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A B S T R A C T

A small group of mucosal Human Papillomaviruses are the causative agents of cervical cancer and are also
associated with other types of cancers. Certain cutaneous Human Papillomaviruses seem to have a role as co-
factors in the UV-induced carcinogenesis of the skin. The main mechanism of the tumorigenesis induced by
Human Papillomaviruses is linked to the transforming activity of the viral E6 and E7 oncoproteins. However,
other mechanisms, such as the gene expression control by specific microRNAs expression and deregulation of
immune inflammatory mediators, may be important in the process of transformation. In this context, the release
of Extracellular Vesicles with a specific cargo (microRNAs involved in tumorigenesis, mRNAs of viral onco-
proteins, cytokines, chemokines) appears to play a key role.

1. Introduction

The large group of Human Papillomaviruses (HPVs), that includes
more than 220 genotypes, are double-stranded DNA viruses that infect
mucosal and cutaneous epithelia. They are classified in five genera (α,
β, γ, μ and ν) into the Papillomaviridae Family, including viruses in-
fecting all vertebrates. The HPV genomes are about 8 kb in length,
organised in 3 functional regions: a Long Control Region (LCR), also
known as upstream regulatory region (URR), the Early and the Late
regions. LCR contains cis elements for transcription and replication of
the viruses; the early region encodes E6, E7, E1, E2, E4 and E5 reg-
ulatory proteins while the late region encodes the structural L1 and L2
proteins able to assemble in ecosaedric structures. Coding region re-
sides in a unique DNA strand. E5 protein is lacking in β and γ genera
while in γ-HPV101, 103, and 108 is lacking also E6. Several HPVs en-
codes an alternatively spliced protein known as E8 ^ E2. This is a DNA-
binding protein that competes with E2 acting as a transcriptional re-
pressor, and represses E1/E2-dependent replication of the viral origin
[1,2].

At least 12 HPVs of 4 species in the α genus, α9-HPV16, 31, 33, 35,
52, and 58, α7-HPV18, 39, 45, and 59, α5-HPV51 and α6-HPV56 are
associated with neoplasia in the anogenital and upper respiratory

human tracts and are defined high-risk (HR) genotypes by epidemio-
logical studies. In anogenital and oropharyngeal cancers the HR-HPV
genomes are integrated in the host chromosome, fact considered high
priority in the induction of carcinogenesis. The most oncogenic α-type
is HPV16, the causative agent of more than 60 % of all cervical cancers,
and also the prevalent type in other anogenital and head and neck
cancers. The E6 and E7 oncoproteins of the high risk genotypes are
tumor-specific and tumor rejection antigens, expressed in tumors and
precursor lesions, ideal targets for immunotherapy [3]. E6 and E7
contribute to viral immunoevasion and act in concert to promote tumor
development through the interaction with multiple cellular proteins. E6
binds to the p53 tumor suppressor through the ubiquitin ligase E6-AP
and to pro-apoptotic Bcl2 members proteins, and inhibits pro-caspase-8
activation to prevent cell apoptosis. E7 mainly affects factors involved
in cell proliferation and cell cycle regulation, such as pRb, cyclins and
cyclin-dependent kinase inhibitors. The maintenance of the malignant
phenotype, the genomic instability and the transformation of primary
human keratinocytes are mainly due to the continuous expression of E6
and E7 proteins of HR-HPVs.

The beta HPVs are subdivided into five species (beta1-5), have cu-
taneous tropism and together with HPVs of the γ genus, are abundantly
present on the skin of healthy individuals as part of the normal skin

https://doi.org/10.1016/j.cytogfr.2019.12.009
Received 18 November 2019; Received in revised form 18 December 2019; Accepted 30 December 2019

⁎ Corresponding author at: Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, C.so della Repubblica 79, 04100, Latina,
Italy.

E-mail address: giovanna.romeo@uniroma1.it (G. Romeo).

