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Abstract

Introduction

Previous studies described impaired microvascular perfusion and tissue oxygenation as reli-

able predictors of Multiple Organ Failure in major trauma. However, this relationship has

been incompletely investigated. The objective of this analysis is to further evaluate the asso-

ciation between organ dysfunction and microcirculation after trauma.

Materials and methods

This is a retrospective subgroup analysis on 28 trauma patients enrolled for the Microcircu-

lation DAIly MONitoring in critically ill patients study (NCT 02649088). Patients were divided

in two groups according with their Sequential Organ Failure Assessment (SOFA) score at

day 4. At admission and every 24 hours, the sublingual microcirculation was evaluated with

Sidestream Darkfield Imaging (SDF) and peripheral tissue perfusion was assessed with

Near Infrared Spectroscopy (NIRS) and Vascular Occlusion Test (VOT). Simultaneously,

hemodynamic, clinical/laboratory parameters and main organ supports were collected.

Results

Median SOFA score at Day 4 was 6.5. Accordingly, patients were divided in two groups: D4-

SOFA�6.5 and D4-SOFA >6.5. The Length of Stay in Intensive Care was significantly

higher in patients with D4-SOFA>6.5 compared to D4-SOFA�6.5 (p = 0.013). Total Vessel

Density of small vessels was significantly lower in patients with high D4-SOFA score at Day

1 (p = 0.002) and Day 2 (p = 0.006) after admission; the Perfused Vessel Density was lower

in patients with high D4-SOFA score at Day 1 (p = 0.007) and Day 2 (p = 0.033). At Day 1,

NIRS monitoring with VOT showed significantly faster tissue oxygen saturation downslope

(p = 0.018) and slower upslope (p = 0.04) in patients with high D4-SOFA.
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Discussion

In our cohort of major traumas, sublingual microcirculation and peripheral microvascular

reactivity were significantly more impaired early after trauma in those patients who devel-

oped more severe organ dysfunctions. Our data would support the hypothesis that restora-

tion of macrocirculation can be dissociated from restoration of peripheral and tissue

perfusion, and that microvascular alterations can be associated with organ failure.

Introduction

In the last decades, advancements in prehospital and emergency hospital care led to a reduc-

tion in early mortality after multiple trauma. However, the occurrence of multi-organ failure

(MOF) remains a major problem in severely injured patients and is responsible for delayed

mortality, morbidity and prolonged stay in intensive care units [1,2].

Tissue damage and blood loss following trauma induce a systemic inflammatory response

(SIRS) [3–5], with activation of complex haemostatic, inflammatory, endocrine and neurologi-

cal processes that aggravate the initial damage caused (mainly) by hypoperfusion and reperfu-

sion [6]. Cytokines and pro-inflammatory mediators are responsible for endothelial and

glycocalyx dysfunction, increased capillary leakage, leukocyte activation and tissue oedema,

which may lead to microcirculatory alterations similar to those observed during sepsis [2, 7–

9]. An impairment in microvascular perfusion and tissue oxygenation has been described after

traumatic haemorrhagic shock and was associated with higher risk of MOF and death [10–15].

Nonetheless, only a few studies investigated the pathophysiological and prognostic significance

of microcirculatory dysfunction in patients with multiple trauma, both in the experimental

and human settings [11–14].

Herein, we report a retrospective subgroup analysis of the single-centre prospective obser-

vational Microcirculation DAIly MONitoring in critically ill patients study (MicroDAIMON–

NCT 02649088), in which we aimed to test the hypothesis that early alterations in microcircu-

lation and tissue oxygenation are associated with the occurrence of organ failure in a heteroge-

neous cohort of adult patients admitted to the ICU for major trauma (major trauma defined as

an Injury Severity Score being greater than 15) [16].

Materials and methods

This is a retrospective subgroup analysis of the Microcirculation DAIly MONitoring in criti-

cally ill patients study (MicroDAIMON– NCT 02649088). The MicroDAIMON was a single-

center prospective observational study where sublingual microcirculation and peripheral oxy-

genation measurements were performed in 97 adult critically ill patients (with respiratory,

post-traumatic and general medical/surgical acute problems) on a daily basis from admission

to ICU-discharge/death.

