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To assess the conventional treatment in evolutionary inference of alignment gaps as
missing data, we propose a simple nonparametric test of the null hypothesis that the
locations of alignment gaps are independent of the nucleotide substitution or amino
acid replacement process. When we apply the test to 1,390 protein alignments that
are informed by protein tertiary structure and use a 5% significance level, the null
hypothesis of independence between amino acid replacement and gap location is rejected
for ∼65% of datasets. Via simulations that include substitution and insertion–deletion,
we show that the test performs well with true alignments. When we simulate according
to the null hypothesis and then apply the test to optimal alignments that are inferred
by each of four widely used software packages, the null hypothesis is rejected too
frequently. Via further simulations and analyses, we show that the overly frequent
rejections of the null hypothesis are not solely due to weaknesses of widely used software
for finding optimal alignments. Instead, our evidence suggests that optimal alignments
are unrepresentative of true alignments and that biased evolutionary inferences may
result from relying upon individual optimal alignments.
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DNA and protein alignments are evolutionary hypotheses about the positional correspon-
dence between sequences. Gaps in alignments can arise from multiple sources, including
historical insertion or deletion events. Sometimes, alignment gaps exist simply because
data corresponding to certain sequences have not been acquired. When the sequences
being compared are collected on the basis of their being transcribed or being both
transcribed and translated, other sources of alignment gaps are possible (e.g., frameshift
mutations and alternative splicing). The possibility of a gap being due to alignment error
should also be considered.

In one of his pioneering contributions to molecular phylogenetics, Fitch (1) wrote
“either the character was not examined or it does not exist” while explaining that
the treatment of a gapped alignment position should be affected by whether the gap
corresponds to uncollected data or whether it stems from insertion or deletion events.
Fitch wrote that passage at a time when available sequence data were scarce and when
there was therefore a substantial disincentive to discarding phylogenetic information
that might be associated with insertions or deletions. Because sequence data are now
far less scarce and because it is difficult to extract the evolutionary information that
stems from insertion and deletion events in a statistically rigorous fashion, an attractive
alternative might now be to ignore the evolutionary information that is associated with
insertions and deletions and to instead rely solely on nucleotide substitutions or amino acid
replacements.

When making evolutionary inferences from aligned sequences, one option is therefore
to consider gaps as missing data. The treatment of gap locations as being independent of
nucleotide substitution or amino acid replacement is widespread when analyzing aligned
data with likelihood-based techniques, and the associated computations are detailed in
Felsenstein (2) and Yang (3). This likelihood-based treatment of gaps as missing data was
inspired by a corresponding handling of gaps in parsimony-based phylogenetics.

The statistical consequences of this conventional handling of alignment gaps warrant
careful attention. When gaps represent uncollected data, the gap locations are not
necessarily independent of the missing sequence information. Specifically, uncollected
data can be substantially more diverged than observed data. For example, divergence
at a primer location could cause certain loci in certain taxa to fail to amplify via PCR
(e.g., ref. 4). The resulting ascertainment bias will be magnified if there is a strong
correlation between primer divergence and the lengths of the branches that connect the
uncollected loci to the phylogenies relating the loci that are sequenced. A similar potential
ascertainment bias needs to be considered for divergence at restriction sites that leads to
uncollected RAD-seq data (see ref. 5).
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When gaps are caused by historical insertion and deletion
events, the conventional treatment can also be problematic be-
cause of the possibility that the insertion and deletion processes
are correlated with the nucleotide substitution or amino acid
replacement processes. Lack of independence would mean that
the presence of a gap provides information about substitution or
amino acid replacement that should be reflected in the evolution-
ary inferences. Lack of independence between these processes is bi-
ologically plausible because natural selection will affect persistence
and fixation of both point mutations and insertion or deletion
mutations. The degree of selective constraint in a genomic region
is likely to be correlated for these different kinds of mutations.
For example, both amino acid replacement processes (e.g., refs.
6, 7) and insertion–deletion processes (e.g., ref. 8) are correlated
with protein structure, and this correlation is presumably largely
attributable to selective constraint. Zheng et al. (9) find a strong
positive correlation between deletion and amino acid replacement
in mammalian protein sequences. Beyond the correlation due
to natural selection, additional correlation may stem from the
mutation process. For example, Tian et al. (10) provide evidence
that heterozygosity for insertion–deletion polymorphisms may be
mutagenic (see also ref. 11).

Here we introduce a simple nonparametric test of the null
hypothesis that the presence of gaps is independent of the amount
of nucleotide substitution or amino acid replacement. If align-
ment uncertainty can be neglected and if gaps are exclusively
attributable to historical insertion and deletion events, our test
is an examination of whether the insertion–deletion processes
are independent of the nucleotide substitution or amino acid
replacement processes.