Cytokine and Growth Factor Reviews 51 (2020) 92–98

Available online 18 January 2020
1359-6101/ © 2020 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/13596101
https://www.elsevier.com/locate/cytogfr
https://doi.org/10.1016/j.cytogfr.2019.12.009
https://doi.org/10.1016/j.cytogfr.2019.12.009
mailto:giovanna.romeo@uniroma1.it
https://doi.org/10.1016/j.cytogfr.2019.12.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cytogfr.2019.12.009&domain=pdf


microbiota [4]. The fact that impairment of the immune system, as in
organ transplant recipients (OTRs), is highly associated with the risk of
Squamous Cell Carcinoma (SCC) development, strongly supports the
involvement of these viruses in skin cancer. The first β-HPVs, HPV5 and
8, were isolated from patients suffering from the genetic disorder epi-
dermodysplasia verruciformis (EV) [5]. These individuals have a high
susceptibility to β-HPV infection as well as to the SCC development in
solar-exposed skin regions. A recent meta-analysis showed that five β-
HPV types, i.e., HPV5, 8, 17, 20, and 38, are significantly associated
with risk of SCC [5]. β-HPV types may represent a novel group of on-
cogenic HPVs in addition to α-HPVs. However, α and β-HPVs act with a
different mechanism in promoting carcinogenesis. While the former
group is required throughout the entire carcinogenic process, the latter
appears to play a role only at an early stage of skin carcinogenesis, by
facilitating the accumulation of DNA damage induced by UV radiation.
E6 and E7 oncoproteins from some β-HPV types, e.g., 5, 8, 23, 38 and
49, display transforming activities, being able to deregulate key path-
ways involved in cell proliferation. Experiments in animal models have
further corroborated the in vitro data and provided clear evidence for
the cooperation of the viral proteins with UV radiation in promoting
SCC. Importantly, the in vivo models consisting in transgenic mice
harbouring E6 and E7 of beta-types confirmed the hypothesis of the
“hit-and-run” mechanism of HPV in the UV-mediated skin carcinogen-
esis [6–10]. The beta1 types, HPV5 and HPV8, are classified as ‘possibly
carcinogenic’ in the IARC classification (International Agency for Re-
search on Cancer) of carcinogenetic substances. Recent studies point to
a cross-talk of beta-HPVs with the cell-autonomous immunity of the
host keratinocytes and the local immune microenvironment that de-
termines the fate of cutaneous HPV infection and the penetrance of
disease [9].

It has been reported that HPV+ cells release Extracellular Vesicles
(EV) thus modifying the microenvironment, affecting tumor develop-
ment and chemoresistance [11–14].

EVs are generically defined as vesicles released by virtually all cell
type into interstitial spaces as well as in every body fluids from blood to
urine and saliva (for review see [15,16]). They include exosomes
(Exos), microvesicles (MVs), and apoptotic bodies (ABs) and have re-
cently attracted great attention in cancer research. Their lipid bilayer
membrane envelops all type of biologic macromolecules ranging from
miRNAs, mRNAs, proteins, free metabolites. Of course, membrane li-
pids themselves could be also considered as part of EVs cargo able to be
transferred to recipient cells [17]. EVs are important players in inter-
cellular communication during normal homeostatic regulations, then it
was not surprising to reveal the ability of cancer cells to hijack this way
of signaling to induce the transformation of non-malignant cells as well
as to subvert the tumor microenvironment (TME), making normal cells
able to improve tumor growth [18,19]. In addition, it has been reported
that cancer patients display an increased number of circulating EVs
compared to healthy subject, suggesting that EVs not only are part of
the TME subverting program, but also have a role in metastasis through
the generation of the so called pre-metastatic niches. The idea of pre-
metastatic niches directly descends from the “seed and soil” theory
formulated by Steven Paget and provides a possible explanation of why
certain tumors are able to metastasize only specific tissues. According
to this hypothesis, the ensemble of factors secreted by tumor primes the
secondary site to receive metastatic cells and EVs are important med-
iators of pre-metastatic niches generation, acting via several mechan-
isms [20]. Indeed, due to the expression of a specific pattern of integrin,
different populations of EVs could be addressed to different tissue
thereby priming them to metastasis implant [21]. Further, the idea of a
unidirectional flow of “information” from tumor to neighboring and
distant normal cells has been recently challenged and several lines of
evidence suggest that EVs secreted by neighboring normal cells are also
able to influence tumor growth. This is, for example, the case of Cancer
Associated Fibroblast (CAFs)-derived EVs that enhance the growth of
PC3 prostate cancer cell line by increasing glucose metabolism and

downregulating their mitochondrial function [22].

