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School of Information Engineering, Jingdezhen Ceramic Institute, Jingdezhen, China

Pupylation is an important posttranslational modification in proteins and plays a key role in
the cell function of microorganisms; an accurate prediction of pupylation proteins and
specified sites is of great significance for the study of basic biological processes and
development of related drugs since it would greatly save experimental costs and improve
work efficiency. In this work, we first constructed a model for identifying pupylation
proteins. To improve the pupylation protein prediction model, the KNN scoring matrix
model based on functional domain GO annotation and the Word Embedding model were
used to extract the features and Random Under-sampling (RUS) and Synthetic Minority
Over-sampling Technique (SMOTE) were applied to balance the dataset. Finally, the
balanced data sets were input into Extreme Gradient Boosting (XGBoost). The
performance of 10-fold cross-validation shows that accuracy (ACC), Matthew’s
correlation coefficient (MCC), and area under the ROC curve (AUC) are 95.23%,
0.8100, and 0.9864, respectively. For the pupylation site prediction model, six feature
extraction codes (i.e., TPC, AAI, One-hot, PseAAC, CKSAAP, and Word Embedding)
served to extract protein sequence features, and the chi-square test was employed for
feature selection. Rigorous 10-fold cross-validations indicated that the accuracies are very
high and outperformed its existing counterparts. Finally, for the convenience of
researchers, PUP-PS-Fuse has been established at https://bioinfo.jcu.edu.cn/PUP-PS-
Fuse and http://121.36.221.79/PUP-PS-Fuse/as a backup.

Keywords: pupylation, multiple features, post-translational modification, chi-square test, word embedding
1 INTRODUCTION

Pupylation is a kind of prokaryotic ubiquitin-like protein (Pup), a posttranslational protein
modification (PTM) that occurs in actinomycetes, and has made a great contribution to the life
process of many cells (1, 2). Ubiquitylation is one of the most common PTM modifications (3). In
eukaryotes, ubiquitylation modification plays an important role in DNA repair, transcription
regulation, control signal transduction, endocytosis, and sorting (4); research has shown that
ubiquitylation modification is closely related to human health, such as lung cancer, breast cancer,
type II diabetes, and other complex diseases (5–8). Pupylation is similar to ubiquitin in that Pup is
attached to specific lysine residues. Since the PTM small protein modification was originally
n.org April 2022 | Volume 13 | Article 8495491
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discovered in prokaryotes, the Pup in Mycobacterium
tuberculosis (Mtb) plays an important role in the selection of
protein degradation (5).

To better understand the biological mechanism of pupylation,
the basic goal and fundamental task is to accurately and
effectively predict the pupylation proteins and sites. For
identifying PTM proteins, to the best of our knowledge, Qiu is
the first one to have tried to identify phosphorylated (9) and
acetylated (10) proteins, and nobody has done a similar work on
pupylation protein until now. For a predictive analysis of
pupylation sites, Liu proposed a GPS-PUP predictor for
predicting pupylation sites with a group-based prediction
system (GPS) method (11). Tung developed an iPUP predictor
that implemented the support vector machine (SVM) algorithm
with the composition of pairs of k-space amino acids (CKSAAP)
(12). Chen designed a predictor called PupPred based on support
vector machines (SVM), in which amino acid pairs were used to
encode lysine-centered peptides (13). Hasan established a web
server named pbPUP (14), which was a profile-based feature
method to predict pupylation sites. Recently, FN Auliah
developed PUP-Fuse web server for predicting pupylation sites
(15); this algorithm was based on a variety of sequence features to
predict pupylation sites. Although these algorithms could output
higher specificity, their sensitivity scores are much lower.
Frontiers in Endocrinology | www.frontiersin.org 2
In this work, a framework has been developed for predicting
pupylation proteins and sites named as PUP-PS-Fuse, shown in
Figure 1. In predicting the pupylation protein model, the KNN
scoring matrix, the Word Embedding model (16–18), the
Synthetic Minority Oversampling Technique(SMOTE) (19),
and Random Under-sampling(RUS) (20) were applied to
enhance the operation engine. Moreover, in the pupylation site
prediction model, TPC (15, 21), AAI (22, 23), One-Hot (24),
PseAAC (25, 26), CKSAAP (21, 27, 28), and Word Embedding
(16–18) were used for feature extraction, and the chi-square test
(15, 29, 30) was used to reduce the dimensionality of the feature
space. Both these two models were verified with 10-fold cross-
validation and compared with other existing predictors, the
performance proved that this work is promising for the issue.
2 MATERIALS

