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Natural pigments are playing important roles in our daily lives. They not only 

make products colorful but also provide various health benefits for humans. In 

addition, Pycnoporus genus, listed as food- and cosmetic-grade microorganism, 

is one of the promising organisms for developing natural pigments. In this study, 

a new fungal strain with high efficiency in producing intense orange pigments 

was isolated and identified as Pycnoporus sanguineus SYBC-L7. Different agro-

industrial wastes were applied to evaluate the growth and pigment production of 

strain SYBC-L7. SYBC-L7 can grow rapidly and effectively produce pigments using 

wood chips as substrate in solid-state fermentation (SSF). Culture conditions were 

also optimized for value-added pigments production and the optimum production 

conditions were glucose as carbon source, ammonium tartrate as nitrogen source, 

initial pH 6.0, and relative humidity of 65%. Pigment components, cinnabarinic 

acid, tramesanguin, and 2-amino-9-formylphenoxazone-1-carbonic acid were 

confirmed by liquid chromatography–mass spectrometry. Meanwhile, an agar 

plate diffusion assay was performed to evaluate the antimicrobial activity of the 

pigment. These pigments showed more significant inhibition of Gram-positive 

than Gram-negative bacteria. The results showed that Pycnoporus sanguineus 

SYBC-L7 was able to cost-effectively produce intense natural orange pigments 

with antibacterial activity in SSF, which is the basis of their large-scale production 

and application.
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Introduction

Pigments have become an important part of cosmetics, food, textiles, and other 
industrial fields (Meruvu and dos Santos, 2021). Some of them not only endow 
products with different colors but also have antibacterial and antioxidant activity to 
provide various health benefits for humans (Tudor et al., 2013; Srivastava et al., 2022). 
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According to the source, pigments can be divided into synthetic 
pigments and natural pigments. Since synthetic pigments are 
found to display potential toxicity, carcinogenicity, and 
undesirable side effects on human health and the environment, 
natural pigments (derived from plants, animals, or 
microorganisms) are getting more attention due to their 
biodegradability, no side effects, and biological activities 
(Chatragadda et al., 2019; Darwesh et al., 2020; Chatragadda 
and Dufosse, 2021). Among natural pigment producers, 
microorganisms are noteworthy for their all-seasonal 
production of stable and low-cost with high yield (Meruvu and 
dos Santos, 2021). To date, many microorganisms have been 
reported to produce pigments, including Monascus sp. (Chen 
et al., 2021), Penicillium sp. (Meruvu and dos Santos, 2021), 
Pycnoporus sp. (Tellez-Tellez et al., 2016; Zhang et al., 2019), 
Rhodotorula sp., and Bacillus sp. (Usmani et al., 2020). Among 
them, Pycnoporus genus is a white-rot fungus, listed as food- 
and cosmetic-grade microorganism, and one of the promising 
organisms for the development of natural pigments (Lomascolo 
et al., 2011; Tellez-Tellez et al., 2016). It has been reported that 
the major Pycnoporus pigments (cinnabarin, cinnabarinic acid, 
and tramesanguin), possessing antiviral, antibacterial, and 
anti-inflammatory properties, are derived from a phenoxazine-
3-one type structure, which is the central core of many natural 
active compounds (Tellez-Tellez et  al., 2016; Zhang et  al., 
2019). Furthermore, Pycnoporus strains also can produce 
various useful enzymes for industry, including hydrolases and 
oxidases mainly laccases, which make them easier to use agro-
industrial wastes (Tellez-Tellez et al., 2016).

Solid-state fermentation (SSF) is a traditional fermentation 
method of fungi to produce pigments. SSF provides attachment 
sites for the growth of strains, sufficient nutrients, and oxygen 
supply, making the yield of pigments produced much higher than 
that of liquid submerged fermentation (Palma et al., 2016; Feng 
et al., 2022). At present, various agro-industrial wastes (sugarcane 
bagasse, sawdust, rice straw, wheat straw, orange peel, and so on) 
are used as substrates for SSF, which can help to reduce the 
production cost, reduce the pollution load from the environment, 
and create maximum value (Sadh et al., 2018). In addition, some 
fermentation conditions like pH, temperature, relative humidity, 
and media nutrients also affect the production of pigment. 
Therefore, exploiting agro-industrial wastes as substrates and 
optimizing fermentation conditions will be important for value-
added metabolite production.