When we simulate according to the null hypothesis of inde-
pendence between nucleotide substitution and insertion–deletion
and then analyze the data using the simulated alignments, our
simple test performs well in that the cumulative probability of
the test statistic is approximately uniform. When we simulate
according to the null hypothesis of independence and then infer
the optimal alignments with widely used software packages, all of
the aligners tend to generate optimal alignments with mislead-
ing signals of dependence between nucleotide substitution and
insertion–deletion. Next, we apply our test to datasets where pro-
tein tertiary structure is employed to guide sequence alignment.
At a significance level of 0.05, the test rejects the null hypothesis
for 908 of 1,390 datasets. These investigations emphasize the
need to improve evolutionary inference tools so that dependence
between insertion–deletion and nucleotide substitution or amino
acid replacement can be accommodated, and they reinforce the
conclusion that the conventional practice of making evolutionary
inferences from single optimal alignments can be problematic
(e.g., ref. 12).

Theory and Methods

Nonparametric Test of Independence between Substitution
and Alignment Gaps. Our test can be applied to alignments
of either protein or DNA sequences, but we describe it with
regard to DNA and the nucleotide substitution process. Consider
an alignment with n columns that will each be grouped into
exactly one of three categories according to the proportion of
gap characters in the column. The number of columns in these
groups will be n1, n2, and n3 where n = n1 + n2 + n3. The
n1 columns that have a low proportion of gaps will be termed
“fewer-gaps” columns. The n2 columns with higher proportions
of gaps will be termed the “more-gaps” columns. The n3 columns
where only one taxon has a nucleotide and the other taxa all have

Table 1. Example alignment between five sequences

Site index
1

Taxon name 123456789 012345 67

T1 AAAAAAAAA AAAAAA --
T2 AATATATAA -TAAT- --
T3 ATTATATTT ATA-TA --
T4 TTAAATTAT T----- --
T5 TAAA----- ---T-A AA

Columns 1-9 with gap proportions of 0 and 0.2 are grouped into the ‘fewer-gaps’ category.
Columns 10-15 with gap proportion 0.4 are grouped into the ‘more-gaps’ category. Columns
16-17 are in the ‘uninformative’ category and are ignored in the subsequent analysis.

gaps will be referred to as “uninformative” because these columns
can do little to illuminate patterns of nucleotide substitution.
We determine the sizes n1 and n2 so that size imbalance (e.g.,
|n1 − n2|2) between n1 and n2 is minimized. Table 1 shows an
example of five taxa in which n = 17 columns are separated into
n1 = 9, n2 = 6, and n3 = 2 columns.

Denote sik as the entry for the i th taxon in the k th alignment
column of the fewer-gaps category. This means that sik will either
represent one of the four nucleotide types or a gap. We define pijk
as

pijk :=

{
1 if sik �= sjk and neither is gap,
0 ifsik = sjk and neither is gap,
− (undefined) otherwise.

For each pair i and j , pij · is defined as

pij · :=

⎧⎨
⎩

∑n1
k=1 pijk I (pijk �=−)∑n1

k=1 I (pijk �=−)
if
∑n1

k=1 I (pijk �=−) �= 0,

− (undefined) otherwise,

where I (·) is 1 if the condition within the parentheses is satisfied
and is 0 otherwise. In other words, pij · considers only alignment
columns in the fewer-gaps category where both taxa have nu-
cleotides and is the proportion of these columns where the residues
differ. We note that the pij · terms are not independent among
different combinations of (i , j ) due to shared common ancestry.
However, our nonparametric test accounts for phylogenetic cor-
relations without relying upon an explicit model of evolutionary
change (see the bootstrap approach below).

We define qijk for the columns in the more-gaps category in a
way that parallels the pijk definition for the fewer-gaps category.
Likewise, we will use the qijk to calculate qij · in the same way as
the pijk determine pij ·. Table 2 shows the pij · and qij · values that
are derived from the example depicted in Table 1.

Our test statistic is

T =

∑
i<j{qij · − pij ·}I (qij · �=− and pij · �=−)∑

i<j I (qij · �=− and pij · �=−)

=
∑
i<j

wij qij · −
∑
i<j

wijpij · =: qij · − pij ·, [1]

where

wij :=
I (qij · �=− and pij · �=−)∑
i<j I (qij · �=− and pij · �=−)

,

and T compares how likely nucleotide types are to differ in the
more-gaps category relative to how likely they are to differ in the
fewer-gaps category. Thus, pij · and qij · are averages over sequence
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Table 2. A pairwise comparison matrix to illustrate
calculations based on the example alignment in Table 1

pijk and qijk

1
Row number Taxa pair 123456789 012345 pij· qij·

1 T1–T2 001010100 -1001- 3/9 2/4
2 T1–T3 011010111 010-10 6/9 2/5
3 T1–T4 110001101 1----- 5/9 1
4 T1–T5 1000----- ---1-0 1/4 1/2
5 T2–T3 010000011 -00-0- 3/9 0
6 T2–T4 111011001 ------ 6/9 —
7 T2–T5 1010----- ---1-- 2/4 1
8 T3–T4 101011010 1----- 5/9 1
9 T3–T5 1110----- -----0 3/4 0
10 T4–T5 0100----- ------ 1/4 —

The average of {qij· − pij·} over the eight rows where both pij· and qij· are defined
(i.e., excluding rows 6 and 10) yields a test statistic value of T � 0.0569.

pairs of the difference proportions in the fewer-gaps and more-
gaps categories. The numerator of wij ensures that sequence pairs
only contribute to these averages if the difference proportion is
defined for both the fewer-gaps and more-gaps categories. The
denominator of wij counts the number of sequence pairs where
the difference proportion is defined in both categories.