The study protocol was approved by the Local Ethics Committee (Comitato Etico Azienda

Ospedaliero Universitaria Ospedali Riuniti Umberto I—G.M. Lancisi—G. Salesi of Ancona,

currently named Comitato Etico Regione Marche—CERM; protocol number 212639, approval

in date 14/02/2013) and it conformed to the principles of Helsinki declaration (last revision,

Edinburgh 2000). A written informed consent was obtained, by signing the appropriate

informed consent paperwork, from all the subjects or from their next of kin, in compliance

with national applicable laws.

Sublingual microcirculation and tissue perfusion in traumatic organ failure
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The aim of the study was to evaluate the association between microcirculatory alterations

and outcome in a general ICU population.

Lack of written informed consent, age<18 years, pathophysiological conditions interfering

with the acquisition of sublingual microcirculation videos (e.g. major maxillo-facial trauma)

were exclusion criteria.

This retrospective analysis is focused on the subgroup of patients admitted in the ICU with

a diagnosis of major trauma. The main objective of this analysis was to evaluate sublingual

microcirculation and tissue perfusion after trauma and to assess if a correlation existed with

the occurrence/persistence of organ failure, as identified by an elevated Sequential Organ Fail-

ure Assessment (SOFA) score. In a previous study by Tachon et al in patients with traumatic

haemorrhagic shock, the SOFA score at day 4 after ICU admission was chosen to split the

patients in high/low SOFA score groups, as ICU length of stay (LOS) in the two groups was

significantly different [10]. Similarly, we divided the patients in two groups based on their

SOFA score at day 4 (higher and lower or equal than the median value of SOFA score in the

whole sample).

All patients were included in the study within the first 12 hours from ICU admission. At

the moment of inclusion and every 24 hours thereafter, the sublingual microcirculation and

peripheral tissue perfusion were evaluated. Simultaneously, arterial and central venous blood

samples were withdrawn in order to assess blood gases, lactate levels and base excess. Baseline

demographic data (age, sex, weight and height), hemodynamic parameters (Heart Rate, Mean

Arterial Pressure, and Cardiac Output monitoring whenever available), clinical/laboratory

data, and main organ supports were collected in digital excel spreadsheet.

Sublingual microcirculation was monitored with Sidestream DarkField (SDF) imaging

technique (Microscan; Microvision Medical BV, Amsterdam, The Netherland).

Extensive details on the SDF imaging technique have been described in previous papers,

however the below gives a brief summary of the technique. Microscan is equipped with a ring

of green light-emitting diodes (LEDs) located at the end of a probe. The LEDs light of Micro-

scan is characterized by a specific wavelength of 530 nm that is absorbed by the haemoglobin

contained in red blood cells (RBC) so that RBC are visualized as flowing granules that indi-

rectly highlight just those vessels that are perfused, hiding vessels that are not perfused [17,18].

We tried to obtain the highest quality of picture by avoiding pressure and movement artefacts,

improving focus and illumination and cleaning the sublingual mucosa from saliva and blood.

Videos from at least 5 different sites of sublingual microcirculation were recorded for each ses-

sion, and the best 3 of them were analysed offline using a dedicated software package (Auto-

mated Vascular Analysis Software; Microvision Medical BV).

Microcirculatory parameters were calculated offline with the Automated Vascular Analysis

software (AVA v3, Microvision Medical, Amsterdam, NL), according to the 2007 round table

conference and “the microcirculation image quality score”: Massey et al [17,19].

The analysis of microvascular flow focused on vessels with a diameter of 0–20 μm (small-

size vessels). Medium-size vessels (diameter 20–50 μm), that consist in precapillary arterioles

and postcapillary venules, were used as quality index and as tool to identify pressure artefacts

and mechanical occlusion to flow (small vessels with disturbed microcirculatory flow along

with flow disruptions in medium vessels) [17–19].

Total vessel density (TVD) and perfused vessel density (PVD), De Backer score, the propor-

tion of perfused vessels (PPV) and the microvascular flow index (MFI), were calculated for

small-size vessels (diameter� 20 μm) in all the videos analysed.