Although Pycnoporus genus has been used to produce high 
value-added metabolites through solid-state fermentation, few 
studies on agro-industrial wastes as substrates for pigment 
production have been reported at present. Therefore, the aims of 
this paper were to (1) isolate and identify a Pycnoporus fungus 
with high-yield pigment production capacity; (2) improve 
pigment production by controlling culture conditions, including 
substrates, carbon and nitrogen sources, initial pH, and relative 
humidity; (3) analyze and identify the pigments; and (4) evaluate 
the antimicrobial activity of pigments.

Materials and methods

Materials

Cinnabarinic acid (CA, ≥98%, CAS: 606–59-7), Ehrlich 
reagent (CAS: 100–10-7), and N-acetylglucosamine (CAS: 7512-
17-6) were purchased from Sigma-Aldrich (Shanghai, China). 
Sugarcane bagasse, wheat straw, rice straw, water hyacinth, and 
wood chip were purchased from a local market and dried to 
constant weight at 60°C before use. Other chemical reagents, 
unless otherwise specified, were all analytical grade.

Indicator strains, including Bacillus subtilis SYBC-hb1, Bacillus 
subtilis SYBC-hb5, Bacillus licheniformis SYBC-hb2, Bacillus 
pumilus SYBC-hb4, Bacillus thuringiensis SYBC-hb7, Bacillus 
amyloliquefaciens Y1-A3, Bacillus megaterium H021-A1, Bacillus 
cereus SYBC-hb8, Lysinibacillus sp. H021-S8, Staphylococcus kloosii 
H008-B4, Staphylococcus aureus, Escherichia coli J159, Serratia sp. 
L1, Serratia sp. L2, and Serratia sp. L3, were obtained from 
Biocatalysis and Transformation Biology lab at Jiangnan University 
(Wuxi, China).

Isolation samples

Ten fungal fruit body samples were collected from different 
locations in a local forest in Wuxi, China (31°32′24′′N, 
120°12′24′′E).

Cultivation medium

Potato dextrose agar (PDA) was prepared for purification 
and preservation.

Seed medium was prepared as described by Zeng et al. (2011) 
with certain modifications: the seed medium consisted of 30 g·L−1 
potato starch, 4.5 g·L−1 yeast extract, and 10.5 g·L−1 peptone.

Solid-state fermentation (SSF) medium was prepared based 
on Zeng et al. (2011), Liu et al. (2013), and Liu and Liao (2015) 
with certain modifications: the SSF medium consisted of 3 g dry 
wood chips and 4.5 ml nutrient solution in 250 ml conical flask, 
and the nutrient solution contained the following: glucose, 
30 g·L−1; ammonium tartrate, 15 g·L−1; KH2PO4, 1 g·L−1; Na2HPO4, 
0.2 g·L−1; MgSO4, 0.5 g·L−1; MnSO4, 0.034 g·L−1.

Isolation and identification of 
pigment-producing fungi

Fragments of the basidiomata were treated as described in 
Zeng et al. (2011) and cultured on PDA plate at 30°C for 12 days. 
The strains with good growth and noticeable color change were 
selected for shaker screening.

For shaker screening, 10 ml of sterile normal saline (0.9% w·v 
−1) were added to PDA plates covered with mycelium. The spores 
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were scraped off and suspended in sterile normal saline to 
approximately108 spores·mL−1. Each 1 ml of spore suspension was 
inoculated into 250 conical flasks containing 50 ml seed medium 
and cultured at 30°C, 200 r·min −1 for 1 days in the dark. Then, 
1 ml of seed medium was transferred into the SSF medium at 30°C 
for 12 days in the dark. The strain with high pigment yield was 
selected for subsequent studies.