2.1 Datasets for Predicting
Pupylation Proteins
In this work, the negative samples were collected from UniProKB
(2021_4), and the positive sample set was composed of 35
pupylation proteins collected from UniProKB and 233
pupylation proteins from PupDB (31). At least one pupylation
FIGURE 1 | The framework of PUP-PS-Fuse (rounded squares represent data sets, cylinders represent feature extraction methods, rectangles and ellipses
represent feature selection methods, and diamonds represent classifiers. RUS is the abbreviation of Random Under-sampling and SMOTE is the abbreviation of
Synthetic Minority Over-sampling).
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site must exist in any positive protein sequence, and none of the
pupylation sites must appear in the negative samples. A given
protein sequence can be expressed as P=R1R2R3...Ri...RL; here,
Ri represents the ith amino acid residue, and L represents the
length of the protein sequence.

In order to make the results more rigorous, CD-HIT was used
to remove 30% of the redundancy from 268 positive sampling as
and 1,463 negative samples. Finally, 201 positive samples and
1,126 negative samples were collected for the proposed
benchmark with a positive–negative ratio of 1:5.6.

2.2 Datasets for Predicting
Pupylation Sites
This article used the same data set as that of Aulia (15). The data set
was retrieved and obtained from the publications of PupDB (31)
and contained 233 pupylation proteins which were subject to a
cutting of redundancy treatment to remove those sequences that
had ≥80% pairwise sequence identity with any other. After strictly
following the aforementioned procedures, the training set consists
of 186 amino acid fragments with pupylation site as positive
samples and 372 negative samples without any pupylation site. As
a result, the positive–negative ratio is 1:2. Since the imbalance of the
data will affect the prediction results of the model, we balanced the
training set with a positive–negative ratio of 1:1 (186 positive
samples and 186 negative samples) by randomly deleting negative
samples. The test set is composed of 87 positive samples and 191
negative samples by randomly extracting from the benchmark data
set. Table 1 summarizes the data sets for predicting pupylation
proteins and pupylation sites.

In order to formulate the pupylation site sequence in more
detail and more comprehensively, the sequence fragment of the
potential pupylation site can be expressed in the form of
formula (1):

qd Kð Þ = R1R2 − Rd−1RdKRd+1Rd+2 ⋯R2d−1R2d (1)

Where R1 to Rd represent the amino acid residues on the left of
K, Rd+1 to R2d represent the amino acid residues on the right of K,
d is an integer, and the middle K means Lysine (32). In addition,
the peptide sequence qd(K) can be divided into q+

d (K) and q−
d (K)

(see formula (2)), where q+
d (K) represents a pupylation protein

sequence fragment whose center point is K, and q−
d (K) denotes

non-pupylation protein sequence fragments whose center point
is K. The sliding window method was used to segment pupylation
protein sequences with different window sizes. Judging from the
analysis of the pupylation protein sequence preferred by FN Aulia
et al. (15), it can be seen that the prediction is the best when the
window size is 57 with d = 28.
Frontiers in Endocrinology | www.frontiersin.org 3
When the sequence fragments were divided, in order to make
the site sequence equal in length, the missing amino acids were
filled in with X residues. As a result, the pupylation site data set
adopts the form of formula (2):

qd Kð Þ = q+
d Kð Þ ∪ q−

d Kð Þ (2)

Among them, the subset of positive samples q+
d (K) represents

a true pupylation site segment with K at its center, and the subset
of negative samples q−

d (K) represents the false pupylation
site fragment.
3 FEATURE EXTRACTION AND METHODS

3.1 Feature Extraction Methods for
Predicting Pupylation Proteins
The basic step for predicting pupylation protein is to extract
features of the protein sequence, and it is a key step that affects the
effectiveness of the prediction model. When predicting pupylation
protein, we chose GO-KNN (10) and Word Embedding coding
schemes to extract protein sequence information.

