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Introduction
Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) is a highly 
sensitive and low-cost technique that is widely used in molecular biology [1]. How-
ever, the accuracy and interpretation of its results are determined by the stability of 
the selected reference genes (RGs) [2]. Hence, the selection of suitable RGs is the first 
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aim of any research system dedicated to the investigation of differential gene expres-
sion [3]. Furthermore, the simultaneous use of multiple RGs will result in more accu-
rate data on target gene expression [2, 4].

Related works

Breast cancer is the most common malignancy in females and accounts for approxi-
mately 30% of all cancers diagnosed [5]. Based on the expression of hormone recep-
tors (HR), including the estrogen receptor (ER), progesterone receptor (PR), and the 
human epidermal growth factor receptor 2 (HER-2), breast cancer can be classified 
into four subtypes including HR + HER2  −, HR + HER2 + , HR-HER2 + , and HR-
HER2 − [6]. During the course of breast cancer treatment, subtype status determines 
the use of neoadjuvant chemotherapy (NAC). In addition, breast disease also includes 
benign tumors [7]. Tumorigenesis and breast cancer metastasis are associated with 
gene expression changes that are most commonly detected using qRT-PCR [8]. In 
previous breast cancer studies, commonly used RGs included beta-actin (ACTB), 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta-glucuronidase (GUSB), 
ribosomal protein L13a (RPL13A), and tubulin alpha 1a (TUBA1A) [3, 9]. However, 
research has indicated that these RGs are not consistently expressed across different 
tissues and experimental conditions [8, 10, 11]. Therefore, it is crucial to identify new 
RGs whose expression across various breast cancer tissues is more consistent.

Many novel RGs have been predicted and validated in many species and disease 
models, such as traumatic brain injury [12], Euscaphis konishii Hayata [13], Salix 
viminalis [4], Oryza sativa [14], Gentiana macrophylla [15], Homo sapiens [16], and 
Rhizophora apiculate [17]. However, to our knowledge, few systematic studies have 
been conducted to validate potential RGs for breast cancer. Available studies involved 
either tissues or cell lines (but not both), and the RGs concerned were not novel [3, 
8, 18–20]. Considering the enormous threat breast cancer poses to human health, 
the identification of RGs that are more relevant to a wide range of breast cancer tis-
sues and cells across several conditions is urgently needed [21–23]. In this work, we 
hypothesized that novel RGs for breast cancer research could be identified and vali-
dated using an mRNA-seq dataset.

Contributions

To this end, we employed the mRNA-seq datasets from The Cancer Genome Atlas 
(TCGA) to discover novel RGs. Ten genes that displayed a relatively stable expres-
sion (SF1, TARDBP, THRAP3, QRICH1, TRA2B, SRSF3, YY1, DNAJC8, RNF10, and 
RHOA) and six traditional RGs (ACTB, TUBA1A, RPL13A, B2M, GAPDH, and GUSB) 
were selected as the candidate RGs. The qRT-PCR experiments were performed on 
different experimental samples including 11 types of breast cancer tissues and seven 
different breast cancer cell lines. The stability of expression of these candidate RGs 
was calculated using geNorm [24], NormFinder [25], ΔCtmethod [26], BestKeeper 
[27], and ComprFinder [28]. Finally, the optimal RGs were validated and confirmed. 
Our study significantly improves upon previous work in breast cancer research.
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Results
Identification of candidate RGs based on a public transcriptomic database

Transcriptome sequencing data of 1217 breast cancer samples were obtained from the 
TCGA database. Next, 15,450 unigenes that were identified after processing were eval-
uated by Fragments Per Kilobase Million (FPKM) (high expression level, FPKM ≥ 10), 
coefficients of variation (CV) (low variability as determined by CV ≤ 40%), fold change 
(FC)-5% (the top 5% of 1217 samples divided by the lowest 5%, FC-5% ≤ 5), and disper-
sion measure (DPM) (DPM ≤ 0.3) values. The results for the different statistical algo-
rithms, shown in Fig. 1, were as follows:

(1)	 FPKM: A total of 4723 genes satisfied the requirement (30.57% of 15,450, the blue 
area in Fig. 1A).

(2)	 CV (%): There were 2649 genes with a CV ≤ 40% (17.15% of 15,450, the purple area 
in Fig. 1B) after filtering.

(3)	 FC-5%: This parameter allowed the identification of 2287 genes (14.80% of 15,450, 
the green area in Fig. 1C).

(4)	 DPM: This parameter resulted in the identification of 464 genes (3.00% of 15,450, 
the red area in Fig. 1D).

Gene overlap between the four algorithms was identified using a Venn diagram with 
4-color blocks (blue, purple, green, and red), showing that 197 genes satisfied all four 
requirements (Fig. 1E). Of these 197 genes, 10 genes (SF1, TARDBP, THRAP3, QRICH1, 
TRA2B, SRSF3, YY1, DNAJC8, RNF10, and RHOA) were selected as novel candidate 
RGs due to their higher FPKM values and easier primers design. In addition, GUSB, 
TUBA1A, RPL13A, and B2M, which previous studies suggested being stable RGs in 

Fig. 1  Probability density curve of FPKM, CV, DPM, and FC-5% in 15,458 unigenes. The y-axes indicate the 
probability values for all 15,457 genes. The candidate reference genes (RGs) were preliminarily screened by 
four criteria including FPKM ≥ 10, CV ≤ 0.4, DPM ≤ 0.3, and FC-5% ≤ 4 (A–D). The 197 RGs that met various 
criteria were identified by Venn diagram analysis (E), and among these, 10 genes were selected as the novel 
candidate RGs. FPKM, gene fragments per kilobase of exon model per million mapped reads; CV, coefficient 
of variation; DPM, dispersion measure; FC-5%, the fold change between the top 5% highest expression levels 
divided by the bottom 5% within the 1217 samples
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breast cancer research, and two classical RGs, ACTB and GAPDH, were also considered. 
These genes were ranked based on their CV values (shown in Table 1).