The morphological characteristics were evaluated using a 
scanning electron microscopy (Quanta-200, FET, Netherlands) 
after 5 days of incubation on PDA plates (Wang et al., 2021). The 
molecular identification process was performed as follows: (1) The 
isolated strain was cultured for 5 days and harvested by sterilized 
spear tips; (2) after drying and grinding of the collected mycelium 
using liquid nitrogen, total genomic DNA was extracted using the 
CTAB protocol; (3) PCR amplification was performed as described 
by Saravanan et al. (2020), and the primers used were ITS1 and 
ITS4; (4) The ITS-5.8S rRNA gene sequence of the isolated strain 
was compared with the sequences deposited in the GenBank 
database, and phylogenetic tree was constructed by neighbor-
joining method using MEGA 6.0 based on a bootstrap test of 
1,000 replicates (Zeng et al., 2011; Huang et al., 2020).

Substrate and solid-state fermentation

Here, five common agro-industrial wastes, such as sugarcane 
bagasse, wheat straw, rice straw, water hyacinth, and wood chip, were 
chosen to evaluate the growth and pigment production of isolated 
strain. Each of these five common agro-industrial wastes was used 
instead of the substrate (dry wood chips) in the original SSF medium, 
respectively, and the other components of the original SSF medium 
were unchanged. Additionally, inoculum preparation, inoculum size, 
and culture conditions were consistent with shaker screening of 
section “Isolation and Identification of Pigment-Producing Fungi.”

Optimization of pigment production

According to the method described in Darwesh et al. (2020) 
and Chen et al. (2021), the “one factor at a time” design was used 
to assess the effect of different cultural conditions. These variables 
were different extra carbon sources (Monosaccharide: glucose and 
fructose; Disaccharide: sucrose and maltose; Polysaccharide: 
starch and β-cyclodextrin), nitrogen sources (Organic nitrogen: 
peptone, yeast extract, and carbamide; Inorganic nitrogen: 
ammonium nitrate, potassium nitrate, ammonium chloride, and 
ammonium tartrate), initial pH values (3, 4, 5, 6, 7, 8, 9, and 10), 
and relative humidity values (40, 45, 50, 55, 60, 65, 70, 75, and 
80%). All the optimization experiments were performed in 250 ml 
conical flasks, and the SSF medium was prepared based on the 
section “Substrate and solid-state fermentation.” Unless otherwise 
indicated, the inoculum preparation, inoculum size, and culture 
conditions were consistent with shaker screening of section 
“Isolation and Identification of Pigment-Producing Fungi.”

Biomass estimation

The biomass was estimated by measuring the 
N-acetylglucosamine released by the acid hydrolysis of the chitin, 
present in the cell walls of fungi. Sample handling and detection 
processes were according to the method described by Velmurugan 
et al. (2011). In brief, 0.5 g of dry fermented solid-state powder 
was first mixed with 1 ml of concentrated H2SO4. Then, 1 ml of 
acetylacetone reagent was added to the mixture and placed in a 
water bath at 100°C for 20 min. After cooling, 6 ml of ethanol and 
1 ml of Ehrlich reagent were added successively and incubated at 
65°C for 10 min. After cooling to room temperature, optical 
density (OD) was measured at 530 nm against the reagent blank 
using N-acetylglucosamine as the external standard.

Pigment identification and estimation

Pigment extraction: After 10 d of incubation, the fermented 
solid substrate was dried to constant weight at 60°C in a cabinet 
and ground to a fine powder using a muller. 0.3 g of dry fermented 
solid-state powder was mixed with 15 ml of methanol and placed 
in a water bath at 35°C for 1 h, and this extraction was repeated 
twice (Luo et al., 2013). Then the extracts were filtered through 
Whatman filter paper Grade No. 1 at constant volume of 30 ml.

UV–visible spectroscopy: The production of pigments was 
estimated by detecting λmax of pigment extract (Chen et  al., 
2021). The maximum absorption peak of pigment extract was 
performed on the UV–visible U-3000 Spectrophotometer 
(Hitachi, Japan) with a scanning wavelength near 350 nm to 
550 nm (Cruz-Munoz et al., 2015).