3.1.1 GO-KNN
GO-KNN (10) is based on the KNN scoring matrix of functional
domain GO annotations to extract features. In this study, we need
to obtain the GO information of all proteins. For a protein
without any GO information, we replace it with GO terms of
its homologous protein and then calculate the distance between
any two protein sequences. Taking protein R1 and R2 as example,
their GO annotations can be expressed by R1

GO = fGO1
1,GO

1
2,⋯,

GO1
Mg and R2

GO = fGO2
1,GO

2
2,⋯,GO2

Ng, GO1
i and GO2

i represent
the ith GO of the proteins R1 and R2, respectively, and M and N
are the numbers of their GO terms. The feature extraction steps
are listed as follows:

(a). Calculating the distance between two proteins, as in
formula (3).

Distance R1,R2ð Þ = 1 −
⌊R1

GO ∩ R2
GO ⌋

⌊R1
GO ∪ R2

GO ⌋
(3)

Where ∪ and ∩ represent the intersection and union of sets,
and ⌊ ⌋ represents the number of elements in the set.

(b) Sorting all the calculated distances from small to large.
(c) Calculating the percentage of positive samples in the

Y neighbors.
In this study, the Y values were selected in order of 2, 4, 8, 16,

32, 64, 128, 256, and 1,024. Finally, a 10-dimensional feature
vector was formed. Therefore, the digital feature vector of protein
R1 can be expressed as: (x1,x2,…,x10).

3.1.2 Word Embedding
Word Embedding (16–18) is a method for converting words in
text into digital vectors. The Word Embedding process was used
to embed the high-dimensional space containing all the number
of words into a low-dimensional continuous vector space, each
word or phrase was mapped to a vector in the real number
TABLE 1 | Data set for prediction of pupylation protein and pupylation site.

Datasets Positive Negative Ratio

Pupylation proteins 201 1126 1:5.6
Pupylation site training 186 186 1:1
Pupylation site test 87 191 1:2.2
Positive represents the number of positive samples, and Negative represents the number
of negative samples.
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domain, and the word vector was generated as a result of the
Word Embedding. In this study, we quoted the word embedding
method of Qiu (33, 34). This briefly introduces how word
embedding was applied in this research as described below.

Step 1: Firstly, the pupylation protein sequence was split into
fragments and a wordbook is created. In this study, we used three
different word embedding models, and the pupylation protein
sequence is cut into different fragment lengths. Their fragment
lengths can be set to 2, 3, or 4, respectively, and the step size of
the moving window is 1.

Step 2: The CBOW (Continuous Bag-of-Words) model was
used to train the data. In order to speed up the training speed of
word vectors, the negative sampling technique (35) and
backpropagation algorithm (36) were adopted in the CBOW
model. At this step, the dimension sizes of the word vectors were
selected as 128, 256, and 512, respectively, and we then obtained
three vectorsW128,W256, andW512 for a given protein sequence.

Step 3: >A protein sequence was represented by combining
CBOW vectors. At this step, we merge the features of each
pupylation protein sequence of the three aforementioned words
vector, as shown in formula (4), and finally get an 896-
dimensional vector.

V = W128 ⊕W256 ⊕W512 (4)

Among them, W128, W256, and W512 mean 128-, 256-, and 512-
dimensional word vectors, and ⊕ means to concatenate a two-
word vector.

3.2 Feature Extraction Methods for
Predicting Pupylation Sites
For predicting pupylation sites, TPC (15, 21), AAI (22, 23), One-
Hot (21, 37), PseAAC (25, 26), CKSAAP (21, 27, 28), and Word
Embedding (17, 18) coding schemes were involved in extracting
protein fragment [for example, formula (2)] information and are
briefly described as follows.

3.2.1 TPC
The first feature extraction algorithm applied for predicting
pupylation sites in this paper is TPC (15, 21) which codes
protein fragment information by calculating the frequency of
occurrence of three consecutive amino acid pairs. Bian et al. (38)
identified mitochondrial proteins of Plasmodium. In this
method, we divide the number of occurrences of each of the
three consecutive amino acid pairs in the fragment by the total
number of all possible tripeptides [refer to formula (5)], and
finally form a 9,261-dimensional digital feature vector.

pi =
Ni

o9261
1 Ni

(5)

where Ni represents the number of occurrences of the ith three
consecutive amino acid pairs in the fragment.

3.2.2 AAI
The second algorithm, AAI code, is based on AAindex (22, 23),
which is a database that collects more than 500 amino acid
Frontiers in Endocrinology | www.frontiersin.org 4
indexes. After evaluating the different physicochemical and
biological properties of amino acids, the top 15 useful and
informative amino acid indexes selected by FN Auliah et al.
(15) were used in this paper (fifteen types of AAI properties can
be found at https://www.mdpi.com/1422-0067/22/4/2120/s1),
with a window sequence length of 57. Therefore, AAI encoding
produced 855 (57 × 15) dimensional feature vectors.