Primer specificity and amplification efficiency for qRT‑PCR

A total of 20 paired primers including 16 candidate RGs and 4 target genes were 
designed for qRT-PCR experiments. The unigene name, ENSid, gene description, primer 
sequences, theoretical Tm (°C), product size, primer efficiency (E), and coefficient of 
determination (R2) are summarized in Table S1. The primer efficiency for all 20 genes 
ranged from 90.0% for YY1 to 105.4% for DNAJC8, and correlation coefficients varied 
from 0.996 (ACTB) to 0.999 (B2M, YY1). All paired primers showed adequate specificity 
(Additional file 1: Fig. S1).

Ct values of candidate reference genes

The mean Ct values (average of 3 technical replicates) for all 16 RGs are shown in 
Fig.  2 and Additional file  4: Table  S2. The Ct values varied from 16.35 (RPL13A) to 

Table 1  The summarized information of 16 potential RGs based on transcriptome data

Gene FPKM CV FC-5% DPM Order

SF1 38.65 21.70% 2.52 0.21 5

TARDBP 20.30 18.51% 2.32 0.18 1

THRAP3 41.96 24.44% 3.10 0.24 16

QRICH1 14.67 25.76% 3.11 0.25 45

TRA2B 11.66 24.14% 2.78 0.23 12

SRSF3 39.09 24.08% 2.76 0.23 11

YY1 15.20 24.75% 2.83 0.24 23

DNAJC8 30.96 24.59% 2.92 0.24 19

RNF10 32.58 24.62% 2.78 0.24 21

RHOA 223.73 25.60% 3.05 0.25 40

ACTB 1490.51 38.06% 5.02 0.36 1834

TUBA1A 72.98 59.42% 12.88 0.51 6728

RPL13A 716.37 56.46% 8.78 0.49 6189

B2M 625.30 64.66% 12.56 0.54 7483

GAPDH 739.50 72.26% 11.79 0.59 8454

GUSB 31.47 142.43% 11.33 0.82 12,695

Fig. 2  Distribution of Ct values for 16 candidate reference genes. Boxplot of absolute Ct value of the 16 
candidate genes in breast cancer tissue samples (A) and cell lines (B). Boxes indicated median (Q2) and first 
and third quartiles (Q1 and Q3, respectively), and whiskers corresponded to the minimum and maximum 
values. The flatter the box, the more stable the gene expression
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24.57 (QRICH1) across various breast cancer tissues (Fig. 2A). The top 3 genes with 
low standard deviations were DNAJC8 (1.17), RPL13A (1.36), and SF1 (1.51). The 3 
most differentially expressed genes were GAPDH (2.03), B2M (1.93), and ACTB (1.91). 
However, the Ct values of the breast cancer cell lines were overall lower than those of 
breast cancer tissues (Fig. 2B). A similar result of standard deviations was obtained 
in the breast cancer cells. To estimate the gene expression stability of these candidate 
RGs, more scientific algorithms will have to be introduced and used.

Expression stability of candidate reference genes

In this study, the qRT-PCR data matrix was analyzed using five differential algo-
rithms: geNorm, NormFinder, BestKeeper, ΔCtmethod, and ComprFinder.

geNorm analysis

Gene expression stability was evaluated by the M value using geNorm analysis. This 
program determines the pairwise variation of each gene with all other analyzed genes 
under the same experimental conditions: the lower the M value, the more stable the 
gene expression. In the breast cancer tissue group, the three most stably expressed 
genes (with the lowest M values) were SF1, THRAP3, and TARDBP, while GAPDH, 
DNAJC8, and B2M were the least stably expressed genes (Table 2). In the breast can-
cer cell group THRAP3, RHOA, and QRICH1 were the top three stably expressed 
genes, while B2M, TUBA1A, and ACTB were the least stably expressed genes 
(Table 3). Among all samples, TARDBP was the most stably expressed gene, followed 
by SF1 and QRICH1. Conversely, TUBA1A, B2M, and ACTB were the least stably 
expressed RGs (Additional file 5: Table S3).

Table 2  Gene expression stability calculated by 5 algorithms in all BC tissue samples

Gene geNorm NormFinder BestKeeper ΔCt method ComprFinder

SF1 0.369(1) 0.018(5) 1.233(4) 0.626(4) 0.146(1)

TRA2B 0.455(6) 0.011(1) 1.334(10) 0.602(1) 0.152(2)

THRAP3 0.386(2) 0.016(3) 1.245(5) 0.624(3) 0.170(3)

YY1 0.465(7) 0.019(6) 1.283(7) 0.654(6) 0.193(4)

RHOA 0.475(8) 0.013(2) 1.314(8) 0.611(2) 0.200(5)

RNF-10 0.441(5) 0.017(4) 1.334(11) 0.637(5) 0.236(6)

QRICH1 0.429(4) 0.020(7) 1.281(6) 0.659(7) 0.241(7)

TARDBP 0.394(3) 0.024(9) 1.183(3) 0.693(8) 0.269(8)