For the null hypothesis that the proportion of gaps in a column
is independent of the substitution process, T should be close to 0.
If gaps are exclusively due to insertion or deletion events, then the
null hypothesis is that the substitution process is independent of
the insertion–deletion process, and significant positive (negative)
values of T would imply a positive (negative) correlation between
substitution and insertion–deletion rates.

To assess the significance of the deviation of T from 0, we
use a bootstrap approach to approximate the null distribution
of T . From the original alignment of n columns, we resample
n columns with replacement to create each resampled dataset.
By doing so, we make use of the common assumption that
alignment columns are independently and identically distributed.
Because the units being resampled are alignment columns, the
resampled datasets reflect the phylogenetic correlations among
sequences possessed by the original data. Thus, the bootstrap
allows the null distribution of T to be approximated without an
explicit evolutionary model and even though the calculation of
the test statistic averages values from nonindependent pairwise
comparisons.

For each resampled dataset, we apply our classification rules to
assign each column into the fewer-gaps, more-gaps, or uninfor-
mative category. The number of columns in the three categories
are denoted n∗

1 , n∗
2 and n∗

3 with n∗
1 + n∗

2 + n∗
3 = n and where

an asterisk indicates a quantity from the resampled data. We then
calculate the test statistic T ∗. If the null hypothesis is true, the ex-
pected value of T (i.e., E [T ]) is 0, and the distribution of T mi-
nus 0 can be well approximated by the distribution of T ∗ minus
its expected value E [T ∗]. Following the guideline of bootstrap
centering (13), we therefore approximate the null distribution of
{T − 0} with that of {T ∗ − E [T ∗]}. Then, denoting the test
statistic value from the r th resampled dataset as T ∗(r), we ap-
proximate the cumulative probability of the test statistic T under
the null hypothesis as

F (T ) = Prob ({T ∗ − E [T ∗]}< {T − 0})

≈ 1

B

B∑
r=1

I ({T ∗(r) − T ∗}< {T − 0}), [2]

where B is the number of bootstrap resampled datasets and where
the sample mean of the resampled test statistic values is

T ∗ =
1

B

B∑
r=1

T ∗(r).

When the test is two-sided, F (T )< 0.025 and F (T )> 0.975
represent the critical regions for rejecting the null hypothesis at a
5% significance level.

Simulation Design: Null and Alternative Hypothesis Exper-
iments. To investigate our nonparametric test, we designed
simulation studies in which 12 taxa were related by the phylogeny
shown in Fig. 1. For simplicity, all internal and terminal branches
of the Fig. 1 phylogeny share an identical length. We used the
INDELible program (14) to simulate nucleotide substitutions
as well as insertions and deletions. Because INDELible has the
insertion–deletion process be independent of the substitution
process, our simulated datasets were generated by having
INDELible simulate two partitions of sequences according to
the phylogeny of Fig. 1 and then concatenating the sequences
of the two partitions. At the root node, the length of each
partition was set to 500 nucleotides. For the substitution process,
our simulations used the Jukes–Cantor model (15). For all
simulations, the length distributions of both insertion and
deletion events were geometric, and both distributions had a
mean length of 5/3 nucleotides in both partitions.

To satisfy the null hypothesis of independence between nu-
cleotide substitution and insertion–deletion, we set the lengths
of each branch in each partition to 0.1 nucleotide substitutions
per site. For the first partition, the rates of insertion and deletion
events relative to substitution were 0.08 and 0.12, respectively.
For the second partition, the rates of insertion and deletion events
relative to substitution were 0.12 and 0.18, respectively. Therefore,
our datasets that were simulated according to the null hypothesis
exhibited regional heterogeneity of insertion–deletion rates, but
this heterogeneity was not linked to any variation in substitution
rates.

To generate datasets that violate the null hypothesis of our test,
all settings were identical to those used when the null hypothesis
was satisfied with the exception that the first partitions were

Fig. 1. Phylogeny of 12 taxa that was used in simulations. The central
internal node was treated as the root.
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simulated with all branches having 0.05 rather than 0.1 expected
substitutions per site. Due to these shorter substitution lengths
for the first partition as well as to the lower relative rates of
insertion and deletion for the first partition, these simulated
datasets had a positive correlation between the rates of substitution
and insertion–deletion.