Peripheral skeletal muscle tissue oxygenation was evaluated using Near-InfraRed Spectros-

copy (InSpectra Model 650; Hutchinson Technology Inc., Hutchinson, MN, USA) with a

15-mm probe on the thenar eminence. A vascular occlusion test (VOT) was performed in

Sublingual microcirculation and tissue perfusion in traumatic organ failure
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order to assess the variations in tissue oxygen saturation (StO2) during a transient ischemic

challenge.

A sphygmomanometer cuff was placed around the forearm and kept inflated to 50 mm Hg

above the systolic arterial pressure until the StO2 reached 40%. The StO2 downslope (%/min-

ute) was calculated from the regression line of the StO2 decay during vascular occlusion and

provides an index of O2 extraction and consumption rate. The StO2 upslope (%/minute) was

calculated from the regression line of the reperfusion phase and reflects microvascular reactiv-

ity, capillary recruitment and post-ischemic vasodilatation. The area under the curve (AUC) of

StO2 represents the hyperaemic response [20]. (S1 Fig).

The Kolmogorov-Smirnov test was check for normality of distribution of continuous vari-

ables. Since most of the parameters showed a non-normal distribution, data are presented as

median (and InterQuartile range, IQR) or as N˚ (and %) for nominal variables. Non-paramet-

ric tests (Mann–Whitney and χ2 with Fisher’s exact tests) were used as appropriate for com-

parison between independent samples. Differences were considered significant at P values of

less than 0.05 (two-sided).

The area under the Receiver Operating Characteristic (ROC) curve was calculated to evalu-

ate the discriminative ability of microvascular parameters and NIRS variables towards SOFA

score at day 4 (D4-SOFA).

Statistical analysis was performed using the Statistical Package for Social Science software,

version 17.0 (SPSS Inc).

The study protocol was approved by the Local Ethics Committee and it conformed to the

principles of Helsinki declaration (last revision, Edinburgh 2000). A written informed consent

was obtained, by signing the appropriate informed consent paperwork, from all the subjects or

from their next of kin, in compliance with national applicable laws.

Results

Of the cohort of 97 patients enrolled in the MicroDAIMON study, 39 were admitted with a

diagnosis of multiple trauma.

Median age was 55 (35–74) years, 30 patients (77% of total) were male, most of them were

previously healthy (71% with less than two comorbidities at admission in ICU) and the leading

causes of trauma were road collisions. Head-and-neck and chest were injured in most of the

patients. 18 patients (46%) were transfused in the Emergency Room and 18 (46%) received

surgery before admission in ICU (S1 Table). Median values for Apache score at admission in

ICU was 14 (7–18) and for SOFA score was 7 (4–9); the 87% of the patients were haemodyna-

mically stable at admission in ICU.

Median ICU length of stay (ICU-LOS) was 7 days (4–15), with a hospital mortality of 20.5%

(8 patients).

Three of the 39 patients deceased in ICU (7.7%) within 72 hours from admission, 5 patients

were discharged from ICU before Day 4, three further patients missed data for SOFA score cal-

culation at day 4 and they were excluded a priori. Therefore, this analysis includes 28 patients

in total.

Median SOFA score at Day 4 was 6.5 (4–9). Accordingly, patients were divided in two

groups: D4-SOFA�6.5 and D4-SOFA>6.5.

ICU-LOS was significantly higher in patients with D4-SOFA>6.5 with a median of 15 (9–

25) versus 7 (4–13) days for patients with D4-SOFA�6.5 (p = 0.013). Patients with high SOFA

score at Day 4 were younger than patients with lower SOFA score: 44 (29–76) versus 69 years

(41–74) years, but the difference wasn’t statistically significant (p = 0.458). The admission

Sublingual microcirculation and tissue perfusion in traumatic organ failure
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SOFA score was higher in those patients who had D4-SOFA score> 6.5 (8 [7–9.5] versus 5 [3–

9]; p = 0.037).

In the first 4 days, the two groups did not differ for Mean Arterial Pressure (MAP), Heart

Rate (HR), Lactate, Central Venous Saturation (ScVO2), haemoglobin and RBC transfusion

requirements (Table 1).