3.2.3 One-Hot
One-Hot coding (21, 37) is based on the 0–1 coding scheme. In
this coding scheme, each amino acid is represented by a 20-
dimensional binary vector. For example, alanine A is
transformed into a vector (10000000000000000000), cysteine C
is transformed into a vector (01000000000000000000), tyrosine
Y is transformed into a vector (00000000000000000001), etc. In
this study, a pseudo-amino acid code X was selected to represent
it, which is represented by a (00000000000000000000) vector.
The sequence length of the window is 57, so the total dimension
of the proposed One-Hot feature vector is 20×(2d+1), i.e.,
1,140, dimensions.

3.2.4 PseAAC
PseAAC (25, 26) coding has been widely used in the study of
protein and protein-related problems. It can be called a “pseudo-
amino acid composition” model to represent protein samples.
Here, six physical and chemical properties of amino acids,
hydrophobicity, hydrophilicity, molecular side chain mass,
PK1, PK2, and PI, were selected to convert the protein
sequence into the feature vector. The parameters w and l were
set to 0.05 and 5, respectively [the values of w and l are clearly
explained by Chou (39) et al.]. Finally, a 25-dimensional digital
feature vector is formed.

pi =

fi

o20
i=1fi+wol

J=1qj
1 ≤ i ≤ 20ð Þ

wqi−20
o20

i=1fi+wol
j=1qj

20 + 1 ≤ i ≤ 20 + lð Þ

8><
>: (6)
3.2.5 CKSAAP
CKSAAP (21, 27, 28) coding is a coding scheme based on K-
spaced amino acid pairs. In the coding process, a protein
sequence contains 441 (21 × 21) amino acid pairs (AA, AC,
AD,…, XX) and is expressed by formula (7).

FAA
FN

,
FAC
FN

,
FAD
FN

,⋯,
FXX
FN

� �
441 (7)

Where, FAA, FAC, FAD, FXX, represents the number of times
the corresponding amino acid pair appears in the protein
sequence, and L is used in this article to represent the length
of the protein sequence, FN = L – k - 1. For each k, 441 pairs of
residues are formed, where k represents the space between two
amino acids, the values of k are 0, 1, 2, 3, 4, 5, and the best kmax

setting is 5. Therefore, each corresponding protein sequence can
be represented with a 2,646 (21 × 21 × (kmax +1)) dimensional
feature vector.
April 2022 | Volume 13 | Article 849549
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3.3 Data Balancing and Feature Selection
In the model of pupylation protein prediction, the number of
positive samples is 201 and the number of negative samples is
1126, and the ratio of positive to negative samples is
approximately 1:5.6. Since it is an unbalanced data set,
Random Under-sampling (RUS) (20) and Synthetic Minority
Oversampling (SMOT) (19, 20) were used to process the sample
data. Actually, the RUS is a very simple and popular under-
sampling technique and the SMOT is one of the most popular
methods in oversampling proposed by Chawla et al. (40).

In the model of pupylation site prediction, fusion of multiple
features would generate a high-dimensional vector, and there
may be some redundant or irrelevant features. Therefore, the chi-
square test (15, 29, 30) was used to select the most beneficial
feature. The chi-square test was first proposed by Karl Pearson
(41), usually called the Pearson chi-square test, which is currently
the most popular non-parametric(or no distribution) test based
on the hypothesis of the chi-square c2 distribution test method
(42). In the model, the first 600-dimensional features were
selected to get a better prediction result.
4 MODEL EVALUATION METRICS AND
OPERATION ENGINE

4.1 Model Evaluation Metrics
In this study, four indicators were used to evaluate the
performance of the model. They are Accuracy (ACC) (43),
Sensitivity (SN), Specificity (SP), and Matthews Correlation
Coefficient (MCC) (44–47), which are defined as Eq. (8).

Sn = TP
TP+FN

Sp = TN
TN+FP

ACC = TP+TN
TP+FP+TN+FN

MCC = TP�TN−FP�FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP+FPð Þ� TP+FNð Þ� TN+FPð Þ� TN+FNð Þ

p

8>>>>>><
>>>>>>:

(8)

In addition, the prediction accuracy can also be measured and
analyzed using the ROC curve. For the prediction method, the
ROC (48) curve plots the true positive rate (Sn) and false positive
rate (Sp) of all possible thresholds as a function of the
relationship. The calculation of AUC also provides a
comprehensive understanding of the proposed prediction
method. Generally, the closer the AUC (49) value is to 1, the
better the prediction method.