Because INDELible reports both the true simulated alignment
and the nonaligned simulated sequences at the tips of the phy-
logeny, we were able to investigate the performance of our test
for the true alignment and for the optimal alignments that were
inferred by widely used software packages. We examined the test
behavior using optimal alignments from Clustal Omega (version
1.2.2) (16), MAFFT (version 7.475) (17), Muscle (version 3.8.31)
(18), and Prank (version 170427) (19). Our experiments with
these sequence aligners were not intended to assess the relative
merits of the four software packages. Their performance will be
influenced both by the simulation conditions and the choice
of analysis options. Instead, our motivation was to determine
whether the optimal alignments from these packages might yield
substantially different outcomes with our nonparametric test than
is observed for the true alignments. All alignments from these
software packages were produced using default settings.

Simulation Design: Probabilistic Alignment Experiment. Sub-
stantially different outcomes were observed when applying our
test to the true simulated alignments and when applying our test
to the optimal alignments from the four software packages. Our
test performed well with the true alignments but rejected the null
hypothesis too often when using inferred alignments (Results).
Therefore, we sought to understand whether the differences can
be completely explained by a disconnect between the evolutionary
process used to simulate data and the default settings of the four
aligners. With this motivation, we designed a simple simulation
experiment that aimed to have settings of alignment software
closely match the settings of the INDELible software that gen-
erated the data. This allows us to compare the performance of
our test with true simulated alignments to its performance with
optimal alignments that were inferred when closely matching the
simulation and alignment parameter values. To do this, we used
version 4.0-alpha4 of the model-based BAli-Phy software (20–22)
to analyze the simulated sequence data.

For this experiment, INDELible simulated datasets of three
sequences that were equally diverged from a common ancestral
root sequence of 1,000 nucleotides. Each of the three branches
emanating from the root had substitutions occur according to the
Jukes–Cantor model (15) and had lengths of both insertion and
deletion events be geometrically distributed with a mean of 5/3
nucleotides. We simulated and analyzed 1,000 different datasets
under each of two simulation conditions. In the low-substitution
scenario, branches had an expected 0.1 substitutions per site,
and the rates of insertions and deletions relative to substitutions
were each 0.5. In the high-substitution scenario, branches had
an expected 0.5 substitutions per site, and the relative rates of
insertions and deletions were both 0.1. We intentionally designed
the low-substitution and high-substitution scenarios so that they
would not differ in the expected amounts of insertion and deletion
but would differ in the expected amounts of substitution.

BAli-Phy analyses specified the Jukes–Cantor model and spec-
ified (rather than estimated) the actual expected numbers of sub-
stitutions per site per branch. BAli-Phy analyses also specified the
true length distribution for insertion and deletion events as well
as the true rates of insertion and deletion relative to substitution.
With these settings, BAli-Phy only had to infer the alignments
between the simulated sequences. For each simulated dataset, two

1,000-generation Markov chain Monte Carlo (MCMC) runs were
performed.

To assess MCMC convergence on each dataset, we computed
the effective sample size (ESS) for each logged scalar variable.
This includes the alignment length (|A|), the number of indels
on the tree (#indels), the total length of indels (|indels|), and the
maximum parsimony score (#substs), in addition to the log-prior,
log-likelihood, and log-posterior. For each variable in each dataset,
we computed a combined ESS by concatenating the results of the
two MCMC runs, skipping the first 100 generations of each run as
burn-in. (If the two runs yield differing posterior distributions, the
combined ESS can be much lower than the ESS of an individual
run.) We then recorded the variable in each dataset with the lowest
ESS. The mean (and SD) of this minimum ESS across the 1,000
datasets was 706.2 (110.5) for the low-substitution scenario and
970.6 (145.9) for the high-substitution scenario. This indicates
that the MCMC chains converged and were mixing well.

We also used BAli-Phy to construct a single optimal alignment
for each simulated dataset. This alignment was constructed from
samples of the posterior distribution of alignments. From the
two MCMC runs per analyzed dataset, we treated the first 200
generations of each run as a burn-in of the Markov chain and then
sampled an alignment every generation during the remainder of
each run. Because there were two MCMC runs per dataset, we
considered a total of 1,600 = 800 + 800 sampled alignments for
each dataset.

We constructed the optimal alignment from the 1,600 pos-
terior samples for each dataset via posterior decoding. Posterior
decoding means that the optimal alignment is chosen by maxi-
mizing a combination of the posterior probabilities of individual
alignment columns, instead of maximizing the joint probability
of those columns (which is sometimes called Viterbi decoding).
Different posterior decoding options of BAli-Phy represent dif-
ferent ways of combining these (estimated) posterior probabilities
of individual alignment columns into a single optimal sequence
alignment. We selected the BAli-Phy option that finds the align-
ment that maximizes the product of the (estimated) posterior
probabilities of the columns in the alignment (see also ref. 23).

In addition to the single posterior decoding alignment that was
obtained from each analyzed dataset, we also considered a single
alignment that was randomly sampled from the posterior distri-
bution. For this, we used the alignment at the final generation of
the first set of the two 1,000-generation MCMC runs that were
performed with each simulated dataset.