SRSF3 0.514(9) 0.022(8) 1.331(9) 0.727(9) 0.359(9)

RPL13A 0.615(12) 0.037(13) 1.087(2) 0.839(12) 0.445(10)

TUBA1A 0.552(10) 0.027(10) 1.424(13) 0.785(10) 0.513(11)

DNAJC8 0.711(15) 0.039(14) 0.992(1) 0.965(15) 0.583(12)

GUSB 0.646(13) 0.032(11) 1.344(12) 0.863(13) 0.593(13)

ACTB 0.583(11) 0.032(12) 1.529(14) 0.796(11) 0.608(14)

GAPDH 0.675(14) 0.046(15) 1.635(16) 0.882(14) 0.848(15)

B2M 0.748(16) 0.055(16) 1.576(15) 1.001(16) 0.977(16)
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NormFinder analysis

Based on variance analysis to calculate the stable value of each gene, a higher Nor-
mFinder value indicates a less stably expressed gene. In the breast cancer tissue group, 
TRA2B, RHOA, and THRAP3 were the most stable genes, and DNAJC8, GAPDH, and 
B2M were the most unstable genes (Table 2). In the breast cancer cell group, THRAP3, 
DNAJC8, and RPL13A were the three most stably expressed genes, while TUBA1A, 
B2M, and ACTB were the least stably expressed genes (Table  3). For all breast cancer 
tissue and cell line samples, THRAP3, RHOA, QRICH1 were the most stably expressed 
genes, and TUBA1A, B2M, ACTB were the least stably expressed RGs (Additional file 5: 
Table S3).

BestKeeper analysis

To further analyze the expression stability of the RGs, BestKeeper was applied, in which 
a lower standard-value indicates a more stably expressed RG. As shown in Table 2, in 
the breast cancer tissue group DNAJC8, RPL13A, and TARDBP were the most stably 
expressed genes, while ACTB, B2M, and GAPDH were the least stably expressed genes 
(shown in Table 2). In the breast cancer cell line group, THRAP3, RHOA, and QRICH1 
were the three most stably expressed genes, while B2M, ACTB, and TUBA1A were the 
least stably expressed genes (shown in Table  3). For all samples combined, DNAJC8, 
RPL13A, and TUBA1A were the most stably expressed genes, while GAPDH, RNF10, 
and ACTB were the least stably expressed RGs (Additional file 5: Table S3).

ΔCt analysis

According to the ΔCt method, TRA2B, RHOA, and THRAP3 were the most stably 
expressed genes, while DNAJC8, GAPDH, and B2M were the least stable genes in the 
breast cancer tissue group (Table 2), which was consistent with the analysis according to 

Table 3  Gene expression stability calculated by 5 algorithms in all BC cell strain samples

Gene geNorm NormFinder BestKeeper ΔCt method ComprFinder

THRAP3 0.008(1) 0.354(1) 0.616(1) 0.300(1) 0.010(1)

RHOA 0.009(2) 0.447(5) 0.622(2) 0.426(7) 0.042(2)

QRICH1 0.013(3) 0.544(12) 0.664(3) 0.507(9) 0.111(3)

SF1 0.018(4) 0.509(8) 0.674(4) 0.777(13) 0.136(4)

RNF10 0.026(8) 0.507(7) 0.74(5) 0.501(8) 0.209(5)

DNAJC8 0.026(7) 0.377(2) 0.762(8) 0.419(6) 0.217(6)

GUSB 0.025(6) 0.523(10) 0.757(7) 0.402(5) 0.232(7)

YY1 0.027(9) 0.495(6) 0.773(9) 0.353(3) 0.254(8)

RPL13A 0.038(11) 0.393(3) 0.784(11) 0.639(11) 0.267(9)

TARDBP 0.019(5) 0.539(11) 0.744(6) 0.318(2) 0.268(10)

GAPDH 0.035(10) 0.573(13) 0.774(10) 0.606(10) 0.363(11)

TRA2B 0.039(12) 0.421(4) 0.918(12) 0.390(4) 0.386(12)

SRSF3 0.048(13) 0.510(9) 1.025(13) 0.716(12) 0.511(13)

B2M 0.058(14) 0.946(15) 1.084(14) 0.821(14) 0.767(14)

TUBA1A 0.067(15) 0.772(14) 1.374(16) 0.932(15) 0.879(15)

ACTB 0.077(16) 0.977(16) 1.175(15) 1.475(16) 0.901(16)
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NormFinder. In addition, THRAP3, TARDBP, and YY1 were the most stably expressed 
genes in the breast cancer cell lines, while B2M, TUBA1A, and ACTB were the least sta-
bly expressed genes (Table 3). For all samples combined, THRAP3, RHOA, and QRICH1 
were the most stably expressed genes, while TUBA1A, B2M, and ACTB were the least 
stable RGs (Additional file 5: Table S3).

A comprehensive ranking of the four methods examined

The ComprFinder algorithm was carried out to obtain a final score which was used to 
rank the potential RGs. In the breast tumor tissue group, the 3 most stably expressed 
RGs were SF1, TRA2B, and THRAP3 (Table 2). In the breast cancer cell lines, THRAP3, 
RHOA, and QRICH1 were the most stably expressed RGs (Table  3). For all sam-
ples combined, we ranked the RGs from the highest to the lowest stability as follows: 
THRAP3 > RHOA > QRICH1 > YY1 > TRA2B > RPL13A > SF1 > SRSF3 > GUSB > TAR-
DBP > DNAJC8 > RNF10 > GAPDH > TUBA1A > B2M > ACTB. Interestingly, the top 5 
most stable genes (THRAP3, RHOA, QRICH1, YY1, and TRA2B) were novel RGs. In 
contrast, the traditionally used RGs TUBA1A, B2M, and ACTB were the least stably 
expressed RGs.