4.2 Operation Engine
Most of the classification algorithms can handle the data with the
digital vector; thus, this work tried diverse approaches include
Random Forest (RF), Support Vector Machine (SVM), K nearest
neighbor (KNN), eXtreme Gradient Boosting (XGBoost), and
Ensemble Learning. Since they have been widely used in various
fields such as marketing management (50), bioinformatics (51),
and image retrieval (52), we would not repeat their principles in
this manuscript in detail.
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In fact, the Random Forest (RF) (51, 53) algorithm is based on
the classification and regression tree (CART) (54) technology
which is formed by integrating multiple decision trees through
the idea of integrated learning. In the RF model, each decision
tree is a classifier. For a given sample, each tree will get a
classification result. All the voting results are integrated, and
the final output is the category with the most votes. The SVM
(55) is a supervised learning model whose main idea is to find the
hyperplane that distinguishes the two types, to maximize the
margin, some points in the sample that are closest to the
hyperplane; these points are called support vectors. The KNN
(56, 57) is a supervised learning model, and its main idea is to
determine which category it belongs to when predicting a new
value based on the category of the nearest K points. XGBoost (58)
is an open-source machine learning project developed by Chen
et al. It efficiently implements the GBDT (59) algorithm and has
made many improvements to the algorithm and engineering.

Ensemble learning (60) is an important method for improving
prediction accuracy in current data mining and machine learning.
It is frequently used in the field of machine learning (5) due to its
“fault tolerance.” It has better classification results than individual
classifiers. The ensemble method is a meta-algorithm that
combines several machine learning techniques into a predictive
model. There are three commonly used frameworks for ensemble
learning: Bagging (61) to reduce variance, Boosting (62) to reduce
bias, and Stacking (63) to improve prediction results. In this
research, we used the Stacking ensemble learning algorithm. The
main idea of Stacking is as follows: we firstly train multiple
different models, and then use the output of each model trained
before as input to train a model to get a final output. For predicting
Pupylation sites, we use three base classifiers, namely, RF, SVM,
and KNN, and then use LogisticRegression (LR) to classify the
results of the base classification to get the final classification results.
5 RESULTS AND DISCUSSION

5.1 Results and Discussion of Pupylation
Proteins Prediction
5.1.1 Effect of the Different Features
In this study, the two single feature encoding methods are GO-
KNN and Word Embedding, and 10 dimensions and 896
dimensions are obtained respectively. These two kinds of
features have been fused into a 906-D feature vector PUP-P-
Fuse. Through the 10-fold cross-folding verification, the
prediction results of different features are shown in Table 2.

From Table 2, we can know that the prediction results after
fusion are not as good as we expected; the best prediction
performance is GO-KNN’s with ACC of 94.36%, Sn of 77.08%,
Sp of 97.45%, MCC of 0.7731, and AUC of 0.9530, which are
slightly higher than those of CBOW and PUP-P-Fuse (see to the
first 4 line of Table 2).

5.1.2 Effect of the RUS and SMOTE
Using Random Under-sampling (RUS) and Synthetic Minority
Over-sampling (SMOTE) to balance the data, and then through
April 2022 | Volume 13 | Article 849549
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10-fold cross-folding verification, the prediction results of ACC,
Sn, Sp, MCC, and AUC on balanced and unbalanced data sets
were obtained and are shown in Table 2.

From the last line of Table 2, we can see that the PUP-P-
Fuse’s ACC, Sn, MCC, and AUC predictive indicators have
increased by 3%, 32%, 17%, and 2%, respectively, after the
RUS and SMOTE technology balance. Therefore, the results
show that multifeature fusion (PUP-P-Fuse) can improve the
performance. In order to better analyze the influence of different
features on pupylation protein prediction, the results obtained by
two single coding and fusion features are as shown in Figure 2.