Database Analyses. We applied our nonparametric test to align-
ments of protein sequences that are in the Balibase (version 4,
updated 12 December 2016) (24), Homstrad (version 2/1/2021)
(25), and Mattbench (version 1.0) (26) databases. We selected
these three databases because they employ protein tertiary struc-
ture information to derive alignments. Although alignments based
on tertiary structure do not necessarily reflect positional corre-
spondence between sequences that is due to common ancestry
(e.g., see ref. 19) and although alignment uncertainty cannot be
eliminated by incorporating information from tertiary structure,
tertiary structures tend to evolve very slowly relative to protein
sequences (e.g., ref. 27). Therefore, tertiary structural information
can substantially reduce alignment uncertainty, and this can facil-
itate interpretation of the results from our hypothesis test.

These three databases contained a total of 2,034 alignments.
With our test, pairwise alignment columns with a gap are cate-
gorized as uninformative, and pairwise alignment columns with
a match or mismatch would be assigned to the fewer-gaps cate-
gory. Therefore, pairwise alignments cannot have columns in the
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Fig. 2. Distribution of (A) F(T) and (B) the aligned sequence length of simulated data. Colors indicate the source of analyzed alignments. Truncated counts of
the range F(T) > 0.9 for Prank, Clustal Omega, MAFFT, and Muscle were 314, 336, 818, and 994, respectively.

more-gaps category (i.e., n2 = 0 for pairwise alignments). This
means that our test cannot be applied to pairwise alignments.
Out of the 2,034 alignments from the three databases, 629 were
pairwise alignments and could not be analyzed with our test.
An additional 15 alignments could not be analyzed because no
columns could be assigned to the more-gaps category (i.e., n2 = 0
for these datasets). We applied the nonparametric test to the
remaining 1,390 alignments from the three databases.

Results

Results from Null Hypothesis Experiment. Using 1,000
simulated datasets and their corresponding true alignments, we
investigated whether F (T ) of Eq. 2 has the expected uniform
distribution between 0 and 1 when the null hypothesis is true.
With the true alignment, the distribution of F (T ) closely
approximates a Uniform(0,1) distribution (Fig. 2A). The mean
and SD of the 1,000 F (T ) values were 0.501 and 0.292,
respectively. These are close to the mean of 0.5 and SD of 0.289
for a Uniform(0,1) distribution. The number of F (T ) values
belonging to the 5% rejection region, which corresponds to
the cases of F (T )< 0.025 or F (T )> 0.975, was 56 out of
1,000, and this is close to the expected 50 out of 1,000 for a 5%
significance level.

In addition to the behavior of our test when the null hypothesis
of independence was true and there was no alignment error, we
also investigated the test when the null hypothesis was true but
the true alignment was not used and instead optimal alignments
from four different software packages were employed. Although
the null hypothesis was true, the distributions of F (T ) that
result from the optimal alignments of all four aligners deviate
from the expected uniform distribution and instead are shifted
toward 1 (Fig. 2A). This implies a tendency for the T statistic of
Eq. 1 to be positive, and it suggests that the optimal alignments
incorporate positive dependency between the substitution and
insertion–deletion processes. The number of cases rejecting the
null hypothesis with a 5% significance level for Prank, Clustal
Omega, MAFFT, and Muscle were 137, 167, 628, and 970,
respectively.

Fig. 2B shows the distribution of the number of columns in
the true alignments as well as the distributions in the optimal
alignments from the default settings of the four aligners. The
mean (SD) of the number of columns for the true alignments
is 1,340.0 (30.2). In contrast, all four aligners produced op-
timal alignments that were too short. This tendency to over-
align (i.e., put unrelated nucleotides in the same column) was
strongest for Clustal Omega even though it produced a less
skewed distribution of F (T ) values than MAFFT or Muscle
(Fig. 2A). The mean (SD) of the number of columns in the
optimal alignments for Prank, Clustal Omega, MAFFT, and
Muscle were 1,294.2 (33.4), 1,091.4 (14.4), 1,187.0 (25.9),
and 1,164.7 (20.6), respectively.

Results from Alternative Hypothesis Experiment. For the
datasets that were simulated according to the aforementioned
scenario that satisfies the alternative hypothesis of a positive
correlation between nucleotide substitution and gap presence,
we do not expect the distribution of F (T ) to be uniform. For
the true alignments, the distribution of F (T ) is shifted to the
right so that the mean of F (T ) exceeds the value of 0.5 that
is expected under the null hypothesis. The mean and SD of the
1,000 F (T ) values from true alignments are 0.975 and 0.0652,
respectively. With the true alignments, the null hypothesis of
independence between substitution process and gap presence was
rejected at a 5% significance level for 779 of the 1,000 datasets that
were simulated according to the alternative hypothesis. For the
optimal alignments from the four alignment software packages,
the distributions of F (T ) values were shifted even further to the
right than for the true alignments. The number of cases rejecting
the null hypothesis with a 5% significance level for alignments
from Prank, Clustal Omega, MAFFT, and Muscle were 937, 866,
993, and 1,000, respectively.