The research presented here confirmed that THRAP3, RHOA, QRICH1, YY1, and 
TRA2B were the most stable RGs in all samples with FS values of 0.064, 0.101, 0.122, 
0.151, and 0.161, respectively (Additional file 5: Table S3). These promising results war-
ranted further validation of the selected RGs.

Validation of the selected genes (1): comparison of target gene profiles when using 

different normalized RGs

To verify the reliability of the selected RGs, the expression profiles of MAPK3, MAPK9, 
FAAH, and HIF1A were determined in different breast cancer tissues and cell lines. Our 
results indicated that SF1, TRA2B, and THRAP3 were the top 3 stably expressed RGs 
in breast cancer tissues and that THRAP3, RHOA, and QRICH1 were the top 3 stably 
expressed RGs in breast cancer cell lines. Moreover, five genes (SF1, TRA2B, THRAP3, 
RHOA, and QRICH1) were the top 5 stably expressed candidate RGs in all samples. 
Therefore, we considered the multi-RG combination SF1 + TRA2B + THRAP3 + RHOA 
+ QRICH1 as the most promising choice for breast cancer research (both in breast can-
cer tissues and cell lines). Thus, the multi-gene combinations including SF1 + TRA2B + 
THRAP3 + RHOA + QRICH1, SF1 + TRA2B + THRAP3, THRAP3 + RHOA + QRICH1, 
SF1 + THRAP3, THRAP3 + RHOA, and single RGs including SF1, TRA2B, THRAP3, 
RHOA, and QRICH1 were compared. In addition, ACTB, GAPDH, and ACTB + GAPDH 
were also used for comparison with the novel RGs. In total, 13 different multi-RG com-
binations or single RGs were assessed. For multiple gene combinations, the geometric 
average of their Ct value was calculated. The relative gene expression level was calcu-
lated as 2−ΔCt, where ΔCt = Δ (CtTarget gene–CtRGs).

As shown in Fig.  3A, the expression of MAPK3 was significantly higher (P < 0.05) 
in HR + HER2− cancer tissue than in para-carcinoma tissue or benign tumor tissue 
when assessed by 5 or 3 multi-gene RG combinations. However, the expression pat-
tern of MAPK3 changed when we used single or 2 multi-gene RG combinations, such 
as SF1 + THRAP3, SF1, RHOA, or QRICH1. Importantly, when we investigated the least 
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Fig. 3  Relative expression levels normalized by 13 types of single- and multiple-RG combinations. Two 
target genes including MAPK3 (A) and MAPK9 (B) were determined in breast cancer (BC) tissue samples 
(C_HR + HER −, P_HR + HER −, and benign tumor), while FAAH (C) and HIF1A (D), were determined in BC cell 
lines (MCF-7, MCF-10A, and MDA-MD-231). Relative expression levels of each target gene were normalized 
by the most stable single RGs or multiple-RG combinations (SF1 + THRAP3 + TRA2B + RHOA + QRICH1, 
SF1 + THRAP3 + TRA2B, THRAP3 + RHOA + QRICH1, SF1 + THRAP3, TRA2B + RHOA, SF1, THRAP3, TRA2B, 
RHOA, and QRICH1) and the least stable single RGs or multiple-RG combinations (ACTB, GAPDH, and 
ACTB + GAPDH). The error bars represent the SEM, and the independent-sample t-test was performed 
between any two groups, *P < 0.05, **P < 0.01, n = 6 for each BC tissue group, n = 3 for each BC cell strain. The 
patterns of target gene expression were different between those normalized by the most stable RGs and 
those normalized by the least stable RGs
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stably expressed RGs (ACTB, GAPDH, or ACTB + GAPDH), the expression of MAPK3 
was significantly changed compared with the most stably expressed RGs.

As shown in Fig. 3B, when using 3 or 5 multi-gene combinations, the expression level 
of the MAPK9 gene was higher in HR + HER2 − cancer tissue than in para-carcinoma 
tissue (P < 0.05), while there was no significant difference between para-carcinoma tissue 
and benign tumor tissue. This may lead to small errors when using single or 2 multi-
gene combinations. For example, when the less stably expressed genes ACTB, GAPDH, 
or ACTB + GAPDH, were used for data normalization, the expression of MAPK9 did not 
show a clear expression trend compared with those of 3 or 5 multi-gene combinations.

In breast cancer cell lines, when the optimal RG combinations SF1 + TRA2B + THRA
P3 + RHOA + QRICH1, SF1 + TRA2B + THRAP3, or THRAP3 + RHOA + QRICH1 were 
used for normalization, the expression of FAAH was highest in MCF-7 cells, followed by 
MCF-10A cells, and was least in MDA-MB-231 cells (Fig. 3C). When ACTB, GAPDH, or 
ACTB + GAPDH were used for normalization, the expression of FAAH was not signifi-
cantly different between MCF-10A and MDA-MB-231 cells.

The expression of HIF1A in breast cancer cells was higher (P < 0.01) in MCF-10A 
and MDA-MB-231 cells than in MCF-7 cells, while no significant difference was 
found between MCF-10A and MDA-MB-231 cells when using the 3 or 5 RG combi-
nations (SF1 + TRA2B + THRAP3 + RHOA + QRICH1, SF1 + TRA2B + THRAP3, or 
THRAP3 + RHOA + QRICH1) for normalization (Fig.  3D). However, when ACTB or 
GAPDH (the less stably expressed RGs) were used, we found that HIF1A expression was 
significantly higher in MDA-MB-231 than in MCF-7 or MCF-10A cells.