From Figure 2, we can see that the ACC, Sn, Sp, MCC, and
AUC of GO-KNN are 93.37%, 82.64%, 95.36%, 0.7519, and
0.9509, respectively. Those of CBOW and PUP-P-Fuse are
denoted with red and green bars, respectively. Compared with
GO-KNN and CBOW’s ACC, Sn, Sp, MCC, and AUC predictive
indicators, the PUP-P-Fuse increased by 2%–4%, 10%–11%,
0.6%–2%, 8%–13%, and 3%, respectively. In summary, all
indicators of PUP-P-Fuse are higher than the other two
models after data balancing. Therefore, it is proper to use RUS
and SMOT in this issue.
Frontiers in Endocrinology | www.frontiersin.org 6
5.1.3 Effect of Classifiers
Classifiers play an important role in prediction. In this work, we
used the above five classifiers to identify pupylation proteins.
After 10-fold cross-folding verification, the results of ACC, Sn,
Sp, MCC, and AUC of each classifier are shown in Table 3. From
Table 3, we can see that XGBoost gained the best performance
on each evaluation index. In order to better compare the effects
of different classifiers, the prediction results of the five classifiers
are as shown in Figure 3.

The area under the ROC curve can evaluate the predictive
performance of the model. It is seen in Figure 3 that the
XGBoost classifier, of which AUC is 0.9840, is the best choice
for the proposed model.
5.1.4 Effect of Features on the Independent Dataset
To verify the effect of the PUP-P-Fuse model, we used 67
pupylation proteins and 134 negative samples for independent
testing; PUP-P-Fuse has the highest performance, as shown in
Table 4. It can be seen that the effect of the PUP-P-Fuse model is
still very good. However, from Table 4 we can see that the overall
FIGURE 2 | The prediction results of different characteristics on balanced data for predicting pupylation proteins.
TABLE 3 | The prediction results of different classifiers for predicting pupylation
proteins.

Algorithms Acc (%) Sn (%) Sp (%) MCC AUC

XGBoost 95.40 92.03 96.00 0.8327 0.9840
Ensemble Learning 93.87 90.61 94.48 0.7874 0.9788
SVM 91.36 93.65 90.96 0.7335 0.9689
RF 92.87 82.40 94.75 0.7355 0.9703
KNN 83.88 96.90 81.55 0.6104 0.9585
April 202
2 | Volume
 13 | Article
The bold values are means the best performance of the column with the same metric and
are showed in following tables with the same meaning.
TABLE 2 | The prediction results of different feature extraction and balance
methods for predicting pupylation proteins.

Feature ACC (%) Sn (%) Sp (%) MCC AUC

Unbalanced GO-KNN 94.36 77.08 97.45 0.7731 0.9530
CBOW 91.91 67.42 96.27 0.6700 0.9553
PUP-P-Fuse 92.07 60.25 97.77 0.6615 0.9647

Balanced PUP-P-Fuse 95.40 92.03 96.00 0.8327 0.9840
GO-KNN and CBOW represent two feature extraction methods for predicting pupylation
proteins, and PUP-P-Fuse is a fusion of the above two methods.
The bold values are means the best performance of the column with the same metric and
are showed in following tables with the same meaning.
849549
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performance of the SVM classifier is better than those of
other classifiers.

5.2 Results and Discussion of Pupylation
Site Prediction
5.2.1 Effect of Features on the Training Dataset
In this study, six single-feature codes are AAI, One-Hot,
PseAAC, Word Embedding, CKSAAP, and TPC, and the
feature PUP-S-Fuse was obtained after fusion. The six features
are coded separately and obtained 855, 1140, 26, 896, and 2,646
dimensions, respectively. Through 10-fold cross-folding
Frontiers in Endocrinology | www.frontiersin.org 7
verification, we choose the SVM classifier for training. Without
feature selection, we obtain the prediction results of different
feature extractions with a ratio of positive samples to negative
samples of 1:1, as shown in Table 5.

From Table 5, we can see that the ACC, Sp, MCC, and AUC
indicators of TPC are all higher than other single codes, and the
Sn indicators of Word Embedding are all higher than other single
codes. The fusion feature code PUP-S-Fuse performs better than
any single feature on ACC, Sn, Sp, MCC, and AUC indicators.
Therefore, feature fusion is very necessary for this issue.

5.2.2 Effect of the Chi-Square Test on the
Training Dataset
As regards the model for predicting the pupylation site, we
selected different K values for the chi-square test and compared
them and found that the prediction effect has been relatively
greatly improved after the chi-square test was used to
select features.