2. Mucosal HPVs and extracellular vesicles

Whereas several reports addressed the question of how HR-HPVs are
able to interfere with the cyto-chemokine network to subvert micro-
environment, thereby escaping innate and acquired immune responses
(for reviews on this aspect see [23]), only few studies addressed the
question of how HPVs oncogenes expression alter the EVs cargo.
Seminal observation aimed to characterize specific modification of EVs
was addressed for the first time in 2013 by Honegger et al. [11], even if
some clues of the presence of EVs in supernatant collected from HPV+

cell lines could be found already in 2009 and later on in 2011 [24,25].
Honegger et al. reported that EVs isolated from HPV18+ HeLa cells
overexpressed Survivin, an antiapoptotic protein associated to tumor
progression and chemoresistance [26]. Survivin was reported to be
regulated in cells by E6 through p53 downmodulation [27] and it was
specifically directed to vesicular pathway, whereas other members of
IAP family to whom Survivin belongs (i.e. XIAP, Livins, and c-IAP1)
were not targeted to EVs. This effect is also dependent on E6/E7 ex-
pression as oncogenes ablation by siRNA decrease Survivin loading into
EVs. Another striking feature reported in this study, was the lacking of
both E6 and E7 into EVs that the authors recognized as mainly con-
sisting of exosomes, due to the expression of exosomal markers as
Hsp70, CD9, CD63, Tsg101, β-actin and annexin-1. They also reported
that the silencing of E6 and E7 reduced the amount of EVs release even
if this effect was measured only by indirect methods (i.e. Acetyl-Cho-
linesterase activity in the supernatants of HeLa cultures and total pro-
tein measurement) [11].

The same group reported two years later a deep miRNAs analysis
from both HeLa cells and EVs isolated thereof [12]. They observed that,
compared to parental cells, the exosome enriched fraction is also en-
riched in small RNAs in the range of 20–40 nucleotides, compatible in
length with miRNAs. Using small RNA deep sequencing analysis, they
identified 47 miRNAs abundantly expressed in EVs from both control or
E6/E7-silenced HeLa cells. Between these, 21 were upregulated and 4
were downmodulated more than 1.5 fold after E6/E7 silencing.

It has been also demonstrated that, at least in the case of HeLa cells,
exosomes thereof derived not only carried specific proteins as Survivin
and miRNAs but they are also able to convey long non-coding RNAs (i.e.
lncRNAs) as lincRNA-p21, CCNDA1-ncRNA, HOTAIR, TUG1 and GAS5
[28]. Also in that case, authors performed exosomes isolation by se-
quential centrifugation and they checked the expression of CD63 exo-
some-specific marker. Between the lncRNAs tested, lincRNA-p21 is an
interesting regulatory RNA as it represses p53-dependent responses
[29], thereby implying a possible role of lincRNA-p21 in the gene ex-
pression of EVs acceptor cells.

To date only two studies described EVs and their cargo from HPV+

genital clinical specimen [30,31]. Liu et al., reported that in cervi-
covaginal lavages derived from healthy (HPV−) subject as well as from
HPV+ and cervical cancer patients, the levels of both miR-21 and miR-
146a were directly correlated with the progression to cancer, being
minimal in healthy subject and maximal in squamous cell carcinoma
patients. Also in this case, the procedure used to isolate EVs allowed the
enrichment of the exosomal fraction as indicated from the expression of
CD9 and CD63 markers [30]. These authors also demonstrated the
dependence of EVs release from intracellular calcium rise as the treat-
ment of HeLa cells with the calcium ionophore A23187 increased the
number of secreted EVs and, by consequence, the amount of miR-21
and miR-146a detected in the exosomal but not in the cellular fraction.
Another striking feature reported, was the ability of miR-21 to inhibit a
miR-21-sensitive reporter gene in recipient cells incubated with EVs
derived from HeLa cells, thereby demonstrating that EVs-associated
miR-21 is functional in acceptor cells. Two years later, another Chinese
group demonstrated by q-RT-PCR, again from cervicovaginal lavages
specimens, the presence of HOTAIR, MALAT1, and MEG3 lncRNAs and
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that the expression of these lncRNAs were significantly different in
HPV+ patients compared to healthy individuals, being even higher in
cervical cancer patients [31].