The complete relative expression levels (2−ΔCt) of MAPK3, MAPK9, FAAH, and HIF1A 
genes normalized using all 13 types of single or multiple-RG combinations are listed in 
Additional file 6: Table S4 and Additional file 7: Table S5.

Validation of the selected genes (2): the relationship among different normalized RGs

Based on the method described in our previous study [28], the relationship among dif-
ferent normalized RGs was explored. As shown in Additional file 2: Fig. S2, there was 
a high correlation (R2 from 0.815 to 0.979 in breast cancer tissues, and R2 from 0.927 
to 0.995 in breast cancer cell lines) between stable RGs and SF1 + TRA2B + THRAP3 
+ RHOA + QRICH1. There was also a moderate-to-high correlation (R2 from 0.621 to 
0.709 in breast cancer tissues, and R2 from 0.600 to 0.916 in breast cancer cell lines) 
between unstable RGs and SF1 + TRA2B + THRAP3 + RHOA + QRICH1. There were 
few differences between the most stably expressed RGs and the least stably expressed 
RGs. Therefore, we performed additional analyses of their normalized efficacy, including 
a correlation analysis on the p-value yielded by the t-test analysis (see Method section).

As shown in Fig.  4A, in breast cancer tissues, the normalized results using 
SF1 + TRA2 + THRAP3 (R2 = 0.847, P < 0.001), THRAP3 + RHOA + QRICH1 (R2 = 0.947, 
P < 0.001), SF1 + THRAP3 (R2 = 0.827, P < 0.001), or THRAP3 + RHOA (R2 = 0.866, 
P < 0.001) displayed a high correlation with SF1 + TRA2B + THRAP3 + RHOA + QRIC
H1 suggesting that they had extremely similar normalization capabilities. SF1, TRA2B, 
and THRAP3 displayed a moderate correlation (R2 > 0.5), while RHOA or QRICH1 dis-
played a weak correlation (R2 < 0.5) with SF1 + TRA2B + THRAP3 + RHOA + QRIC
H1. There was a poor correlation between less stably expressed RGs (ACTB, GAPDH, 
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or ACTB + GAPDH) and SF1 + TRA2B + THRAP3 + RHOA + QRICH1. Similar results 
were found for the breast cancer cell lines (Fig. 4B). The complete p-value results yielded 
by t-test analysis are given in Additional file 8: Table S6 and Additional file 9: Table S7.

Discussion
The importance of reference genes

The qRT-PCR technique is one of the most valuable and reliable research tools to quan-
tify the expression of a target gene under different experimental conditions. Proper use 
of RGs is necessary to get a reliable estimate of gene expression in different types of 
breast cancer tissues and cell lines to avoid detecting variations that are not cancer-spe-
cific [29–31]. Therefore, the selection of the appropriate RGs for breast cancer research 
is important when using qRT-PCR to quantify gene expression. Many studies use a sin-
gle endogenous control for normalization, which can influence the statistical results and 
may lead to erroneous data interpretation [2, 32]. In fact, in the present study, no single 
RGs were identified that were stably expressed in all tissues or cell types across different 
types of breast cancer [7, 33, 34].

Theoretically, RGs should be stably expressed in all samples, and their expression lev-
els should be unaffected by the external environment, e.g., during tumorigenesis [35]. 
The selection and validation of RGs have to be corroborated by using a large number 
of samples [36, 37]. To implement this idea, in this study we collected a large num-
ber (n = 87) of samples including 6 types of breast cancer tissues and 7 types of breast 
cancer cell lines. This allowed us to obtain strong results and conclusions. There was 
a great diversity of samples in our study for the following reasons: (a) both benign and 
malignant tumor types were chosen; (b) breast cancer samples following neoadjuvant 
chemotherapy were included; (c) the breast cancer cell lines included overexpression 
and knock-down groups. With the above caveats explained, we propose that we have 
identified combinations of RGs that have high applicability in breast cancer research and 
treatment.

Fig. 4  Heat map of correlation coefficients of detection efficiency when using different normalized RGs. 
Detection efficiency represents the quality of normalized results (the P-value of independent-samples t-test). 
Two target genes, MAPK3 and MAPK9, were detected in all 66 breast cancer (BC) tissue samples (A) and two 
target genes FAAH and HIF1A were detected in 21 BC cell line samples (B) and were normalized by different 
types of RGs. The number in each color block is the correlation coefficient (R-value), and the number below 
each color block is the P-value of the corresponding R-value
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Confirm the application of RGs

In our study, we used five algorithms to determine the stability of the expression 
of 16 candidate RGs across several different types of breast tumors and breast can-
cer cell lines. We found, that SF1 was the most stably expressed gene according to 
geNorm and ComprFinder but ranked fifth by NormFinder and fourth by Best-
Keeper and the ΔCt method in breast cancer tissue samples. On the other hand, 
NormFinder and the ΔCt method recommended TRA2B as most appropriate for 
normalizing expression in breast cancer tissue samples. Surprisingly, THRAP3 was 
the most stably expressed gene according to all five algorithms in breast cancer cell 
lines.