For the datasets simulated according to the alternative hy-
pothesis, the mean and SD of the number of columns for the
true alignments were 1,272.5 and 26.3, respectively. The four
aligners show a tendency to overalign for these simulated datasets,
although the tendency was not extreme for PRANK. The mean
(SD) of the number of columns in the optimal alignments for
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Table 3. Pattern counts from the BAli-Phy analyses of simulated data

Substitution Alignment XXX XXY XYZ XXG XYG XGG Total
Low True 579.8 (18.0) 185.9 (12.7) 12.5 (3.5) 167.5 (14.8) 35.9 (6.3) 258.7 (24.4) 1,240.3 (24.2)

Randomly sampled 575.0 (18.1) 185.2 (12.9) 12.5 (3.5) 171.8 (16.5) 36.6 (6.3) 265.2 (25.2) 1,246.3 (23.6)
Posterior decoding 621.1 (16.0) 195.1 (12.9) 12.3 (3.4) 131.1 (13.8) 25.3 (5.2) 201.9 (20.9) 1,186.7 (20.7)

High True 203.9 (14.1) 434.2 (16.7) 139.9 (11.2) 91.0 (10.8) 112.8 (12.1) 257.7 (25.3) 1,239.5 (24.9)
Randomly sampled 203.3 (13.0) 435.6 (17.4) 140.3 (11.1) 90.1 (11.2) 112.3 (12.7) 256.8 (23.6) 1,238.4 (22.2)
Posterior decoding 306.7 (10.6) 464.3 (17.3) 123.3 (10.1) 45.3 (7.9) 37.0 (6.9) 151.9 (19.9) 1,128.4 (18.5)

The table shows the mean (and SD) among the 1,000 simulated datasets of the pattern counts for the low-substitution and high-substitution simulation scenarios with three alignment
types. The “Total” column shows the means (and SDs) of the number of columns per alignment.

Prank, Clustal Omega, MAFFT, and Muscle were 1,260.5 (34.0),
1,076.8 (12.8), 1,157.9 (22.0), and 1,142.6 (18.4), respectively.

Results from Probabilistic Alignment Experiment. We summa-
rize the BAli-Phy analyses by classifying each column of three-
sequence alignments into one of six categories: XXX columns
have three identical nucleotide types; XXY columns have two
nucleotides of one type and another with a different type, regard-
less of which of the three sequences has a different type from the
others; XYZ columns have three different types; XXG columns
have two identical types and one gap symbol; XYG columns
have two different types and one gap symbol; and XGG
columns have one nucleotide and two gap symbols. For the
specific case simulated here where substitution is independent of
insertion–deletion and where the three branches are equally long
and follow the Jukes–Cantor model, the counts of these pattern
categories are sufficient statistics for inferring the shared branch
length from an alignment. Therefore, reconstructed alignments
with pattern counts that are close to those of the true alignment
are likely to provide a good basis for evolutionary inference.

Table 3 shows that the mean pattern counts are quite similar
between the true and randomly sampled alignments. This strong
similarity can be attributed to the fact that the BAli-Phy and
INDELible parameters were intentionally set to closely corre-
spond. Because the INDELible and BAli-Phy insertion–deletion
treatments are close but not identical, there are some small but
presumably real differences in pattern counts between the true and
randomly sampled alignments. Whereas the pattern counts from
the true and randomly sampled alignments are quite similar, they
substantially differ from those of the posterior decoding align-
ments. This suggests that the randomly sampled alignments are
preferable to the posterior decoding alignments for the purposes
of evolutionary inference.

Because the three-sequence datasets were simulated according
to the null hypothesis that substitution and insertion–deletion
processes are independent, the qij · and pij · values of Eq. 1 should
be similar. Table 4 shows that the means of these two statistics
are very similar for the true alignments. This is also the case for

randomly sampled alignments. Furthermore, randomly sampled
alignments behave almost identically to true alignments with
regard to SDs of qij · and pij ·. However, the behaviors of these
statistics for the posterior decoding alignments are quite different
from their distributions from true and from randomly sampled
alignments (Table 4).

The average F (T ) when applying our independence test is
close to the expected 0.5 for both the true and randomly sam-
pled alignments (Table 4). In contrast, the posterior decoding
alignments generate values of qij · and pij · that are too small on
average relative to the true alignments. The posterior decoding
alignments yield mean F (T ) values that are markedly less than
the expected 0.5. Whereas the performance of the independence
test is satisfactory for true and randomly sampled alignments,
the 81 incorrect rejections of the null hypothesis for the low-
substitution scenario with posterior decoding alignments (Table
4) are significantly different from the expected 5% rate of incorrect
rejections (two-tailed exact binomial test, P < 0.0001). The same
conclusion applies to the 89 incorrect rejections with posterior
decoding alignments for the high-substitution scenario.

Results from Database Analyses. Fig. 3A is a histogram of the
F (T ) values from the 1,390 structurally informed alignments
that were analyzed with our test. The histogram deviates from the
uniform distribution that would be expected if the null hypothesis
were true for all datasets. The concentration of F (T ) values near
1 is consistent with a positive correlation between amino acid
replacement rates and rates of insertion and/or deletion. The null
hypothesis was rejected at a 5% significance level for 908 of the
1,390 datasets (� 65.3%). Fig. 3B shows that the tendency for
F (T ) to be near 1 increases with alignment length.