Chromatography: The method was according to that 
described by Dias and Urban (2009) and Kakoti et al. (2022) 
with certain modifications. In brief, chromatographic separation 
was performed on a BEH AMIDE column (1.7 μm, 
2.1 mm × 100 mm; Waters, United States) using the ACQUITY 
Ultra Performance Liquid Chromatography system (Waters, 
United States). The column was maintained at 45°C and eluted 
with the gradient % A (solvent A): T (time, min) 5:0; 60:7; 100:9; 
100:12; 5:15 at a flow rate of 0.3 ml·min−1. Solvent A was 100% 
acetonitrile, and B was 0.1% formic acid. The detection 
wavelength was 254 nm, and 5 μl of testing samples (methanol 
extraction and cinnabarinic acid standard) were injected into the 
column. All testing samples were filtered with nylon membrane 
(0.22 μm) before chromatographic separation.

Mass spectrometry: The mass spectrometry method was 
referred to that described by Xu et  al. (2020) with certain 
modifications: mass spectrometry was performed on a Waters Maldi 
Synapt Q-TOF MS (Waters, US) operating in ESI+ ion modes. The 
desolvation gas was set to 300 l·h−1 at 300°C. The cone gas was set to 
500 l·h−1 and the source temperature was set to 100°C. The capillary 
voltage and cone voltage were set to 3.5 kV and 30 V, respectively. The 
collision energy was set to 6 eV. The detector voltage was set to 1.7 kV 
and the scan range was from 50 to 2000 m·z−1.
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Pigment estimation: Following the method of Velmurugan 
et al. (2011), the extracted pigment was quantified by measuring 
optical density (OD) at λmax and pigment yield was calculated by 
OD/gdfs. The gdfs represents per gram of dry fermented substrate. 
Methanol extract of the unfermented sample was used as the 
blank for pigment analysis.

Assessment of antimicrobial activity

Agar plate diffusion assay was used to determine the 
antibacterial activity of the pigment produced by strain SYBC-L7 
using Bacillus subtilis SYBC-hb1, Bacillus subtilis SYBC-hb5, Bacillus 
licheniformis SYBC-hb2, Bacillus pumilus SYBC-hb4, Bacillus 
thuringiensis SYBC-hb7, Bacillus amyloliquefaciens Y1-A3, Bacillus 
megaterium H021-A1, Bacillus cereus SYBC-hb8, Lysinibacillus sp. 
H021-S8, Staphylococcus kloosii H008-B4, and Staphylococcus aureus 
(Gram-positive bacteria) and Escherichia coli J159, Serratia sp. L1, 
Serratia sp. L2, and Serratia sp. L3 (Gram-negative bacteria). The 
indicator strains were incubated at 37°C in Luria-Bertani (LB) broth. 
After 18 h of incubation, the cultures were diluted to 107 cfu·mL−1 
and “flood-inoculated” onto the surface of LB plates. 9 mm diameter 
wells were cut using a punching bear. Then, 100 μl of methanol 
extract of pigment with different concentrations (pigment 
extraction:5, 10, 15, 20 OD·gdfs−1, containing CA concentrations of 
21.6, 43.2, 64., and 86.3 mg·L−1, respectively) were delivered into the 
wells with pure methanol as blank and different concentrations (50, 
100, 150, 200, 300, 400, 500 mg·L−1) of ampicillin as reference. After 
incubation at 37°C for 18 h, plates were examined for any zones of 
growth inhibition and measured the diameter of each zone 
(subtracted the diameter of well).

Statistical analysis

All the experiments were performed in triplicate, and the 
error bar represents the standard deviations (SD). OriginPro 
2022b software was used to calculate the mean value/SD and to 
plot figures of the collected data.

Results and discussion

Isolation and Identification of 
Pigment-Producing Fungi

Ten fungal fruit body samples collected from different 
locations were subjected to plate screening and shaker screening 
successively to select the most efficient strain in terms of pigment 
production. A fungal strain designated SYBC-L7 was clearly 
observed to rapidly produce an intense orange pigment with an 
absorption maximum at a wavelength of 430 nm (Figures 1A,B). 
Thus, strain SYBC-L7 was selected for the subsequent studies.