Norepinephrine infusion was significantly higher in high SOFA group at Day 1, Day 3 and

Day 4. Total Vessel Density of small vessels (TVDs) was significantly lower in patients with

D4-SOFA >6.5 both at Day 1 (17.33 [16.58–21.63] versus 23.24 [18.51–23.72] mm/mm2;

p = 0.002) and at Day 2 (17.45 [15.82–22.51] versus 22.92 [20.64–25.58] mm/mm2, p = 0.006);

Perfused Vessel Density of small Vessels (PVDs) showed similar results at Day 1 and Day 2

with lower PVDs in patients with D4-SOFA score>6.5 (16.55 [17.94–23.93] versus 20.91

[17.57–23.45] mm/mm2 at Day 1, p = 0.007; 16.52 [14.24–19.92] versus 21.32 [17.94–23.93]

mm/mm2 at Day 2, p = 0.033 (Fig 1).

MFI and PPV did not show any difference between the groups, De Backer score tended to

be lower in the high SOFA score group at Day 1 and Day 2 although the difference was not sig-

nificant (Fig 1).

Changes in NIRS-derived parameters in the two groups are shown in Fig 2.

StO2 was similar in the first 4 days between patients with lower and higher D4-SOFA. At

Day 1 desaturation was faster for patients with D4-SOFA> 6.5 with a median StO2 downslope

of -9.3 (-11.6, —7.5) versus -7.12 [IQR (-8.5,-6.2] %/minute for patients with D4-SOFA�6.5

(p = 0.018). The StO2 upslope was lower in high-SOFA patients at D1 (141 [75–190] versus

170 [150–193] %/min in low-SOFA patients (p = 0.04). Similar results were evident at D2,

however the difference was not statistically significant (Fig 2).

ROC curve analysis showed that low PVDs and TVDs at admission in ICU were significant

predictors of D4-SOFA score >6.5 with an Area Under the curve of 0.805 for PVDs (95% con-

fidence interval [CI] 0.627–0.983, p = 0.08) and AUC of 0.85 for TVDs (95% CI = 0.699–0.993;

p = 0.03) (Fig 3).

The StO2 Downslope and StO2 Upslope at D1 were also able to predict a higher D4-SOFA

(AUC 0.773 [95%CI 0.57–0.97] p = 0.02 and 0.74 [95%CI 0.52–0.96] p = 0.04, respectively).

Discussion

In this retrospective analysis of prospectively collected data on 28 patients with major trauma,

patients with higher SOFA score at day 4 (D4-SOFA>6.5) after admission in ICU showed signif-

icantly lower sublingual microvascular density in the first two days in the ICU as compared to

those with a SOFA score�6.5 at day 4, while no differences were observed in parameters of

microcirculatory blood flow quality. In addition, a higher peripheral tissue oxygen extraction

rate and impaired microvascular reactivity at admission were associated with a SOFA score>6.5

at day 4. These microcirculatory disturbances occurred despite early haemodynamic stabiliza-

tion, as suggested by similar values of MAP, HR, lactate and ScvO2 in the two groups, although

patients with a D4-SOFA>6.5 required higher doses of norepinephrine in the first 4 days.

Our results are consistent with data from previous literature. The microvascular response

to major trauma was studied from Tachon et al that demonstrated that disturbances in the

microcirculation in the first 72 hours after ICU admission were associated with organ failure

and with longer ICU stay in their cohort of traumatic haemorrhagic shock. However, differ-

ently from our results, MFI and PPV were significantly different between the groups and

Functional Capillary Density was assessed instead of PVD and TVD [10]. The two studies can

be easily compared as Perfused Vessel Density (PVD) is an estimate of Functional Capillary

Density (FCD), calculated by multiplying vessel density by the proportion of perfused vessels.

Sublingual microcirculation and tissue perfusion in traumatic organ failure
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Table 1. Hemodynamic variables in the first four days of ICU admission for the two groups of patients (SOFAa score at D4�6.5 and SOFA score at D4>6.5).