We and others have characterized the EVs production in HPV16 E6
and E7 retrovirally transduced primary human keratinocytes [13,32].
Using nanoparticle track analysis on preparations of chemically pre-
cipitated exosomes/EVs Harden et al., reported three main classes of
EVs of 67, 89 and 121 nm diameter. These EVs were screened for the
expression of a panel of 68 cancer-associated miRNAs and their ex-
pression was compared to that recorded in producing cells. These au-
thors found 16 miRNAs similarly regulated in both E6/E7 transduced
keratinocytes and EVs. Most of them were upregulated whereas only
few were downregulated. Further, seven miRNAs were differentially
expressed in EVs versus producing cells. A metanalysis of these de-
regulated miRNAs revealed that they are involved in the regulation of
several pathways related to cellular transformation as cell growth,
proliferation and cell death and survival [32]. On the other hand, our
group reported that EVs isolated from HPV-16 E6/E7 expressing kera-
tinocytes as well as from HPV16+ squamous cell carcinoma SiHa cell
line contain both E6 and E7 mRNAs and are able to reduce the ex-
pression of p53 in acceptor keratinocytes [13]. Recently, we also pro-
vided evidence that EVs isolated from keratinocytes expressing E6/E7

from HPV16 have a peculiar pattern of inflammatory cyto-chemokine
mRNAs (Fig. 1), which somehow differs from those in parental cells
[14]. Our results on cyto-chemokines mRNAs are reminiscent of those
obtained by Rana and co-workers that reported the ability of Poly(I:C)
to increase the amount of EVs-associated IL-36γ in HPV− keratinocytes
[33]. As HPV is able to inhibit Poly(I:C)-dependent induction of pro-
inflammatory genes [34], it is plausible to hypothesize that, as we re-
ported for many pro-inflammatory genes, also IL-36γ is down-modu-
lated by HPV.

Even if most of the studies on cancer-associated EVs are mainly
focused on the proprieties of exosomes and microvesicles, at least in the
case of HR-HPV, it has been reported that also apoptotic bodies (ABs)
are able to transfer their tumor-associated cargo to acceptor cells.
Indeed, ABs collected from HPV-16 and HPV-18 positive cell lines
transfer HPV DNA to human primary fibroblast and induce anchorage-
independent growth ability, an hallmark of transformation [35], in the
latter cells. Collectively, these results suggest the ability of these large
EVs to transform recipient cell [36]. The same group also reported that
late ABs are taken up by fibroblasts more efficiently than early ABs,
nevertheless the phagocytic activity of these cells remain low compared
to those exerted by professional phagocytic cells [37].

Besides the development of anogenital squamous cell carcinoma,

Fig. 1. Biogenesis, secretion and cargo
content of Extracellular Vesicles from HPV
positive cells. EVs generated by outward
budding and shedding from the plasma mem-
brane (microvesicles or shed-microvesicles) or
formed within multivesicular bodies (MVBs) as
intraluminal vesicles (ILVs) released upon fu-
sion of MVBs with the plasma membrane
(exosomes), contain a specific set of bioactive
molecules depending on both their biogenesis
and HPV genotype (mucosal, upper panel or
cutaneous, lower panel). In the boxes are re-
ported specific microRNAs and mRNAs of viral
oncoproteins as well as of inflammatory cyto-
kines and chemokines delivered by EVs from
mucosal HPV16 or cutaneous HPV38 E6 and
E7 transduced cells. Arrows indicate the up- or
down-regulation of mRNA expression with re-
spect to EVs from control keratinocytes.
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HR-HPVs genotypes were also associated to a different degree to or-
opharyngeal cancer, especially in the tonsillar region and at the base of
tongue [38,39]. Despite a stable incidence rate of total oropharyngeal
squamous cell carcinomas, HPV− tumors decrease whereas HPV+ in-
crease rapidly becoming a real health emergency [40]. Even if HPV
infection was associated with a percentage of total oropharyngeal
cancer estimated between 10 and 50 % [41], it often has a poor clinical
outcome due to a high rate of recurrence in the same anatomical district
or in unusual sites. In addition, the recurrence of HPV+ oropharyngeal
cancer manifests later than in HPV− patients [38,42–44]. Using whole
genome sequencing analysis of HPV+ oropharyngeal cancer specimen,
it has been identified a panel of mutated genes involved in malignant
progression including several members of Mucin family, HLA-A, -B and
DRB1 as well as the surface marker CD172a/SIRPA [45]. These muta-
tions are responsible for the overexpression of MUC16 and SIRPA in
HPV+ oropharyngeal cancer as well as in circulating exosomes isolated
from blood of patients. EVs derived from HPV+ oropharyngeal cancer
specimen possess the ability to induce both epithelial to mesenchymal
transition (EMT) and increase the migration and invasion of a HPV−

mammary epithelial cell line and, contrary to EVs derived from ano-
genital squamous cell carcinoma, they express HPV16 E7 [45].

