
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