SOFA�6.5 at D4 SOFA>6.5 at D4 p value
15 (53.6%) 13 (46.4%)

MAPb, mmHg
D1 86 [75–99] 85 [77–95] 0.964

D2 82 [71–99] 89 [71–95] 0.648

D3 89 [84–102] 88 [79–97] 0.413

D4 91 [74–106] 88 [84–89] 0.932

HRc, bpm
D1 63 [57–83] 83 [74–102] 0.142

D2 77 [64–100] 84 [60–101] 0.717

D3 71 [62–88] 78 [63–92] 0,964

D4 75 [64–87] 74 [70–85] 0.843

Norepinephrine, mcg/kg/min
D1 0.00 [0.00–0.22] 0.23 [0.026–0.48] 0.033
D2 0.00 [0.00–0.182] 0.22 [0.02–0.28] 0.085

D3 0.00 [0.00–0.00] 0.09 [0.04–0.33] 0.001
D4 0.00 [0.00–0.00] 0.1 [0.04–0.17] 0.001

Arterial pH, AU
D1 7.43 [7.4–7.58] 7.45 [7.38–7.49] 0.329

D2 7.48 [7.44–7.49] 7.45 [7.42–7.49] 0.892

D3 7.47 [7.43–7.52] 7.48 [7.43–7.53] 0.440

D4 7.48 [7.44–7.49] 7.47 [7.45–7.51] 0.936

BEd, mmol/L
D1 0.6 [(-)0.9,-2.3] 0.6 [(-)2.7–3.8] 0.880

D2 4.5 [2.2–8.5] 4.4 [1.7–6.2] 0.751

D3 5.5 [3.7–9.4] 6.4 [2.1–7.6] 0.892

D4 5.2 [3.7–9.7] 7.7 [4.2–11.8] 0.538

Lactate, mmol/L
D1 1.3 [0.9–2.0] 1.7 [1.1–2.2] 0.235

D2 1.0 [0.7–2.0] 1.1 [0.7–2.0] 0.217

D3 0.9 [0.8–1.1] 0.9 [0.7–1.2] 0.413

D4 0.7 [0.7–1.1] 0.9 [0.6–1.4] 0.590

ScvO2e, %
D1 79.4 [75.6–81.7] 74.3 [59.2–84.4] 0.161

D2 74.8 [67.1–80.8] 79.3 [70.7–85.2] 0.347

D3 75 [67.5–78.6] 72 [71.6–90.6] 0.219

D4 72.1 [68.6–74.4] 78.6 [73.3–81.0] 0.148

Hbf, g/dl
D1 10.8 [9.0–12.4] 10.4 [10.2–11.2] 0.751

D2 10.3 [9.2–11.5] 9.3 [8.4–9.9] 0.170

D3 9.3 [8.9–11.4] 9.8 [9.5–10.9] 0.316

D4 9.4 [8.2–11.3] 9.8 [9.3–10.8] 0.630

Hctg, %
D1 30.2 [27.1–3.8] 30.7 [29.2–32.] 0.856

D2 30.9 [26.0–34.3] 27.4 [24.4–29.7] 0.170

D3 27.7 [27.0–34.8] 29.5 [28.6–31.4] 0.440

D4 29.0 [25.8–33.9] 29.6 [27.8–31.9] 0.79

Patients transfused, n° (%)

(Continued)

Sublingual microcirculation and tissue perfusion in traumatic organ failure
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Gòmez et al performed NIRS measurements and evaluated the response to a VOT in ICU

trauma patients and healthy controls. They showed slower StO2 recovery upslopes in trauma

patients than in controls, with similar downslope curves, suggesting a local reduction in micro-

circulatory reserve, however microcirculatory flow distribution was not assessed in this study

[21].

Duret et al showed significantly altered StO2 and desaturation slopes at admission were

associated with no improvement or worsening organ failure in the first 72 hours in patients

with traumatic haemorrhagic shock [22]. In the present study, StO2 was similar at all

Table 1. (Continued)

SOFA�6.5 at D4 SOFA>6.5 at D4 p value
15 (53.6%) 13 (46.4%)

D1 7 (47) 3 (23) 0.254

D2 0 (0) 5 (39) 0.013
D3 2 (13) 3 (23) 0.639

D4 3 (25) 2 (17) 0.99

Hemodynamic data were collected daily, at the same time of microcirculatory assessment. Data presented as median [IQR] or number [%].
aSOFA = Sequential Organ Failure Assessment;
bMAP = Mean Arterial Pressure;
cHR = Heart Rate;
dBE = Base Excess;
eScVO2 = Central venous Saturation
fHb = Haemoglobin;
gHct = Haematocrit,

https://doi.org/10.1371/journal.pone.0213085.t001

Fig 1. Changes in the sublingual microvascular parameters in the first 4 days of admission in ICU for the two groups of patients (SOFA score at D4�6.5 and