In another study, EVs isolated from both HPV+ and HPV− or-
opharyngeal squamous cell carcinoma (OPSCC) cell lines were com-
pared [46]. Using Tunable Resitive Pulse Sensing measurements, these
authors reported that HPV− OPSCC cells produced more EVs than
HPV+ cells. In addition, at least one of the HPV− OPSCC cell line re-
leased EVs with a larger diameter compared to HPV+ cells. Also in this
case, small RNA sequencing was performed to identify miRNAs speci-
fically associated with EVs from both HPV+ and HPV− OPSCC cells.
This analysis revealed that 14 miRNAs were enriched in EVs from
HPV+ cells as miR-9, -20b, and let-7b. On the other hand, 19 miRNAs
were overrepresented in EVs from HPV− cells, between these miR-29.
Nine miRNAs including miR-20a, -23, -26 and -27 were highly ex-
pressed in all EV independently of HPV status. A metanalysis of the
predicted, cancer-associated, cellular pathways targeted by these
miRNAs indicated that some overlap exists between HPV+ and HPV−

EVs-associated miRNAs targets. In particular, PI3K‐Akt, FoxO, HIF‐1,
mTOR and p53 signalling pathways are affected by both, even if HPV+

EVs-associated miRNAs seemed to influence a greater number of cel-
lular target involved in these pathways.

3. Cutaneous HPVs and extracellular vesicles

More than 50 β-HPVs have been classified so far, albeit other β-
types exist, since partial genome sequences of novel putative β-HPV
types have been shown [47]. There are five different species of beta
HPV types: β1, β2, β3, β4, and β5. Beta1 and β2 HPVs are the most
common types in the skin, while the other species include very few HPV
types detected also in sites different from skin: β3 (n = 4, HPV49, 75,
76 and 115), β4 (n = 1, HPV92), and β5 (n = 2, HPV96 and 150) [48].
Beta HPV DNA is frequently present in the skin of immunocompetent
individuals, with prevalence estimates ranging from 39 % to 91 %
(18–20). The presence of DNA of β-HPVs in the skin of infants and
young children indicates that this infection is acquired early in life,
probably through direct contact with the skin of the parents [49].
Serological studies measuring antibodies against type-specific L1 pro-
tein of β-HPV provide evidence that the exposure to cutaneous HPVs is
common [50].

Beta HPVs have intrinsic properties to promote inflammatory re-
sponses in epidermodysplasia verruciformis patients [51], suggesting
that this can lead to chronic inflammation and favor tumor progression.
The cross-talk between β-HPVs and the immune system is exerted at
various stages of infection. The interactions of β-HPV proteins with
immune signaling pathways in the host cell enable the virus to persist
by the evasion of the immune control.

In in vitro studies, toll-like receptor 9 expression is induced by UV-

mediated signals and other stresses, but β-HPV38 E6 and E7 proteins
have the ability to repress toll-like receptor 9 expression, like mucosal
HR-HPV [52–54].

Beta-HPVs, when sufficiently expressed, can promote the initial
steps of skin carcinogenesis promoted by UV. They carry out this pro-
cess by expanding the UV-sensitive stem/progenitor cell compartment,
prolonging local UV-induced immunosuppression by preventing the
repopulation of the epidermis with Langerhans cells, promoting the
lifespan of their host cells through prevention of UV-induced apoptosis.
Once critical genetic alterations are established, such as mutations in
the tumor suppressor p53, β-HPVs may become dispensable for the
maintenance of the malignant phenotype. However, disease penetrance
is controlled by host restriction factors and extrinsic immunity. Once
these ‘brakes’ are released, viral expression and replication can occur,
with all their deleterious consequences in the general population.

In the recent years, the role of extracellular vesicles (EVs) has been
studied in carcinogenesis and it has been shown that their production
and release is deregulated in cancer [55–57]. The possible eff ;ects on
the intercellular communication of HPV+ cancer cells is not yet well
known. The release of EVs from cancer cells can impair the micro-
environment, aff ;ecting tumor development and chemoresistance
[58,59]. Moreover, rising evidence suggests that cancer cells use EVs
transmitted nucleic acids and proteins to evade an immune response
[60].