Strain SYBC-L7 was identified based on its morphological and 
molecular properties (Figure 1). The basidiocarp of strain SYBC-L7 

was smooth, acute margin, smooth to wavy thin, pileus shortly, and 
sessile or sometimes overlapping with characteristic color of bright 
orange-red (Figure 1C). After inoculation to PDA plate and culture 
at 30°C, the mycelium of strain SYBC-L7 grew faster and gradually 
broke off to form a large number of spores, which are rectangular in 
shape, smooth in surface, and varied in size (Figure 1D); By the 9th 
day of culture, the mycelium covered full of the plate and was 
orange-red (Figure 1A). These characteristics were consistent with 
Pycnoporus genus (Tellez-Tellez et  al., 2016). Moreover, the 
amplification of the genomic DNA of strain SYBC-L7 by primers 
ITS1 and ITS4 produced a single amplification product of 
approximately 639 bp. When comparing the sequence to the 
GenBank database and constructing the phylogenetic tree, it was 
observed that the sequence (GenBank ID: HQ891291.1) was 
clustering to Pycnoporus sanguineus genus (Figure  1E). As the 
sequence similarity to the most closely reference strain (GenBank 
ID: KC525202.1) was only 68%, strain SYBC-L7 may be a new 
strain of Pycnoporus sanguineus.

Solid substrate chosen for solid-state 
fermentation

In the solid-state fermentation process, the fermentation 
substrate has a great influence not only on the growth, attachment, 
and extension of the mycelium but also on factors such as heat 
dissipation and oxygen supply (Mussatto et al., 2012). Here, five 
common agro-industrial wastes (sugarcane bagasse, wheat straw, 
rice straw, water hyacinth, and wood chip) were selected to evaluate 
the growth and pigment production of strain SYBC-L7. As shown 
in Figure 2, the growth and pigment production of strain SYBC-L7 
were greatly influenced by the used agro-industrial waste. Among 
the tested wastes, the wood chip was found to be the best substrate 
not only giving a maximum pigment yield but also greatly 
promoting the growth of strain SYBC-L7. In the literature, most 
Pycnoporus species have been isolated and used as enzyme 
producers (Tellez-Tellez et al., 2016), but few of them were used to 
produce pigment, which was shown in (Supplementary Table S1; 
Eggert, 1997; Smania et al., 1997; Cruz-Munoz et al., 2015; Sutthisa 
and Sanoamuang, 2017; Zhang et al., 2019). However, our study is 
the first report, to our knowledge, on using agro-industrial waste, 
especially wood chips as a culture substrate for pigment production 
by Pycnoporus sanguineus SYBC-L7.

Optimization of pigment production by 
strain SYBC-L7

Biomass growth and pigment productivity can be influenced 
by nutrient fermentation conditions (Darwesh et al., 2020). Here, 
environmental and cultural conditions were studied to improve 
the yield of pigment produced by strain SYBC-L7. Carbon is not 
only an essential nutrient for the biosynthesis of cellular 
components but also an energy resource for cells (Feng et al., 
2018). For example, carbon plays a critical role in cell growth, 
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metabolism, and pigment production of Monascus spp. (Darwesh 
et al., 2020; Long et al., 2020). In the present study, different extra 
carbon sources (Monosaccharide: glucose and fructose; 
Disaccharide: sucrose and maltose; Polysaccharide: starch and 

β-cyclodextrin) were used to improve the biomass and pigment 
production of strain SYBC-L7. The results presented in Figure 3A 
showed that under the experimental conditions, monosaccharide 
was easier to be utilized for growth and pigment production than 
disaccharide and polysaccharide. Glucose was better for pigment 
synthesis, fructose was better for fungal growth, while, lower 
pigment production and biomass were obtained with 
β-cyclodextrin and starch. In accordance with our results, Zhao 
et al. (2019) and Shahin et al. (2022) stated that glucose was the 
optimum carbon source for pigment production.

Nitrogen source, another essential building component, can 
influence microbial growth and the production of bioactive 
metabolites (Tudzynski, 2014; Landi et al., 2019; Darwesh et al., 
2020). To improve the pigment yield, different extra nitrogen 
sources (Organic nitrogen: peptone, yeast extract, and carbamide; 
inorganic nitrogen: ammonium nitrate, potassium nitrate, 
ammonium chloride, and ammonium tartrate) were added to the 
solid-state fermentation culture. As shown in Figure 3B, strain 
SYBC-L7 grew better and produced the most pigments with 
ammonium tartrate, and it grew better and produced more 
pigments with peptone. While it grew best but produced fewer 
pigments with yeast extract as an extra nitrogen source.