Discussion and Conclusion

Our simple hypothesis test relies upon aligned DNA or protein
sequences to examine the null hypothesis that positions of gaps
within alignments are independent of the nucleotide substitution
or amino acid replacement processes. When this null hypothesis

Table 4. Statistics from the BAli-Phy analyses of simulated data

Substitution Alignment qij· pij· F(T) No. of rejections
Low True 0.176 (0.0268) 0.175 (0.0107) 0.502 (0.287) 46

Randomly sampled 0.176 (0.0264) 0.176 (0.0111) 0.489 (0.288) 61
Posterior decoding 0.162 (0.0308) 0.172 (0.0101) 0.402 (0.292) 81

High True 0.554 (0.0357) 0.552 (0.0128) 0.515 (0.293) 50
Randomly sampled 0.555 (0.0351) 0.553 (0.0124) 0.518 (0.290) 46
Posterior decoding 0.450 (0.0560) 0.484 (0.0091) 0.339 (0.265) 89

The table shows statistics from the BAli-Phy analyses of the low-substitution and high-substitution simulation scenarios with three alignment types. As defined in Eq. 1, qij· and pij·
represent proportions of differences among nongap characters in the more-gaps and fewer-gaps categories, respectively. The entries in the qij· and pij· columns are averages from the
1,000 simulated datasets. The F(T) column shows the mean F(T) of Eq. 2 from applying the test to the 1,000 cases. The number of rejections column lists the number of times out of
1,000 that the null hypothesis was incorrectly rejected at a significance level of 0.05. Parenthesized numbers are SDs of the 1,000 values.
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Fig. 3. Distributions of F(T) from protein alignments that are informed by protein tertiary structure. (A) A histogram of the F(T) values obtained by applying
the hypothesis test to 1,390 aligned datasets. (B) A plot of alignment length (x axis) versus F(T) (y axis) for the 1,390 datasets.

is correct and when alignment gaps can be attributed to insertions
or deletions, the conventional treatment of gaps as missing data is
problematic in the sense that it ignores evolutionary information
from insertion and deletion events. However, when the null
hypothesis is correct, the conventional treatment will not bias
evolutionary inferences that are based solely on nucleotide sub-
stitution or amino acid replacement. One motivation for testing
the null hypothesis is therefore to assess whether evolutionary
inferences might be biased due to the conventional treatment of
gap locations as being independent of the substitution or amino
acid replacement processes.

We intentionally designed our hypothesis test to be nonpara-
metric. A parametric test would be likely to be more powerful and
could have the attractive feature of incorporating phylogenetic
structure. However, a cost of the additional power is likely to
be sensitivity to violations of model assumptions. Seo et al. (28)
introduced a model adequacy test for analysis of aligned sequence
data. That model adequacy test could be modified to examine the
null hypothesis that our nonparametric test evaluates. We chose
to instead explore the nonparametric test behavior specifically
because of its simple and nonparametric nature.

When we simulated data according to the null hypothesis, our
nonparametric test performed well. Similarly, our nonparametric
test had the desired behavior of frequently rejecting the null
hypothesis when the null hypothesis was violated for simulated
data. When our test was applied to datasets consisting of pro-
teins that were aligned on the basis of tertiary structure, the
null hypothesis was often rejected. Two possible causes of these
frequent rejections warrant particular attention. Although the two
causes are not mutually exclusive, we separately consider them

here. The first possibility is that amino acid replacement and
insertion–deletion are not independent. The second possibility
is that alignment errors have artifactually introduced a signal of
dependence between these processes.

Because we analyzed alignments that are informed by protein
structure, we suspect that alignment errors are not a major reason
for the high proportion of rejected null hypotheses from the
databases of protein alignments. A positive correlation across
protein regions is biologically plausible because natural selection
is likely to impose correlated constraints across regions on amino
acid replacement and insertion–deletion. Probabilistic models
of sequence change that incorporate this positive correlation
should more often be applied to evolutionary inference. However,
evolutionary inference that includes insertion and deletion can
be computationally challenging, and correlations between these
processes and amino acid replacement will exacerbate already
daunting inference challenges. A less ambitious alternative might
be a framework where the conventional handling of gaps as
missing sequence data is modified so that the abundance of gaps in
an alignment column (or in an alignment region) is used as prior
information concerning the relative rate of nucleotide substitution
or amino acid replacement. This modification would be inspired
by the pioneering framework for modeling substitution rate het-
erogeneity among sites that Yang introduced (29). Whereas the
simplest version of Yang’s framework has a discretized probability
distribution of relative rates across sites with all rate categories
having equal prior probability, a modification could have the local
pattern of gap presence/absence influence the prior probabilities
of the different relative rate categories that might affect a particular
alignment column.
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Rather than modifying evolutionary models, another option
for dealing with a correlation between substitution and insertion–
deletion processes would be to determine when inferences are
robust to such correlations. The degree of robustness will depend
on details of the evolutionary process as well as on the evolutionary
history. In addition, robustness will vary among evolutionary
inference tasks. For example, it may be that tree topology esti-
mation is more robust than divergence time estimation. Char-
acterizing robustness is clearly preferable to ignoring violated
assumptions.