It is seen in Table 6 that when the K value is selected as 600,
the ACC, Sn, and MCC of the pupylation site are predicted to be
higher than other K values. When the K value is selected as 1,000,
T
fo

F

K
K
K
K
K
K

T

FIGURE 3 | ROC curves of different classifiers for predicting the pupylation protein.
TABLE 4 | The prediction results of different classifiers on the testing set of
pupylation proteins.

Algorithms Acc (%) Sn (%) Sp (%) MCC AUC

XGBoost 84.66 80.99 86.62 0.6630 0.9251
Ensemble Learning 85.34 80.96 87.41 0.6738 0.9376
SVM 85.48 88.78 83.85 0.6955 0.9317
RF 84.55 79.15 87.79 0.6571 0.9270
KNN 78.56 83.97 75.61 0.5653 0.8868
TABLE 5 | The effect of different feature extraction methods on the training set
of pupylation sites.

Features ACC (%) Sn (%) Sp (%) MCC AUC

AAI 56.71 56.21 57.52 0.1380 0.6148
One-Hot 57.49 59.49 55.95 0.1550 0.6296
PseAAC 61.56 62.00 61.64 0.2367 0.6597
Word Embedding 69.92 73.36 66.55 0.4001 0.7645
CKSAAP 68.84 68.92 69.20 0.3818 0.7596
TPC 70.36 70.69 70.65 0.4143 0.7697
PUP-S-Fuse 74.00 80.00 68.55 0.4883 0.7951
The bold values are means the best performance of the column with the same metric and
are showed in following tables with the same meaning.
ABLE 6 | The effect of feature fusion Pup-S-Fuse by using the chi-square test
r predicting pupylation sites.

eatures ACC (%) Sn (%) Sp (%) MCC AUC

= 200 89.09 88.82 89.57 0.7830 0.9531
= 400 91.21 92.89 89.52 0.8256 0.9565
= 600 92.30 93.97 90.71 0.8477 0.9599
= 800 91.99 93.31 90.55 0.8400 0.9634
= 1,000 92.00 92.27 91.78 0.8394 0.9641
= 1,200 90.70 91.77 89.70 0.8145 0.9604
April 2
022 | Volume
 13 | Article
he bold values are means the best performance of the column with the same metric and
are showed in following tables with the same meaning.
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the Sp and AUC values of the pupylation site are higher than
those of other K values. Therefore, from the overall effect, we
finally selected 600 for predicting the pupylation site.

5.2.3 Effect of Classifiers on the Training Dataset
Choosing the right machine learning (ML) algorithm is also a
crucial step for predicting results. When predicting pupylation
sites, we used RF, SVM, KNN, Ensemble Learning (EL), and
XGBoost algorithms. In order to verify the effectiveness and
superiority of the EL algorithm used to predict pupylation sites,
we compared these algorithms through 10-fold cross-validation on
the same training set. The prediction results are shown in Table 7.

From Table 7, although we know that the prediction effect of
the EL classifier and SVM classifier is better, the overall
prediction effect of the EL is better than that of the SVM. The
prediction results of RF, KNN, and XGBoost are relatively poor.
In order to evaluate the performance of the classifier more
comprehensively, the ROC curves of different classifiers are as
shown in Figure 4.

From Figure 4, we can clearly see that the area under the
ROC curve of EL and SVM is the largest, and the AUC of EL is
Frontiers in Endocrinology | www.frontiersin.org 8
about 2%–10% higher than that of other ML models. Therefore,
EL was selected as the best classifier for predicting
pupylation sites.

5.2.4 Comparison With Other Methods on
Independent Datasets
In order to compare PUP-S-Fuse with the existing five methods
(GPS-PUP, iPUP, PUPS, PbPUP, and PUP-Fuse), tests were
performed on the same independent set which contains 86
pupylation sites and 1,136 non-pupylation sites from 71
pupylation proteins. PUP-S-Fuse and PUP-Fuse were trained
with the same training data set mentioned above, and the other
four methods were quoted from the references. In the fairly
compared performance, PUP-S-Fuse provided the highest
performance, as shown in Table 8.

From Table 8, we know that the performance of PUP-S-Fuse
on the test set is also better than that of PUP-Fuse. Acc, Sn, Sp,
and MCC are increased by 9%, 19%, 6%, and 24%, respectively,
which proves that PUP-S-Fuse is superior to existing predictors.
TABLE 7 | The prediction results of different classifiers for predicting
pupylation sites.