The initial pH of the culture medium is one of the most critical 
environmental and culture parameters determining microbial 

A B

D E

C

FIGURE 1

Orange pigment-producing fungal isolate (strain SYBC-L7) with the highest potency. (A) The mycelia of strain SYBC-L7 cultured on PDA medium 
for 9 d; (B) Spectral analysis of extract samples obtained from strain SYBC-L7 with wood chip for 10 d, and 0 d represent the unfermented solid 
substrate sample; (C) The fruit body of strain SYBC-L7; (D) Microscopic characteristics of the mycelia of strain SYBC-L7 cultured on PDA medium 
for 5 d; (E) Phylogenetic trees based on ITS-5.8S rRNA sequences of strain SYBC-L7 and others downloaded from NCBI.

FIGURE 2

Effect of solid substrate on biomass and pigment production. 
Data correspond to the mean ± SD of three replicates.
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growth and metabolic activity (Ouyang et al., 2020). As different 
strains have different optimum pH, here, an experiment was 
conducted to determine the effect of different initial pH values 
(3–10) on the biomass and pigment yield of strain SYBC-L7. As 
shown in Figure 3C, high pigment production was obtained at pH 
5 to 9, and the maximum production was received at pH 6. Low 
or high pH (like 3, 4, and 10) inhibited both biomass and pigment 
production. The results were similar to those of Cruz-Munoz et al. 
(2015), who reported that the maxima pigment synthesis was 
obtained at pH 7 for Pycnoporus sanguineus strain H1 and H2.

The relative humidity of the incubator is also one of the most 
critical environmental parameters of the SSF process. It can 
prevent accelerated drying of the fermentation substrate, and it is 
directly related to water activity, which is a critical factor for fungal 
metabolism performance during the fermentation process (Osorio 
et al., 2020). As shown in Figure 3D, maximum pigment yield and 
biomass were observed at 65% of relative humidity, and a decrease 
in pigment yield was observed below or above 65%. The humidity 
gradient occurred between the exterior surface and inner surface 
of substrate (He et  al., 2019). Low relative humidity could 

accelerate the formation of this humidity gradient, promote liquid 
water movement and evaporation from the interior to the surface 
of substrate, and lead to low nutrient availability and less efficient 
heat exchange, causing poor pigment yield (Babitha et al., 2007; 
He et al., 2019). On the contrary, the higher relative humidity 
could promote moisture in the air movement from the surface to 
the interior of substrate, and reduce the mass transfer process, air 
transfer, and extension of mycelium in SSF, leading to suboptimal 
pigment formation (Babitha et al., 2007).

Identification of pigment from strain 
SYBC-L7

Pycnoporus sanguineus is one of the promising organisms for 
developing natural pigments, and it could produce various shades 
of red, orange, yellow, and brown color (Zhang et al., 2019). These 
primary or secondary metabolites produced by Pycnoporus genus 
are different and depend on the species and culture conditions 
(Cruz-Munoz et al., 2015; Tellez-Tellez et al., 2016). Nevertheless, 

A B

C D

FIGURE 3

Effect of carbon sources (A), nitrogen sources (B), initial pH (C), and relative humidity (D) on biomass and pigment production strain SYBC-L7 in 
solid-state fermentation. Data correspond to the mean ± SD of three replicates.
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previous studies have demonstrated that cinnabarin and 
cinnabarinic acid (CA) are the main pigment components of 
Pycnoporus strains, which have antiviral, antibacterial, and anti-
inflammatory activity (Tellez-Tellez et al., 2016). In this study, CA 
was taken as a standard sample and used for pigment component 
analysis. In Figure 4, three obvious strong peaks (marked as Pk1, 
Pk2, and Pk3) appeared at the retention time (RT) of 3.89 min, 
4.40 min, and 4.69 min, respectively. The mass spectrum of 
Pk2 showed a molecular ion at m/z 301 [M + H]+ 
(Supplementary Figure S1), which was not only the same as 
described in some previous studies (Dias and Urban, 2009; Tellez-
Tellez et al., 2016), but also was consistent with the mass spectrum 
of CA standard sample (data was not shown). Thus, Pk2 was 
identified as CA. The protonated ions of Pk1 and Pk3 were both at 
m/z 285 [M + H]+ (Supplementary Figures S1), and wavelength 