We showed with simulated data that the null hypothesis of in-
dependence between substitution and insertion–deletion is prone
to being incorrectly rejected due to alignment errors (Fig. 2). Dif-
ferent alignment software packages exhibited different tendencies
to incorrectly reject the null hypothesis, but we do not view our
results as being helpful concerning the relative merits of these
aligners. We did not explore a wide variety of simulation scenarios
and did not attempt to adjust the default settings of the software
packages. Our purpose was solely to demonstrate that inferred
alignments can include errors that incorrectly signal evidence for
a correlation between substitution and insertion-deletion.

Adjustments to program settings and/or adoption of other
software might reduce the tendency for incorrect rejection of
the null hypothesis, but the BAli-Phy analyses indicate that the
tendency will be difficult to eliminate because optimality criteria
are prone to favoring alignments that are unrepresentative of
true alignments. With conventional alignment optimality criteria,
the distribution of patterns in incorrectly aligned columns will
differ from the distribution of patterns among true alignment
columns. True alignments can have regions that are relatively
improbable while still being possible. Conventional optimality
criteria are likely to resolve the relatively improbable region of the
true alignment with an incorrect albeit more probable scenario
for that region. Conventional optimality criteria will make this
decision about resolving alignment regions in a deterministic way
such that the evolutionary signal in the resulting alignment may
be unrepresentative of the signal in the true alignment.

While an alignment is an evolutionary hypothesis about posi-
tional correspondence between sequences, alignment inference is
often an intermediate step when studying evolutionary process or
history. A common practice is to extract the values of sufficient
statistics from an inferred alignment to make likelihood-based
inferences that are conditional upon the inferred alignment being
correct. In such a situation, it may be worthwhile to design
simulation studies that assess an alignment procedure not on the
basis of how close is the inferred positional correspondence to the
true alignment but instead on how close are the sufficient statistics
in an inferred alignment likely to be to their true values.

Probabilistic treatments for analyzing unaligned sequences are
rapidly improving (e.g., refs. 20, 30, 31). By marginalizing over
alignments, these procedures are able to better reflect variance in
parameter estimates due to alignment uncertainty. The genomic
era has gifted evolutionary biology with large datasets that can
lead to very small variances in parameter estimates. Although
genome-scale datasets can greatly reduce variance, they do not
eliminate bias. We showed here that optimal alignments can
lead to biased sufficient statistics (Table 3). It may be that the
biggest advantage to probabilistic treatments of alignments is
their ability to avoid the biased inferences that emerge when

relying upon alignments that satisfy conventional optimality
criteria.

While it is certainly most desirable to base evolutionary infer-
ences on all alignments or on a large sample from the posterior dis-
tribution of alignments, relying on a single random sample from
this posterior distribution may yield better evolutionary inferences
than relying upon a single optimal alignment. In some cases, infer-
ring evolutionary parameters based on a single alignment sampled
from the posterior can be nearly as accurate as inference based on
the joint posterior of the alignment and evolutionary parameters
(32). Representing posterior distributions by a single summary
alignment can be problematic when uncertainty is resolved in the
same direction at many different locations. For example, when
two sequences contain different residues in the same location, it
may be ambiguous whether these two residues should be aligned
(creating a mismatch) or unaligned (creating two gaps). When
both alternatives have the same posterior probability, posterior
decoding tends to resolve them all in the same direction: either
always voting in favor of substitutions or always in favor of gaps,
depending on which version of posterior decoding is used. In
such cases, relying on a single sample from the posterior distri-
bution may yield better evolutionary inferences than an optimal
alignment because ambiguities are not all resolved in the same
direction. The relative benefit of using a single posterior sample
or an optimal alignment may depend on many factors, including
the evolutionary distance between the sequences, the evolutionary
parameter to estimate, the number of sequences in the alignment,
and the optimality criterion.

Alignment algorithms have traditionally been judged based on
various measures of accuracy. For example Mirarab and Warnow
(33) describe the sum-of-pairs (SP) score, which is the frac-
tion of true pairwise homologies found in the estimated align-
ment. BAli-Phy implements a version of posterior decoding that
maximizes the expected SP score by maximizing the expected
number of true pairwise homologies. Such posterior decoding
alignments should be more accurate than a randomly sampled
posterior alignment according to their respective scores. How-
ever, evolutionary inferences based on posterior decoding align-
ments will still suffer from the bias that results from resolving
equiprobable events in a consistent direction. Thus, there may
be a difference between alignments that are most accurate and
alignments that yield the most accurate estimates of evolutionary
parameters.

Data, Materials, and Software Availability. Analyzed data and software have
been deposited in GitHub (https://github.com/diploid2n/IND TEST) (34).
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