The ideal reference gene shows a constant level of expression that does not vary 
by tissue or cell type and is not influenced by the treatment that is applied. How-
ever, numerous studies have shown that no gene is permanently and stably expressed 
under all circumstances. Therefore, reference genes must be evaluated for each 
breast cancer type and each experimental setup and multiple gene combinations 
must be used. Even for the same algorithm, the results varied between breast cancer 
tissues and cell lines. The top three genes for breast cancer tissues and cell lines were 
SF1 + TRA2B + THRAP3 and THRAP3 + RHOA + QRICH1, respectively, and there-
fore a total of 5 RGs (SF1, TRA2B, THRAP3, RHOA, QRICH1) should be considered. 
Unfortunately, determination of the expression of all five RGs simultaneously would 
require a lot of effort.

There are no specific literature reports prescribing how many candidate RGs 
should be used for qRT-PCR-dependent studies [38]. In particular, it is unknown 
which single or multiple gene combinations (SF1 + TRA2B + THRAP3 + RHOA + 
QRICH1, SF1 + TRA2B + THRAP3, THRAP3 + RHOA + QRICH1, SF1 + THRAP3, 
THRAP3 + RHOA, SF1, TRA2B, THRAP3, RHOA, or QRICH) should be used. 
Considering that our results indicate that the single gene performances of both 
novel and traditional RGs are not adequate, we propose that these types of stud-
ies should not be based on the use of single RGs, even if they are top-level RGs. 
The double gene combinations SF1 + THRAP3 and THRAP3 + RHOA showed simi-
lar gene expression profiles consistent with SF1 + TRA2B + THRAP3 + RHOA + 
QRICH1, SF1 + TRA2B + THRAP3, and THRAP3 + RHOA + QRICH1. However, 
the SF1 + THRAP3 combination behaved similarly to the 3 or 5-gene combinations 
except for the MAPK3 and MAPK9 expression. Meanwhile, the THRAP3 + RHOA 
combination behaved similarly to the 3 or 5-gene combinations except for the 
MAPK9 expression. Therefore, considering the need for normalization accuracy, 
double RGs are not the optimal choice either.

The expression pattern of target genes was the same when 3-gene combina-
tions or 5-gene combinations were used and they can be applied to various fac-
tors in breast cancer research. However, 3 RGs is a more manageable number for 
normalizing qRT-PCR experiments than 5 RGs. Therefore, we recommend that 
SF1 + TRA2B + THRAP3 and THRAP3 + RHOA + QRICH1 be adopted as the 
RG combinations for breast cancer tissue and cell line research, respectively. In 
the case of studies including both breast cancer tissue and cell line research, the 
THRAP3 + RHOA + QRICH1 combination would be optimal.
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The previous RGs comparison

The target genes that were used in this study are involved in different biological pro-
cesses of breast carcinogenesis and metastasis. Particularly, tumorigenesis, prolifera-
tion, apoptosis, and invasion are associated with many genes and signaling pathways. 
For example, genes such as MAPK3 and MAPK9 encoding MAP kinases of the ERK sig-
nal pathway participate in transcription factor regulation of many biological processes 
[39, 40]. Recently, novel results have indicated proteins that serve important roles during 
the process of cancer development. FAAH is a membrane-bound protein belonging to 
the serine hydrolase family of enzymes that plays a significant role in the termination of 
signaling of fatty acid amides (FAAs), a class of bioactive lipids, both in the central nerv-
ous system and in some cancer tissues [41]. Hypoxia-inducible factors (such as HIF1A) 
play an important role in the development of tumors, thus the study of these factors is 
indispensable for cancer research [42, 43]. Therefore, to confirm the roles of these genes 
on the vital regulatory mechanisms in breast cancer, we compared the potential role of 
novel RGs (SF1, TRA2B, THRAP3, RHOA, and QRICH1) vs. traditional RGs (ACTB, and 
GAPDH) in the normalization of target gene expression.

Our proposal

In this study, we did not merely verify the use of conventional RGs, but also identified 
and selected more appropriate novel RGs for breast cancer research. Our results show, 
that the use of a single RGs should be avoided for breast cancer research. Similarly, the 
use of double RGs is not recommended. These findings are similar to what has been sug-
gested in most of the studies using transcriptomic datasets [44]. As far as we know, only 
one previous study reported on the role of RGs in the normalization of breast cancer 
gene expression studies. The previous studies of RGs used traditional RGs, and other 
breast cancer studies were also based on traditional RG [3, 7]. In the present study, a 
large number of biological samples were provided for determination and validation, and 
multiple algorithms were used for evaluation, with the RNA-seq dataset being used for 
prediction and selection. Therefore, in terms of both the number and quality of RGs, this 
study is a significant step forward from previous studies. Our results suggest that the 
recommended number of RG is at least three for breast cancer tissues or cell lines. Nev-
ertheless, these promising results require further verification of target genes in order to 
obtain more reliable data sets.

Limitations and future research suggestions

Although this study was based on a large amount of transcriptome data to predict the 
new RGs, and a large number of breast cancer samples were used for confirmation and 
verification, we still cannot guarantee that our research results apply to all breast cancer 
types, especially those rare disease types, such as medullary breast carcinoma. In addi-
tion, mutations of gene expression always exist, and the number of samples in our study 
was limited. Therefore, our final recommendation may not be an absolute perfect choice, 
but a relatively better choice.

Sequencing technology is widespread with the development of genomics, and large 
amounts of accumulated data need to be interpreted from a multi-disciplinary perspec-
tive in order to choose suitable RGs [45]. Some emerging technologies and methods for 
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data mining require us to borrow and learn, such as the multi-objective Particle Swarm 
Optimization [46], and the meta-heuristic optimization algorithm [47]. In future work, 
more novel algorithms need to be developed for explaining how normalization affects 
breast cancer expression data gathered by qRT-PCR, which will allow us to improve the 
accuracy and standardization across study systems.