SOFA score at D4>6.5). � p<0.05; �� p<0.01. TVDs: total small vessel density; PVDs: perfused small vessel density; MFI: microvascular flow index; PPV: percentage

of perfused vessels.

https://doi.org/10.1371/journal.pone.0213085.g001

Sublingual microcirculation and tissue perfusion in traumatic organ failure
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Fig 2. Changes in NIRS-derived parameters in the first 4 days of admission in ICU for the two groups of patients (SOFA score at D4�6.5 and SOFA score at

D4>6.5). � p<0.05. StO2: tissue oxygen saturation; AUC StO2: area under the curve of tissue oxygen saturation.

https://doi.org/10.1371/journal.pone.0213085.g002

Fig 3. Receiver Operating Characteristic (ROC) curves. Discriminative ability of PVDs and TVDs (on the left) and StO2 downslope and upslope (on the right)

at admission in ICU towards D4 SOFA score. TVDs: total small vessel density; PVDs: perfused small vessel density. StO2: tissue oxygen saturation.

https://doi.org/10.1371/journal.pone.0213085.g003

Sublingual microcirculation and tissue perfusion in traumatic organ failure
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timepoints between the two groups, suggesting that StO2 alone may not be an adequate predic-

tor of tissue hypoperfusion at least in some patient categories, and that the ischaemic challenge

derived from VOT may be more sensitive to highlight signs of altered tissue perfusion and

oxygenation [23].

Although the retrospective design of our analysis does not allow to speculate on potential

confounding factors, our data suggest that a reduction in microvascular perfusion and reactiv-

ity in the first hours after a multiple trauma may predispose patients to the development of tis-

sue oxygen deficit and organ failure.

Impaired tissue perfusion and reduced microvascular density may be considered markers

of insufficient fluid resuscitation and persistent low-grade hypovolaemia: microvascular dis-

turbances have been previously showed in hypovolaemic shock and are characterized by dete-

rioration of Functional Capillary Density and reduction of TVD [24–25]. Fluid resuscitation

can cause an apparent improvement in systemic macrocirculation, while leaving inadequate

regional oxygenation and microvascular perfusion. This pattern was demonstrated both in

hypovolaemic and haemorrhagic shock that are the main features of early traumatic shock

[24–28]

Afterwards, trauma may induce further mechanisms of complex microvascular

impairment: the extensive tissue damage and tissue hypoperfusion may induce release of

inflammatory mediators and reactive oxygen species and it can produce Systemic Inflamma-

tory Response Syndrome with deterioration of the endothelial function and of glycocalyx,

alterations in red blood cell deformability and increase in leukocyte adhesion. Any one of

these alterations either alone or acting together can lead to a more distributive shock charac-

terized by a loss of microvascular integrity, reduction of capillary density, increase in vascular

permeability and interstitial oedema. The enhanced oxygen diffusion distance can result in tis-

sue hypoxemia and organ dysfunction.

We can suggest that in severe trauma patients, as in sepsis and other patterns of shock a loss

of coherence between macro and microhemodynamic exists, and medical interventions aimed

at the correction of systemic hemodynamic variables may fail to be effective in correcting

regional and microcirculatory perfusion and oxygen delivery to the parenchymal cell. [27].

Finally, the patients with D4-SOFA>6.5 received higher norepinephrine doses than the

group with a SOFA score�6.5 at day 4. We cannot exclude a direct relationship between vaso-

pressor use and the observed microcirculatory alterations, because high dose norepinephrine,

together with inadequate fluid resuscitation, can induce excessive vasoconstriction and capil-

lary de-recruitment and increasing MAP with norepinephrine showed no impact on improve-

ment of microcirculatory perfusion in different patterns of shock. [28–32] However, while

norepinephrine dose was consistently different in the two groups even at Day 3 and Day 4

post-admission in ICU, microcirculatory alterations were not evident after Day 2, supporting

the hypothesis that vasopressor use alone cannot explain the microvascular pattern demon-

strated early after ICU admission. Unfortunately, our study is not powered to answer these

questions.