The role of HPV E6 and E7 proteins of HPV38 in the modulation of
the inflammatory microenvironment has been investigated in our stu-
dies. The expression of the HPV proteins in human keratinocytes leads
to the down-modulation of a series of inflammatory cyto- and chemo-
kines and affects the inflammatory immune mediators delivery through
the EVs. Indeed, we have shown the increase of the expression of CCL2
and TNFα in EVs derived from HPV38+ keratinocytes, whereas CXCL3
and CCL27 expression was downregulated (Fig. 1). It is conceivable that
the modulation of the EV cargo by HPV E6 and E7 could have a role in
the alteration of the microenvironment as well as in the regulation of
cellular functions in non-infected recipient cells and/or immune sur-
rounding cells, through the transfer of EV content [14].

We have shown that cutaneous HPV38 E6 and E7 expression is able
to modulate microRNAs carried by EVs (Fig. 1), in particular micro-
RNAs involved in tumorigenesis [13]. It has been reported that E6 and
E7 oncoproteins from high-risk HPV18+ squamous carcinoma HeLa
cells are able to modulate the number and the contents of exosomes.
Moreover, the microRNA cargo of exosomes released by HeLa cells is
dependent on the expression of E6 and E7 oncoproteins [11,12]. In-
terestingly, Epstein-Barr Virus encoded miRNAs are delivered via exo-
somes and affect known targets in recipient cells. Hepatocellular car-
cinoma cells secrete exosomes with increased content of specific
miRNAs that can epigenetically modulate gene expression and induce
cellular transformation [61].

It is likely that the delivery of microRNAs by HPV-infected cells to
the non-infected recipient cells is able to induce tumorigenesis through
the effect of these microRNAs on their targets.

In addition, we have shown that EVs produced by HPV+ keratino-
cytes have the capability to deliver viral oncogenes [13]. Therefore,
HPV E6 and E7 proteins can affect the extracellular milieu and po-
tentiate the virus-induced tumorigenesis through EV delivery.

4. Conclusions and future studies perspectives

As opportunistic parasites, viruses possess the intrinsic ability to
hijack intracellular signalling pathways and cellular microenvironment,
taking advantage to complete their own replicative cycle. In the case of
tumorigenic viruses, as HPVs, this attitude is exploited to promote both
cancer growth and tumor dissemination through a deeply reprogram-
ming of cell released cyto-/chemokines and EVs. As soluble factors and
EVs represent the two sides of the same coin, nowadays it has become
common the use of the term “secretoma” to indicate the whole set of
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entities released by a cell. The reported evidence underlines how HPVs
hijack the cyto-/chemokine network as well as the EVs route of inter-
cellular transmission, thereby altering the cell secretoma. Nevertheless,
we are just at the beginning of an era in which EVs can be used for
prognostic and diagnostic purposes and some fundamental questions
are opening.

Most of the studies have been performed on HR-HPVs belonging to
α genus, but it has been recently reported that members of the β genus
(i.e. HPV49) have functional similarities with HPV16 at least in trans-
genic mice [62]. Are these β-HPVs able to modify the infected cells
secretoma in the same way? Do quantitative and/or qualitative differ-
ences exist between EVs released from cells expressing mucosal versus
cutaneous HPVs in term of cargo content? Do the EVs released by dif-
ferent type of cancer-associated HPVs have same migratory properties
and, then, the ability to form similar pre-metastatic niches or difference
exists? As in the case of other oncoviruses, especially those having a
DNA genome, some reports indicate the putative presence of different
genotypes of viral miRNAs in the HPV genome [63]. Four out of five
HPV (i.e. two from HPV16, one from HPV38 and one from HPV68)
miRNAs were validated and their expression was verified in established
cell lines as well as in clinical specimens even if at low expression level
[64]. Interestingly enough, the analysis of putative targets of two
HPV16-codified miRNAs revealed that many target genes involved in
cell cycle, immune responses and cell migration are commonly regu-
lated by both miRNAs that have also two target sites in the viral genome
(i.e., LCR region and L1 gene respectively) [63]. Even if the low cellular
expression of these viral-derived miRNAs makes them not attractable as
diagnostic biomarkers, are they uploaded and enriched into EVs? Could
the spreading of these viral miRNAs play a role in the onset of metas-
tasis or in the recurrence of disease? Could EVs and their content be
exploited as prognostic/diagnostic markers to define HPV-associated
cancer progression or transition between low grade, non-pathogenic
lesions, to pre-cancerous and cancerous ones?

All these unanswered questions deserve more studies to improve our
knowledge on HPVs biology.
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