Conclusions
In this study, we tested 16 different candidate RGs in six different breast cancer tissues 
and seven breast cancer cell lines, using five different statistical algorithms for evaluation. 
Our results indicate that SF1 + TRA2B + THRAP3 and THRAP3 + RHOA + QRICH1 are 
promising RG combinations for efficient gene normalization under different conditions. 
Furthermore, the availability of these RGs and the stability of their expression in various 
tumor tissues and cells will allow performing future studies focusing on genes essen-
tial for breast cancer biology, and choosing a reliable and appropriate RG combination 
will allow more accurate assessments of differential gene expressions in breast cancer 
research.

Methods
Breast cancer tumor

Breast tumor and para-carcinoma tissues were supplied by the Breast Tumor Biobank 
of the Three Gorges Hospital Affiliated with Chongqing University. Fresh tissues were 
obtained from patients with written informed consent and with permission of the 
Three Gorges Hospital Affiliated with Chongqing University Clinical and the Labora-
tory Research Ethical Council. All tissues were stored frozen at – 80 ℃ after pathologic 
evaluation. We collected a total of 66 tissue samples including benign tumor tissues 
(n = 6), as well as tissues from four subtypes of breast cancer including HR + /HER2 − 
(n = 6), HR + /HER2 + (n = 6), HR −/HER2 − (n = 6), HR −/HER2 + (n = 6), and their 
paired para-carcinoma tissues (n = 6 each) from 24 patients who were diagnosed with 
breast cancer and from 6 patients who were diagnosed with breast cancer and then were 
treated with NAC before surgery. The para-carcinoma tissue samples had been taken 
from outside of the histopathological tumor border (3 cm) in the same excisional biopsy 
specimen. The clinical patient information is shown in Additional file 10: Table S8.

Cell lines and related treatment

Breast cancer cell lines T-47D, MDA-MB-231, and MDA-MB-486 were purchased 
from the Cell Bank of the Type Culture Collection of the Chinese Academy of Sciences 
(Shanghai, China). MCF-10A and MCF-7 cell lines were purchased from the American 
Type Culture Collection (ATCC, Manassas, USA). MDA-MB-231 and MDA-MB-486 
cells were cultured in Leibovitz’s L-15 Medium (L-15, Gibco, USA). T-47D cells were 
cultured in Dulbecco’s modified Eagle medium, containing high glucose and pyruvate 
without glutamine (DMEM, Gibco, USA). MCF-10A cells were cultured in DMEM: 
Nutrient Mixture F-12 (DMEM/F-12, Gibco, USA) and MCF-7 cells were cultured in 
Minimum Essential Medium supplemented with 0.01  mg/ml bovine insulin (MEM, 
Gibco, USA). Moreover, we have constructed the MDA-MB-231 cell lines overexpress-
ing CNR2 or CNR2 knock-down using lentiviruses (Genechem, Shanghai, China). All 
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culture media were supplemented with 20U/mL penicillin, 100  mg/mL streptomycin, 
and 10% heat-inactivated fetal bovine serum (FBS, Gibco, Australia). Cells were grown 
at 37 ℃ in a humidified atmosphere including 5% CO2. At the end-point of each experi-
ment, the final pH of the supernatant was always measured by a digital pH-meter (pH 
301, HANNA Instruments, USA).

Total RNA extraction and cDNA synthesis

Total RNA was isolated with RNAiso Plus (Takara, Dalian, China) using the phe-
nol–chloroform method. Extracted RNA was quantified using Nanodrop One (Ther-
moFisher, Wilmington, USA) and its integrity was checked on a 1% agarose gel. Only 
RNA samples with A260/A280 ratios between 1.9 and 2.2 and A260/A230 ratios greater 
than 2.0 were used for cDNA synthesis. Total RNA (1 μg) was reverse-transcribed into 
cDNA using random primers or an oligo dT primer using a PrimeScript RT reagent Kit 
with gDNA Eraser (Takara, Dalian, China), according to the manufacturer’s protocol 
[48]. All cDNA samples were diluted 1:8 with RNase-free water and stored at – 20 ℃.

Selection of candidate reference genes

The transcriptome sequencing dataset of 1217 breast cancer samples was downloaded 
from the TCGA database (https://​www.​curel​ine.​com/​the-​cancer-​genome-​atlas.​html) 
(Fig.  5A). After obtaining the gene fragments per kilobase of exon model per million 
mapped reads (FPKM), transcripts that exhibited low levels (FPKM = 0 appearing over 