Nevertheless, as in our patients a persistent microcirculatory under-resuscitation in the

presence of normalized systemic hemodynamic was associated with adverse clinical outcome,

this study suggests that early identification of microvascular and tissue hypoperfusion in

trauma patients may be relevant in the clinical practice to detect patients at higher risk to

develop multiple organ failure and to guide the clinician to a tailored intensive care treatment

in term of fluids and/or vasoactive drugs. Moreover, further studies on this specific field will

help us to understand if a more accurate resuscitation, titrated on bedside assessment of

microcirculation instead of hemodynamic alone would be important in the intensive care

treatment of major trauma.
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Our study has several limitations. First, the retrospective design did not allow to control for

potential confounders. Second, this was a subgroup analysis of a prospective observational

study with a different primary goal: some of the analyses may thus be underpowered to detect

statistically significant differences. In addition, the small sample size prevented evaluate of the

relationship between microvascular alterations and other outcomes, such as mortality. Third,

the observational design of our study does not allow us to clarify whether the implementation

of microcirculation-targeted therapies may be able to modify the outcome and prevent the

development of organ dysfunctions. Fourth, the lack of cardiac output monitoring impeded a

more comprehensive overview of the haemodynamic state and of its relationship with micro-

vascular perfusion.

Conclusion

In our cohort of patients with major trauma, sublingual microcirculation and peripheral

microvascular reactivity were significantly impaired among those patients who then showed

more severe organ dysfunction. Our data suggest that early impairment in microvascular per-

fusion after severe trauma may be associated with development of organ failure. Our study

would support the hypothesis that restoration of macrocirculation can be dissociated from res-

toration of peripheral and tissue perfusion.

Therefore, evaluating the microcirculation together with the macrohemodynamic variables

in this patient category may represent a tool to identify those patients with higher risk of MOF,

who could benefit from closer monitoring and additional therapeutic efforts. Further studies

are needed to clarify the role of microvascular dysfunction in the pathophysiology of MOF

after multiple trauma.

Supporting information

S1 Fig. Near-InfraRed Spectroscopy (NIRS), StO2 response to vascular occlusion test

(VOT).

(TIF)

S1 Table. Baseline characteristics of the 39 trauma patients included in MicroDAIMON

study; n (%). aER = Emergency Room.

(PDF)

S2 Table. Supporting information; anonymized datasheet with main data collected.

SOFA = Sequential Organ failure Score; PVDs = perfused small vessel density; TVDs = total

small vessel density; PPV = percentage of perfused vessels; MFI = microvascular flow index;

StO2 = tissue oxygen saturation; AUC StO2 = area under the curve of tissue oxygen saturation;

LOS = Length of Stay; ICU = Intensive Care Unit; APACHE = Acute Physiology, Age, Chronic

Health Evaluation; NE = Norepinephrine; HR = Heart Rate; MAP = Mean Arterial Pressure;

Hb = Haemoglobin.

(PDF)

Acknowledgments

The authors wish to thank the patients for their participation in the study and the medical and

nursing staff of the Intensive Care Unit of Azienda Ospedaliera Universitaria “Ospedali Riu-

niti” of Ancona (Italy) for its support in the realization of this work.

Sublingual microcirculation and tissue perfusion in traumatic organ failure

PLOS ONE | https://doi.org/10.1371/journal.pone.0213085 March 5, 2019 10 / 12

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213085.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213085.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0213085.s003
https://doi.org/10.1371/journal.pone.0213085


Author Contributions

Data curation: Elisa Damiani, Claudia Scorcella, Vincenzo Gabbanelli, Simona Pantanetti.

Formal analysis: Roberta Domizi.

Investigation: Elisa Damiani, Claudia Scorcella, Andrea Carsetti, Roberta Castagnani, Sara

Vannicola, Sandra Bolognini.

Methodology: Abele Donati.

Project administration: Abele Donati.

Writing – original draft: Roberta Domizi.

Writing – review & editing: Elisa Damiani, Abele Donati.

References
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