scanning results showed that their characteristic absorption peaks 
were both between 430 and 450 nm (Supplementary Figure S2); 
These results are in fair agreement with the results reported for 
tramesanguin (Dias and Urban, 2009). As Pk1 and Pk3 are 
different compounds, Pk1 and Pk3 maybe tramesanguin and its 
isomer, 2-amino-9-formylphenoxazone-1-carbonic acid. The 
structures of these compounds are shown in Table 1.

Antibacterial activity analysis of pigment 
extract

The antibacterial activity of pigment extract was evaluated by 
agar plate diffusion assay. In agar plate diffusion assay, pigment 
extract exhibited significant antibacterial activity on Gram-positive 

A

B

FIGURE 4

HPLC analysis of pigment extracts of strain SYBC-L7. (A) HPLC chromatograms of pigment extracts of strain SYBC-L7; (B) HPLC chromatograms of 
CA standard sample.

TABLE 1 Identification of pigment from strain SYBC-L7.

Products RT
(min)

Measured mass 
[M + H]+ (m/z)

Common name Proposed structure References

Pk2 4.40 301 Cinnabarinic acid Dias and Urban (2009), 

Tellez-Tellez et al. (2016)

Pk1 3.89 285 Tramesanguin, 2-amino-9-

formylphenoxazone-1-carbonic 

acid

Dias and Urban (2009)

Pk3 4.69 285
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bacteria (Figure 5A), and the zone of inhibition was increased with 
the increase of pigment concentration. However, pigment extract 
exerted no inhibitory effect on Gram-negative bacteria (data not 
shown). These findings were similar to those of Tellez-Tellez et al. 
(2016), who reported that the component from Pycnoporus 
sanguineus showed more activity against Gram-positive than 
Gram-negative bacteria. Kakoti et  al. (2022) reported that CA 
extracted from Trametes coccinea fruiting bodies showed high 
inhibition for Gram-negative bacteria, and the minimal inhibitory 
concentration of CA for Escherichia coli was 300 mg·L−1. The 
pigment extract (containing CA concentrations of 21.6, 43.2, 64.7, 
and 86.3 mg·L−1, respectively) in our study showed no inhibitory 
effect on Gram-negative bacteria including Escherichia coli, which 
may be  because of the low concentration of pigment extract. 
Additionally, when compared with the antibacterial activity of 
different concentrations of ampicillin (50–400 mg·L−1) on Gram-
positive bacteria, the pigment extract had an inhibitory effect on 
all 11 kinds of indicator bacteria, while ampicillin only had an 
inhibitory effect on five of them (like Bacillus subtilis SYBC-hb1, 
Bacillus amyloliquefaciens Y1-A3, Bacillus megaterium H021-A1, 
Staphylococcus kloosii H008-B4, Staphylococcus aureus; Figure 5B).

Conclusion

A new fungal strain Pycnoporus sanguineus SYBC-L7 was 
shown to effectively produce intense orange pigments in solid-
state fermentation. Pigment production processes could 
be more economic and high yield by controlling agro-industrial 

wastes as substrates and fermentation conditions such as carbon 
sources, nitrogen sources, initial pH, and relative humidity. The 
pigment extract was identified as cinnabarinic acid, 
tramesanguin, and 2-amino-9-formylphenoxazone-1-carbonic 
acid by HPLC-MS. Additionally, antibacterial activity analysis 
of pigment extract produced by strain SYBC-L7 showed 
significant antibacterial activity on different bacteria, and the 
pigment was more sensitive to Gram-positive bacteria, 
indicating its potential application for areas such as the food, 
cosmetics, nutraceuticals, and textile industry that need color. 
Further studies should be conducted to better understand the 
biosafety of microbial pigments as promising alternatives to 
hazardous artificial colorants.
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