Fig. 5  The workflow of this study. (A) The gene expression profiles of 1217 breast cancer (BC) samples were 
obtained from the TCGA public database; (B) Four indexes, including FPKM, CV, DPM, and FC-5%, were used 
to select candidate RGs and Venn diagram analysis identified the RGs common to these indexes; (C) qRT-PCR 
experiments were carried out on various BC tissue specimens (n = 66) and BC cell lines (n = 21). P, adjacent 
tissues; C, cancer tissues. Six biological replicates in each tissue group and three replicates for each BC cell line 
were used in this study. ov, overexpression; kd, knock-down. (D) Candidate RGs were identified and evaluated 
by 5 public algorithms including geNorm, NormFinder, BestKeeper, ΔCt method, and ComprFinder. (E) The 
selected RGs were validated using 4 target genes (MAPK3, MAPK9, FAAH, and HIF1A). After being normalized 
by different RGs, the patterns of target gene expression were compared. The capabilities of different types of 
RGs were tested by correlation analysis

https://www.cureline.com/the-cancer-genome-atlas.html
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61 times in 1217 transcriptome profiles, 1217 × 5% = 60.85) were removed. According 
to the FPKM value of every gene in all transcriptome profiles [49], the coefficient of vari-
ation (CV) [50], dispersion measure (DPM, calculated using a jar package from Pan et.al 
[51], and FC-5% were calculated to screen for novel RGs (shown in Fig. 5B). The CV was 
defined as the CV value of the 1217 FPKM values of every gene. The DPM parameter 
was introduced for the identification of the RGs on the Pattern Gene Finder [51]. The 
FC-5% was defined as the fold change between the top 5% high expression levels divided 
by the bottom 5% within 1217 profiles. The standard criteria of candidate RGs were 
relatively high expression levels and low variation according to the results from FPKM, 
CV, DPM, and FC-5% analyses. Briefly, the evaluation parameter criteria FPKM ≥ 10, 
CV ≤ 40%, FC-5% ≤ 5, and DPM ≤ 0.3 were set for seeking novel candidate RGs. In addi-
tion to the software mentioned above, MS Excel 2019 was used for these analyses.

Furthermore, two frequently used RGs (ACTB and GAPDH) and four RGs (GUSB, 
RPL13A, TUBA1A, and B2M) from previous studies were also assessed along with the 
novel candidate RGs. All RGs were amplified using qRT-PCR for subsequent determi-
nation and validation. The probability density curves were drawn using Matlab scripts 
from our previous study [28]. Venn diagram analysis was performed using a webtool 
(http://​www.​omics​hare.​com/​tools).

Primer design and amplification efficiency analysis

The sequences of all genes used in this study were obtained from the National Center 
for Biotechnology Information (NCBI, https://​www.​ncbi.​nlm.​nih.​gov/). Using Primer-
BLAST, primers were designed for all transcripts, with Tm values around 60 °C, GC per-
cent 45–55%, primer lengths of 18–24  bp, and product length of 80–250  bp. Primers 
were analyzed with Oligo Analyzer v3.1 (https://​eu.​idtdna.​com/​calc/​analy​zer) to detect 
potential self-annealing and formation of heterodimers [52]. The primers were synthe-
sized by the Beijing Genomics Institute (Beijing, China). Primer specificities were con-
firmed by melting curve analysis.

qRT‑PCR analysis

All qRT-PCR runs were carried out in a qTower2.2 PCR System (Analytik Jena, Ger-
many). Reaction mixtures containing 7.5  μL TB Green Premix Ex Taq II (2  ×, Tli 
RNaseH Plus), 0.3  μL ROX Reference Dye II (50 ×, TaKaRa, Dalian, China), 1.5  μL 
cDNA, 0.6  μL each of forward and reverse primers (final concentration 1  μM), and 
4.6 μl nuclease-free water were prepared in MicroAmp fast optical 96-well plates (Ther-
moFisher, USA). Amplification conditions were set as follows: 95 ℃ for 30 s, followed by 
40 cycles of 95 ℃ for 5 s and 60 ℃ for 34 s. Melting curve analysis was performed from 
60 to 95 ℃. Reaction mixtures containing no template were used as negative controls. 
All samples were analyzed with three technical replicates. To test the amplification effi-
ciency of each paired primer, serial tenfold dilutions (1:103–1:1010) of the primer cor-
responding to PCR product were used to generate a standard curve [53]. The coefficient 
of determination (R2) and slope (S) values were calculated from the standard curves and 
primer efficiencies (E) were calculated as 10(1/S)−1. The qRT-PCR experiments and 
analyses in this study were performed according to the Minimum Information for Publi-
cation of Quantitative Digital PCR Experiments (MIQE) guidelines [54].

http://www.omicshare.com/tools
https://www.ncbi.nlm.nih.gov/
https://eu.idtdna.com/calc/analyzer
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Analysis of gene expression stability

The cycle threshold (Ct) results from all runs were integrated into a data matrix. Then 
the data matrix was evaluated by four algorithms: geNorm, NormFinder, ΔCt method, 
and BestKeeper. Finally, the gene stability values from the above four algorithms were 
further evaluated by the ComprFinder method (shown in Fig. 5D).

Validation of the candidate reference genes

To verify the reliability of the stable RGs, four target genes including MAPK9 and 
MAPK3 from the extracellular signal-regulated kinase (ERK) signal pathway, and two 
other vital functional genes (FAAH, encoding fatty acid amide hydrolase, and HIF1A, 
encoding hypoxia-inducible factor 1-alpha) were chosen for validation (shown in 
Fig.  5E). These target genes play an important role in the initiation and metastasis of 
breast cancer [42, 55–58]. The independent-sample t-test was performed using Micro-
soft Excel, and the graphs were plotted using GraphPad Prism 7. The results are pre-
sented as mean ± standard error of the mean (SEM), *P < 0.05, **P < 0.01. For multiple 
gene combinations, the geometric mean of their Ct values was calculated. The relative 
expression levels were calculated using the 2−ΔΔCt method. To further evaluate the inter-
nal relationship of these different types of single- or multi-RG combinations, correlation 
analysis was performed as previously described [28]. Additionally, correlation analysis 
was also performed on the p-value dataset yielded in t-test analysis under different types 
of normalized factors.
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