Algorithms Acc (%) Sn (%) Sp (%) MCC AUC

EL 92.30 93.97 9071 0.8477 0.9599
SVM 91.72 95.27 88.59 0.8377 0.9659
RF 86.72 87.50 86.24 0.7361 0.9347
KNN 81.34 90.37 75.63 0.6706 0.9388
XGBoost 78.49 79.02 77.94 0.5703 0.8622
EL, ensemble learning.
The bold values are means the best performance of the column with the same metric and
are showed in following tables with the same meaning.
FIGURE 4 | The ROC curves of different classification methods for predicting pupylation sites. (EL is the abbreviation of ensemble learning).
TABLE 8 | Comparison of methods on Independent Dataset for predicting
pupylation sites.

Methods Acc (%) Sn (%) Sp (%) MCC AUC

iPUP 73 40 88 0.32
GPS-PUP 68 21 89 0.13
PUPS 67 17 89 0.08
pbPUP 79 48 82 0.45
PUP-Fuse 82 59 91 0.55
PUP-S-Fuse 91.35 78.26 97.38 0.7953 0.9550
April 2
022 | Volume
 13 | Article
The bold values are means the best performance of the column with the same metric and
are showed in following tables with the same meaning.
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6 WEB SERVER AND USER GUIDE

The actual application value of a prediction method can be
significantly improved if it has a web server that can be viewed by
the public; accordingly, the PUP-PS-Fuse web server has been
established. To maximize the convenience of most experimental
scientists, a guide for users is provided below.

Step 1. Opening the web server at “https://bioinfo.jcu.edu.cn/
PUP-PS-Fuse,” the server consists of four main modules, namely,
Pupylation Protein, Pupylation Site, Download (data download),
and Help (website usage guide). You will see the top page of
PUP-PS-Fuse on your computer screen.

Step 2. In the Pupylation Protein prediction module, you can
enter the protein sequence in the input file box, but it must be in
FASTA format. You can also click the example button where you
will see that there are a correct example and an incorrect example
as well as the text input format. Click the Close button, and you
will return to the pupylation Protein prediction interface. Click
the Submit button to get the prediction results. After 20 seconds
or so since your submitting, you will see the following on the
screen of your computer: “The Pupylation protein list includes
…” and “The non-Pupylation protein list includes …”

Step 3. In the Pupylation Site prediction module, you can enter
the protein sequence in FASTA format in the input file box. In the
example_site submodule, you will see that there are a correct
example and an incorrect example as well as the text input format.
Click the Close button, and you will return to the pupylation Site
prediction interface. Click the Submit button to get the predicted
results. After 2 min or so since your submitting, you will see the
following on the screen of your computer: ‘The number of “K” is X.
Location M1, M2, M3, … is(are) predicted to be Pupylation Site(s).’

In the Download module, you can download the Pupylation
protein dataset and Pupylation site dataset (also available in the
Supplementary Material). By the way, you can click on the Help
button to see a brief introduction about the predictors.
7 CONCLUSION

PUP-PS-Fuse was developed to predict pupylation proteins and
sites. In order to predict pupylation proteins, GO-KNN and
Word Embedding served as feature extraction methods. In the
work, GO-KNN extracted features based on the KNN score
matrix of functional domain GO annotations, and Word
Embedding converted information of the amino acid sequence
into digital feature vectors. In addition, RUS and SMOT
technology were used to deal with the imbalance of the data
set to reduce the negative impact of imbalance on the model.
Finally, the XGBoost classifier was selected to make predictions.
In order to predict pupylation sites, six feature extraction codes
Frontiers in Endocrinology | www.frontiersin.org 9
and one fusion feature extraction code are used, named as TPC,
AAI, One-Hot, PseAAC, CKSAAP, Word Embedding, and PUP-
S-Fuse. In order to improve the computational efficiency and
eliminate the redundancy and noise generated by the fusion
feature, the chi-square test served to reduce the dimensionality of
the fusion feature. The selected feature subset was input into the
Ensemble Learning for classification, and then 10-fold cross-
folding was used for verification. The performance of PUP-S-
Fuse is evaluated based on an independent test data set, and
compared with other existing methods, it is concluded that the
predictive performance of PUP-S-Fuse is better than other
existing methods. These processes only require calculation
models and do not require any physical and chemical
experiments, which saves experimental costs and improves
work efficiency. We hope that this work will be helpful for
dealing with some related biological problems with
computational methods.
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